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Abstract—Evaluating the execution time and energy consump-
tion of parallel programs is a primary research topic for many
HPC environments. Whereas much work has been done to
evaluate the non-functional behavior for single parallel program-
ming models such as MPI or OpenMP, little work exists for
hybrid programming models such as MPI/OpenMP. This paper
proposes the Threshold Oriented Energy Prediction (TOEP)
approach which uses the Random Forest Modeling (RFM) to
train models for execution time and energy consumption of
hybrid MPI/OpenMP programs. Training data (performance
measurements) are reduced by ignoring code regions that have
little impact on the overall energy consumption and runtime of a
program and also based on the variable importance parameter of
RFM. A selection parameter is introduced that selects a trade-off
solution between the number of modeling points (measurement or
training data) required and prediction accuracy. An exploratory
study on the proposed prediction approach was employed for
a few candidate hybrid applications namely HOMB, CoMD,
and AMG2006-Laplace. The experimental results manifested the
energy prediction accuracy of over 86.17% for large performance
datasets of the candidate applications at a reduced computational
effort of less than 17 seconds.

Index Terms—Energy Prediction, HPC, Hybrid, Scientific Ap-
plications

I. INTRODUCTION

The combined effort to control energy consumption without

increasing execution times of parallel programs has become a

major challenge for scientific applications on HPC systems [6].

Performance models are important to understand the non-

functional behavior of parallel programs, to guide tools such

as compilers and auto-tuners, to find good code transformation

sequences, to understand work and data distribution strategies,

to analyze performance sensitive SW and HW parameter

values, and so forth. Much work has been conducted to

examine the performance of single programming models in-

cluding MPI and OpenMP. Hierarchical computer architecture

organization is well suited for hybrid programming models

such as MPI/OpenMP which is the focus of this paper. As

multicore nodes with larger core counts and less memory per
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node are becoming prevalent, it is anticipated [6] that hybrid

programming models will be increasingly used. Whereas nu-

merous works focused on performance and energy modeling

for MPI and OpenMP as single programming models ( [7],

[15]), less work has been done to model both execution time

and energy consumption of hybrid MPI / OpenMP programs.

This paper proposes a Threshold Oriented Energy Prediction

mechanism for MPI-OpenMP Hybrid applications (TOEP).

TOEP approach, in short, extracts the large performance data

of applications; iteratively models and predicts the energy con-

sumption of MPI-OpenMP hybrid applications starting from

a few modeling points; applies a threshold oriented selection

process which iteratively selects the best minimal modeling

points while predicting the energy efficient problem sizes of

MPI/OpenMP applications. The proposed approach could be

applied in parallel compilers or autotuning tools. Iterations

are carried out for the six pre-defined number of modeling

points of Random Forest Modeling algorithm (discussed in

Section III). The proposed approach was experimented for a

few pilot MPI-OpenMP hybrid applications such as HOMB,

CoMD, and AMG2006-Laplace on a four node computing

cluster The experimental results of TOEP approach have

attained energy prediction accuracies of 83.3% to 99.01% and

execution time prediction accuracies of up to 94%.

The rest of the paper is organized as follows: Section II

presents the available energy prediction mechanisms for

applications. Section III explains the TOEP approach for

MPI/OpenMP applications. Section IV validates the proposed

TOEP approach for the three candidate MPI/OpenMP appli-

cations namely HOMB, CoMD, and AMG2006-Laplace ap-

plications. And, finally, Section V presents a few conclusions.

II. RELATED WORK

Performance prediction of scientific applications is a com-

plex problem as large number of variables is related both to the

nature of the code (e.g. selective use of hardware features with

impact on performance) and to the heterogeneous infrastruc-

ture. Researchers, in the past, had characterized and predicted

the execution time of scientific applications. For instances, the

authors of [19], [20] had mapped hardware profile details to



applications; the authors of [11] had studied the application

of historical data to predict the future executions; researchers

of [3], [5], [12] had utilized statistical models while predicting

execution time of applications; authors of [11], [18] had

implemented data mining methods for the prediction problem

of applications.

Analyzing performance concerns of applications is not

considered to be the only target of modern HPC commu-

nity. In recent years, therefore, several attempts have been

carried out to reduce the energy consumption of scientific

applications [1], [16], [17]. A few researchers have devel-

oped energy prediction and optimization approaches for HPC

applications that are specific to MPI, OpenMP or CUDA

applications. For instances, Bhavyasree et al [4] have proposed

an energy optimization approach for MPI applications where

Dynamic Voltage Frequency Scaling technique was applied

on computing nodes; Shajulin et al [15] have implemented

an energy prediction approach using RFM in compilers for

OpenMP applications. These works were more specific to

MPI or OpenMP applications. There exists a survey on energy

modeling solutions for HPC applications by Brien et al (see

[9]). In most of the existing modeling works, either the

authors have dealt with single parallel programming models

or have not considered the large performance datasets of

emerging architectures. Our research work has deliberated over

an energy prediction approach for MPI/OpenMP applications

while observing the evolving large performance dataset from

performance measurement tools.

III. TOEP – AN ENERGY PREDICTION APPROACH

The proposed TOEP approach aims at predicting the energy

consumption and execution time of hybrid MPI/OpenMP ap-

plications. In TOEP, the energy / execution time predictions

are carried out using RFM algorithm [10] consisting of the best

possible minimal number of modeling points. The modeling

points, specified in this paper, are the number of performance

data utilized in the training dataset for RFM modeling. To

select the best possible minimal number of modeling points

in RFM, the modeling points of RFM are iteratively increased

in TOEP based on the six pre-defined modeling methods; and,

the corresponding best modeling method is chosen based on

the threshold value obtained using the prediction accuracy of

RFM and the effort (computation time) of TOEP.

A. TOEP Approach

Figure 1 illustrates the proposed TOEP approach with four

phases as discussed below:

1) Collection Phase: At first, the performance dataset of

a few selected code regions (for different problem sizes) are

collected from the TAU based performance analysis mecha-

nism which is utilized in this work (see sub section III-A5).

In the case of MPI/OpenMP hybrid applications, the OpenMP

parallel regions which follow MPI constructs are considered.

Thus, the number of performance data that are available for

energy modeling is substantially reduced. The performance

measurement tool that we use for our work can produce 21

Fig. 1. Model Selection Mechanism of TOEP Approach

or even more different performance parameters based on the

measurement requirements for applications.

2) Shaping Data Phase: Next, the energy consumption

values from the reduced performance dataset are ordered in

a decreasing order so that the energy modeling algorithms

improve accuracy. The reason why such ordering improves

accuracy of RFM is because the correlation between the

independent variables and the dependent variables improves

during the formation of random forest trees. In addition, the

number of independent variables (i.e., the number of columns

of the performance dataset) are reduced based on the variable

importance parameter of RFM.

3) Training vs. Testing Split-up Phase: Here, the rows of

these performance datasets are divided into training and testing

datasets based on six pre-defined sampling methods adopted

in this work. The sampling methods determine the number of

modeling points of RFM. The training dataset is employed to

create models and the testing dataset is utilized for predicting

the energy/execution time of MPI/OpenMP applications based

on the models created earlier. The six pre-defined sampling

methods are named as TRSet1+SD, TRSet2+SD, TRSet3+SD,

TRSet4+SD, TRSet5+SD, and TRSet6+SD (See Figure 1).

In the sampling method TRSet1+SD, TRSet1 stands for a

training set containing 1/2000 equi-distantly sampled rows of

the whole performance dataset and SD stands for the dataset

that has undergone the Shaping Data treatment mentioned in

the previous phase; TRSet2+SD includes 1/1000 equi-distant

sampling data; TRSet3+SD contains 1/100 data; TRSet4+SD

includes 1/10 rows; TRSet5+SD contains 1/4 rows; and,

TRSet6+SD contains 1/3 performance data.



4) Iterative Phase: In the iterative phase of TOEP, the

following tasks are carried out for each of the six pre-defined

sampling methods: a) Threshold initiation: At this stage, the

threshold value Ti is initialized. Initially, it is set to zero. At the

end of each iteration i, Ti is updated based on the Selection
parameter as defined by Eq. (1). b) Organizing Data: Next,

the training and testing datasets are stored in two different data

frames. c) RFM: Later, RFM algorithm ( [10]) is applied to

the training dataset to create random forest trees which is a

part of the learning process of the algorithm. In this work, the

models are created for the energy consumption and execution

time of the code regions of MPI-OpenMP hybrid applications.

Afterwards, the created models are utilized to predict the

energy consumption and execution times of MPI/OpenMP

applications. The prediction accuracy of the RFM method

when applied to each of the pre-defined sampling methods

is calculated using R2. R2 is the measure of goodness to

the fitting model. d) TOEP Computation time (TOEPt): In

addition to modeling and prediction steps, TOEP records the

computation time (effort) for each iteration; In fact, TOEPt

values are required to rank the pre-defined sampling methods.

e) Threshold based Selection: For each iteration, the TOEP

computation time (TOEPt) and the prediction accuracy of

each modeling methods (which were calculated using R2)

are evaluated through a Selection parameter as defined by

Eq. (1). The Selection parameter is directly proportional to

the prediction accuracy (R2) and indirectly proportional to the

computation time of TOEP (TOEPt).

Selection = (R2/TOEPt) (1)

Accordingly, the threshold value Ti is updated with newer

values of the Selection parameter if the latest Selection
parameter value is larger than Ti. By this, Ti will be revised

with higher values for each iteration. In addition, at the end

of this step, the corresponding best RFM modeling method

(which relates to one of the six pre-defined sampling methods)

will be elected for predicting the energy consumption and

execution time of code regions of MPI/OpenMP applications

based on the Selection parameter.

5) Performance/Energy Measurements in TOEP: Here, the

OPARI2 [14] instrumentor of the TAU performance analysis

framework is utilized for instrumenting OpenMP regions,

whereas all MPI function calls are instrumented (i.e., adding

additional functions to the programs in order to measure

the performance values) by means of a wrapper library. The

instrumented code regions of interest are compiled and input

with possible problem sizes of hybrid applications. In order to

control measurement overheads during program execution and

ensure low measurement perturbation, a sophisticated selective

instrumentation is tailored to each target application. By this,

we restricted the instrumentation of applications to all MPI

function calls and all OpenMP-annotated code regions of target

applications. Then, the instrumented applications are executed

on the target hardware platform with a given set of application-

specific input problem sizes; the comprehensive performance

data (regarding each region’s execution time, energy consump-
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Fig. 2. Energy consumption values for different problem sizes of the HOMB
application.
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Fig. 3. Energy consumption values for different problem sizes of the COMD
application.

tion, and hardware performance counter values) is collected.

This data is then preprocessed and aggregated in order to

be suitable for the subsequent prediction model training and

validation (discussed in TOEP approach).

IV. EXPERIMENTAL RESULTS

This section explains the experimental setup; the en-

ergy consumption details of the pilot applications namely

COMD [13], HOMB [8], and AMG2006-Laplace [2]; the

energy modeling results of these applications; the impact of

reducing the modeling points of RFM; and, the comparison

of RFM based TOEP to the traditional Linear Regression

Modeling (LRM) approach.

A. Experimental setup

In order to manifest the proposed TOEP approach, we

have experimented three hybrid MPI-OpenMP applications:

COMD, HOMB, and AMG2006-Laplace.

1) Machines and Measurements: The experimental target

hardware platform consists of four nodes, each equipped with

four Intel Xeon E5-4650 Sandy Bridge EP processors and 256

GB of main memory. HyperThreading is not in use for our
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Fig. 4. Energy consumption values for different problem sizes of the
AMG2006-Laplace application.

experiments (thus leading to a total of 32 hardware threads

per node), and the clock rate is fixed to the highest nominal

clock rate of 2.7 GHz (so that the energy measurements

are valid). The nodes are connected via a dedicated Gigabit

Ethernet network. The application binaries are compiled using

gcc 6.3 with optimization level -O3. The nodes are clustered

such that one MPI process is employed on each node with a

varying number of OpenMP threads – 1, 2, 4, 8, 16, and 32

for our experiments. The process and thread combinations for

the experiments are annotated as 4x1 (4 threads total), 4x2 (8

threads), 4x4 (16 threads), 4x8 (32 threads), 4x16 (64 threads),

and 4x32 (128 threads). Thread binding is enforced in all

experiments. During the experiments, the following hardware

performance data were collected for each code region of

applications: NumCalls, Inclusive Time, Exclusive Time,

EnergyNodeN, PAPI NATIVE SIMD FP 256,

PAPI NATIVE LAST LEVEL CACHE MISSES,

PAPI NATIVE L1D:REPLACEMENT, PAPI NATIVE

INSTRUCTION RETIRED, PAPI NATIVE RE-

SOURCE STALLS:ANY.

Concisely, the performance dataset obtained for the ex-

perimental applications while considering different problem

sizes reached hefty performance data sizes. For instances: the

shaped performance data while considering only one OpenMP

parallel region reached a performance data file size of 874.2

MB in HOMB application; similarly, CoMD had a file size of

3.2 GB; and AMG2006-Laplace had a file size of 1.9 GB.

B. Energy Consumption Values

Figures 2 to 4 illustrate the energy consumption value of

applications available from the large performance dataset of

applications, which consist of 226044 performance data entries

(objects) for HOMB, 239652 objects for CoMD, and, 256284

data objects for AMG2006-Laplace applications. Each figure

of Figures 2 to 4 consist of six columns. Column 1 to 4

reveal the increasing energy consumption values with respect

to the problem sizes – in these columns, x-axis represent

the energy consumption values in Joules and y-axis denote

Fig. 5. Energy Prediction of HOMB using RFM and LRM

the performance dataset entries in percentage. For instance,

in HOMB application, there were 226044 performance data

objects. These data objects were binned into 100 equal bins

(divisions) such that 2260 rows were plotted in the first bin.

In addition, 100 percentage of x-axis in Figure 2 corresponds

to the lowest problem size of HOMB (4096 in our case).

Column 5 denotes the increasing problem size of applications,

and Column 6 portrays the different classes of problem sizes

of applications. The x-axis of column 5 of Figures 2 to 4

illustrate the problem size values of applications. The Prob-

SizeClass column on the far right represent the grouping of the

performance dataset in various classes based on the problem

sizes of applications. Here, each class are represented with

different color based on the increasing problem size.

C. TOEP Modeling Results

In TOEP, the performance data were utilized for modeling

and predicting the energy consumption of different problem

sizes of candidate hybrid applications.

1) Modeling Datasets: The number of problem sizes, the

range of problem sizes, and the number of performance

datasets available for modeling and predictions are listed in

the Table I. It should be noticed that the performance dataset

mentioned in Table I were filtered for the specific hybrid code

regions of applications.

2) Illustrations of Figures 5 to 7:: Figures 5 to 7 explain

the advantages of the proposed TOEP approach.

a) Shaping Data and Variable Selection in TOEP:: As

discussed in Section III, TOEP shaped the raw performance

dataset with more emphasis towards obtaining better prediction

results for the energy consumption of hybrid code portion

of applications (see the Shaping Data phase of Figure 1).

To do so, it ordered the performance dataset in decreasing

order before applying the RFM based energy modeling or

prediction algorithms. In addition, as pointed out earlier, the

measurement system produced over 21 performance variables

which implicitly create heavy modeling time for applications.

To avoid this hefty TOEP computation time (the effort),

TOEP restricted the number of variables utilized for the

modeling or predictions. The number of independent vari-

ables utilized for the modeling mechanisms of TOEP was



TABLE I
DETAILS OF PERFORMANCE DATASETS AND THE PROBLEM SIZE OF APPLICATIONS USED FOR OUR MODELING

Applications No.of Problem Size
Number of Lines in Performance Dataset

Problem Size All 4x32 4x16 4x8 4x4 4x2 4x1

HOMB 897 4096 to 32768 226044 113022 56511 28255 14127 7063 3531

CoMD 951 1000 to 20000 239652 119826 59913 29956 14978 7489 3744

AMG2006 1017 1024 to 131072 256284 130176 65088 32544 16272 8136 4068
Laplace

Fig. 6. Energy Prediction of CoMD using RFM and LRM

Fig. 7. Energy Prediction of AMG2006-Laplace using RFM and LRM

reduced to three variables based on expert experiences: i)

PAPI NATIVE LAST LEVEL CACHE MISSES, ii) Prob-

Size, and iii) Inclusive ExecutionTime/EnergyNodeN.

b) Modeling Methods – the utility of modeling points in

RFM:: Method 1, represented in the x-axis of the Figures 5

to 7, reveals the R2 values of applications while ordering the

energy consumption value of datasets. The y-axis of Figures 5

to 7 represents R2 values in percentage. However, Method 1

has included all performance variables during the modeling

and prediction process of RFM. Method 2, represented in

the x-axis of the Figures 5 to 7, shows the R2 values of

applications combining Method 1 and reducing the number

of independent variables of the models. Methods 3 to 8,

represented in the x-axis of the Figures 5 to 7, illustrate the

application of TOEP approach while implementing different

pre-defined modeling points of RFM. Methods 3 to 8 included

Fig. 8. RFM vs. LRM Marginal Histogram Plot for HOMB Application

Method 1 and Method 2 (i.e., the performance data were

shaped and reduced to a minimal set of independent variables).

It could be observed that the Selection parameter value is,

thus, not included for the Methods 1 and 2. But, it is calculated

from Methods 3 to 8, which reflect the TOEP approach.

c) RFM Modeling in TOEP:: RFM based predictions are

implemented in TOEP approach for all associated methods:

Methods 3 to 8 of Figures 5 to 7. As seen, the prediction

results for the selective hybrid code portions of the candidate

applications are depicted in the Figures in terms of R2. It could

be observed that the R2 values were higher for RFM when

compared to LRM. In addition, the Selection parameter value

is calculated and plotted on Figures 5 to 7 based on the TOEP

computation time and the energy prediction accuracy (R2) of

RFM (see Equation 1). The secondary y-axis of Figures 5

to 7 explains the Selection parameter value of applications.

As seen in Figures, TRSet4+SD modeling option was selected

for HOMB application, TRSet3+SD was selected for CoMD

and AMG2006-Laplace applications in TOEP approach.

D. Validation of TOEP Approach

Fixing the identified modeling options for each applica-

tion, the energy consumption values of problem sizes of

MPI/OpenMP applications were predicted in TOEP. The

energy prediction values due to RFM based modeling in

TOEP for candidate applications namely HOMB, CoMD, and

AMG2006-Laplace reached the R2 values of 99.01, 83.3, and

86.17. In contrary, LRM approach achieved only 88.88, 73.34,

and 79.66. In addition, the TOEP computation time TOEPt

for the applications were 17.56, 13.06, and 13.31 seconds for

the candidate hybrid applications. Accordingly, the Selection



Fig. 9. RFM vs. LRM Marginal Histogram Plot for CoMD Application

parameter value revealed the following highest points: i) 5.35

points at TRSet4+SD option for HOMB application, ii) 6.37

points at TRSet3+SD for CoMD application, and iii) 6.47

points at TRSet3+SD for AMG2006-Laplace application. In

Figures 8 to 10, we could observe the energy prediction values

that were deviated from TOEP approach and LRM approach.

Clearly, the proposed TOEP approach manifested better than

LRM for the experimented MPI/OpenMP hybrid applications.

V. CONCLUSION

In this paper, we introduced the Threshold Oriented Energy

Prediction (TOEP) approach using the Random Forest algo-

rithm for predicting the energy consumption and execution

time of hybrid MPI/OpenMP applications. In contrast to many

works that are specific to MPI or OpenMP, our approach

is generic and able to deal with large performance datasets.

As part of TOEP we defined an iterative threshold parameter

which selects a tradeoff solution between the number of mod-

eling points required and prediction accuracy. Experiments

were conducted on a 4 node compute cluster for a few

pilot MPI/OpenMP applications such as HOMB, CoMD, and

AMG2006-Laplace. The experimental results have manifested

the importance of TOEP approach by achieving an energy

prediction accuracy (coefficient of determination – R2) of 83.3

to 99.01 % when compared to the traditional linear regression

models of 73.34 to 88.88 %; similarly, an execution time

prediction accuracy of up to 94.11 % (up to 90.96 % for LRM).

In addition, the TOEP approach reduced the computational

effort for prediction when compared to LRM. For our test

applications, the computational effort for predictions with

TOEP were about 13 to 17 seconds; whereas with LRM, the

computational effort reached over 241.8 seconds.
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