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Abstract

The efficient use of modern, highly parallel hardware requires an
advanced software infrastructure. Two essential components of
such an infrastructure are compilers capable of supporting paral-
lelism and their associated runtime systems. Compilers focus on
analysis and optimizations which can be performed statically, in-
dependently of program execution. Conversely, traditional par-
allel runtime systems purely consider information which can be
derived during runtime as a basis for their scheduling and work
distribution decisions.

The parallel runtime system Insieme-RS presented in this
thesis goes beyond the capabilities of the state of the art by of-
fering close integration with a high-level optimizing and analyz-
ing compiler. This integration includes the forwarding of meta-
information such as static analysis results from the compiler
to the runtime system, and compile-time fine-grained function
multi-versioning. Using this meta-information, dynamic knowl-
edge only available during program execution, such as the val-
ues of program variables, input data sizes and external system
load, can be combined with the results of static compiler analysis
to yield better scheduling decisions. Additionally, by means of
multi-versioning, aggressive static optimizations can be applied
selectively at runtime, depending on dynamic conditions.

As it is a target platform of the Insieme compiler, Insieme-
RS can enhance a variety of existing parallel programs designed
for OpenMP, Cilk or OpenCL. Within this thesis, three novel
methods in the fields of multi-process scheduling, automatic work
distribution in parallel loops and the granularity control of task-
based parallelism are demonstrated on existing programs, and
all outperform existing parallel runtime systems by utilizing the
unique capabilities offered by Insieme-RS.
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Chapter 1

Introduction

1.1 Motivation

Over the past decade, the overall landscape of computing - from traditional
personal computers to portable and embedded devices - has undergone a
marked shift towards parallelism [5]. This development, brought on by
physical constraints limiting further increases in sequential processing per-
formance [80], has wide-reaching consequences in many areas of computer
science. In particular, developing software which efficiently uses these mod-
ern parallel systems is a crucial challenge, both in industry and academia.

A Historical Perspective The issues software developers are faced with
when creating programs for modern-day, complex parallel systems are per-
haps best understood from a historical context. When high-level program-
ming languages were becoming more widely used in the 70s, computers
largely performed sequential processing, and memories were almost as fast
as the processors performing operations on their data [89]. Therefore, a
developer needed only to consider the performance characteristics of the
processor and how his high-level language of choice is translated to that
processor in order to write an efficient high-performance program.

However, the memory gap (the time it takes, in CPU cycles, to ac-
cess some information in memory) continued to grow, and new hardware
features such as caches were introduced to bridge this gap. Adding new
hardware components unavoidably increases the number of factors involved
in the performance of a program, and makes that performance harder to un-
derstand and predict. Introducing instruction-level parallelism (ILP) [46],
out-of-order execution and branch prediction [71] added more layers of com-
plexity. This architectural evolution made it very hard for programmers to
fully utilize or even understand the hardware architecture of a given target
platform, and optimizing compilers gained a more important role in program
development.

1



2 CHAPTER 1. INTRODUCTION

When the rate of sequential performance improvements dwindled fur-
ther, additional levels of parallelism were introduced in hardware. This
included single-instruction multiple-data (SIMD) processing in the form of
vector units, and multiple CPU cores on a more coarse-grained level. For
the first time, this type of full-scale parallelism was available not just in the
form of distributed nodes in a high-performance computing (HPC) cluster,
but on wide-spread consumer hardware. At the same time, programming
these HPC clusters became even more complex, as inter- and intra-node
parallelism required different approaches [21].

Finally and most recently, heterogeneity of compute resources has be-
come an important topic [18]. Different types of algorithms and tasks are
suited for different types of hardware approaches, which makes combining
multiple types of hardware resources an attractive approach. While there
have been some hardware platforms designed specifically to accelerate com-
pute tasks (e.g. the Cell Broadband Engine Architecture [25]), the most
widely adopted form of mainstream heterogeneous computing is GPU com-
puting [66], which makes use of graphics processing units (GPUs) to accom-
plish compute tasks.

Taking into account all these developments, a modern HPC system may
consist of multiple nodes connected by a network, each of which features mul-
tiple levels of parallelism (sockets, cores, hardware threads, vector units and
ILP), a complex memory hierarchy, and perhaps even additional accelerator
hardware which has its own set of hardware peculiarities and requirements.
Clearly, making efficient use of such an architecture to solve a given problem
is harder than ever before.

The Software Challenge Given this level of hardware complexity, soft-
ware challenges arise in two distinct areas: the required development effort
for high-performance programs, and the runtime software support to actu-
ally interface with a given hardware platform. Compilers are one of the
primary means for tackling the former, while runtime systems enable the
latter.

The software development challenge is most easily understood by looking
at the technologies and standards a developer needs to be familiar with
in order to implement a high-performance program. Back at the start of
the historical timeline described above, knowing a programming language
such as Fortran or C and the characteristics of a rather basic (by modern
standards) CPU would be sufficient. Today, a HPC programmer might
well be expected to be familiar with OpenMP and pThreads for intra-node
parallelism, MPI for inter-node communication, some set of intrinsics (e.g.
Intel AVX [34]) to make full use of vector units, and CUDA or OpenCL in
order to deal with heterogeneous accelerators. Since it seems infeasible to
train a sufficient number of developers to fully understand this cornucopia
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of standards, tool support, as well as new standardized language efforts and
libraries are required to mitigate the effect of this explosion in complexity
on software development.

Runtime systems are a crucial part of this tool support, however, they
also introduce their own set of challenges. Each type of hardware resource
and each level of parallelism is traditionally addressed with a different system
– for example, OpenMP on the intra-node shared memory level, MPI on
the inter-node level and OpenCL for accelerators. However, these systems
are not designed to interact with each other, and need to be orchestrated
manually. This is a time-consuming process during development, and can
also cause inefficiencies during execution due to the interaction of separate
systems. However, it is also an unavoidable effort for HPC programs, as
the right balance between the individual components and technologies has
a significant impact on performance [67].

The Insieme Project As such, software development tools are tasked
both with supporting developers in successfully leveraging increasingly par-
allel hardware, and with easing the interactions between multiple disparate
types of hardware parallelism. Two particularly relevant areas of interest in
this regard are parallel compilers and their accompanying runtime systems.

Within the Insieme project [28] at the University of Innsbruck, a source-
to-source parallel compiler infrastructure and accompanying runtime system
are being developed to address some of the software challenges posed by such
highly parallel and heterogeneous hardware. The Insieme compiler supports
multiple input languages and standards such as C, OpenMP, Cilk, OpenCL
and MPI, with C++ support currently under development. All of these
languages are transformed into a unified, input code independent interme-
diate representation of parallel programs (INSPIRE [43]), which allows for
research into new compiler techniques. The compiler also integrates state-of-
the-art transformation tools for INSPIRE to enable quick prototyping and
experimentation [45].

The output programs generated by the Insieme compiler use the Insieme
Runtime System (Insieme-RS) to interact with, monitor and dynamically
reconfigure hardware, enable and manage parallel execution and perform
online code tuning and steering. The Insieme project attempts to lever-
age the particular opportunities afforded by strong integration between a
high-level analyzing and optimizing compiler and an accompanying runtime
system. This symbiotic relationship can aid dynamic decision making - such
as scheduling - as well as providing opportunities for code specialization by
means of multi-versioning. Insieme-RS is intended as a multi-paradigm run-
time system, which can leverage parallelism at both coarse and fine-grained
levels, support data parallelism as well as (recursive) task parallelism, and
enable parallel execution across a wide range of hardware devices.
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1.2 The State of the Art

Related work for this thesis generally conforms to one of two distinct cate-
gories: fully developed, feature-complete parallel runtime systems, and in-
dividual works aiming at one of the particular areas of contribution treated
in chapters 4, 5 and 6. The latter are discussed in more detail within their
respective chapters, while this section will give an overview of existing par-
allel runtime systems, and describe how Insieme-RS differs from previous
efforts. We have categorized the related work into four subsets: production-
quality runtime systems associated with some compiler, entirely new lan-
guages and programming models for parallelism, parallel libraries which are
used directly by the programmer and do not change the base language, and
research-focused parallel runtime systems.

Compiler-associated Runtime Systems Parallel runtime systems of
commercial quality are often offered in conjunction with compilers, for ex-
ample the Intel compiler [40], the runtime library offered by Microsoft Visual
Studio, or the GOMP [60] system used by the GNU Compiler Collection
in its OpenMP implementation. These systems are very stable and well-
supported, but are rarely targeted directly as platforms for research. As
these systems are used daily for production codes, they need to closely mir-
ror language standards, and maintain obsolete features for long periods of
time. This results in a long-term accumulation of code which makes it harder
to experiment with, prototype and research new methods.

The Cilk system [15] started out as a research project, but, since its
acquisition by Intel, falls into a similar category as the commercial-quality
systems listed above. Furthermore, all of these systems are generally tar-
geted at supporting one particular type of parallelism generated using just
one language or standard – e.g. OpenMP. The Cilk runtime system sup-
ports Cilk programs, and GOMP as well as the Microsoft OpenMP library
support OpenMP programs. Conversely, Insieme-RS was designed specifi-
cally to support multiple parallel paradigms as the target platform for the
Insieme Compiler, and to allow for productive research by enabling quick
prototyping and experimentation with new algorithms, for example in loop
or task scheduling.

New Languages and Programming Models Many runtime systems in
current research are tied directly to a new language or programming model,
which are often introduced in conjunction with their runtime systems. Im-
portant examples of this pattern include the following:

• Charm++ [47] is a new object-oriented parallel language based on
C++. Charm++ programs consist of a set of message-driven objects
called chares which communicate via messages. These objects are
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mapped to processors by a dynamic runtime system, and messages
between objects are handled in an asynchronous fashion. The runtime
system also supports reliability features for fault tolerance, such as
automatic checkpointing.

• The Chapel [22] parallel programming language developed by Cray
focuses on separating algorithmic structure from data layout details.
This allows for the optimization of data access locality at runtime by
changing the placement of computing work depending on the existing
data distribution. In terms of data distribution, it adapts many ideas
from High Performance Fortran [55].

• X10 [24] is a partitioned global address space (PGAS) language [90]
developed at IBM. It features the concept of places, which hold data
and activities performing computation on that data. These places are
mapped to locations in the hardware model. Similarly to Insieme-
RS (see Section 2.3.2), X10 features a parent-child relation between
activities, which determines their possible execution order.

• StarSs [52] is a general task/node-level programming model based on
adding pragma annotations to a base language. It features various ex-
tensions and implementations (such as CellSs [13], SMPSs, GPUSs [7]
or GridSs) for a variety of different target architectures. While StarSs
aims to unify the programming model for these distinct hardware plat-
forms, each such platform has its own optimized runtime system.

• CUDA [61] extends the C language with primitives to launch data-
parallel kernels on GPU accelerator hardware. In recent versions it
has also been extended for dynamic parallelism [62], breaking free of
the limitation of strict separation between a host system generating
work and an accelerator performing it. However, CUDA is bound to
one particular vendor’s hardware.

While these systems offer interesting platforms for the exploration of
new software engineering ideas, they do not solve the problem of improving
the performance of existing programs on new hardware. Because Insieme-
RS can be used by all the output programs of the Insieme compiler, it is
widely applicable to existing software. Beyond the practical advantage in
real-world use of not having to rewrite programs, this also allows for more
direct comparability of research results with existing solutions. This can
be an issue with entirely new languages which require a new set of input
programs, as it may be hard to discern whether performance improvements
stem from the new language features, their respective runtime systems, or
perhaps simply the implementation choices in the necessarily distinct input
programs.
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Parallel Libraries All the solutions outlined above are runtime systems
which are designed to implement basic language features of a parallel lan-
guage or are associated with a particular compiler. There exists an entirely
separate way of tackling the problem of programming parallelism, which can
still encounter many of the same issues (e.g. scheduling and data or work
distribution). Parallel libraries are included from an existing source lan-
guage without changing or extending the fundamental language itself, and
offer capabilities for parallel programming. While the runtime systems and
new programming models outlined previously may also be implemented at
least in part as libraries, the following systems are distinguished by being
intended to be used directly by developers as libraries.

The most important options in this category, all of which are currently
in widespread use, are:

• The POSIX pThreads library [58] is the oldest shared memory par-
allel processing library which is still highly relevant today. It offers
low-level access to the threading and synchronization primitives avail-
able in most modern operating systems. While this potentially allows
programmers to fully utilize the performance of the hardware, doing
so comes at a high cost in terms of implementation effort. Also, unlike
higher-level systems, the pThreads implementation itself cannot per-
form any optimization in scheduling or data distribution – these are
all fixed by the program. The low-level access and widespread avail-
ability of the pThreads library make it an ideal candidate as a base
for implementing higher-level runtime systems, such as Insieme-RS.

• The Message Passing Interface (MPI) [72] is, in many ways, the dis-
tributed memory counterpart to pThreads. It also focuses on providing
low-level functionality, and as such takes a similar position on the scale
of programmer control versus productivity and runtime optimization
options. As for pThreads, this makes MPI a good base on which to
build higher-level runtime systems.

• OpenCL [76] is to accelerator computing what pThreads and MPI are
to shared and distributed memory parallelism, respectively. However,
it is distinct from the other library approaches listed here in that it
is both a library, and a language standard. The host programs which
control the processing of an OpenCL application are written in C or
C++ and use library routines to execute data- or task-parallel kernel
code, which can be run on both accelerators and standard multicore
CPUs. This code is written in a C-like language which prohibits the
use of some problematic C features such as jumps while adding new
syntax, particularly for SIMD parallelism and the use of local memory
spaces.
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• Intel Threading Building Blocks (TBB) [68] are a high-level C++ tem-
plate library which implements a task-stealing system for parallelism.
In addition to scheduling monolithic tasks, the TBB library allows the
generation and execution of algorithmic skeletons composed of mul-
tiple interdependent tasks, which are executed respecting their graph
dependencies. The runtime engine of the TBB library tries to optimize
for efficient cache usage as well as load balance.

• Microsoft Parallel Extensions [53] are a library of functionality for
parallel programming created by Microsoft for their .net family of lan-
guages. The extensions comprise Parallel LINQ, a concurrent query
execution engine, the Task Parallel Library (TPL) which implements
the thread pool pattern for tasks and offers convenience methods for
loop parallelization, and a set of coordination data structures used to
synchronize execution.

• Apple Grand Central Dispatch (GCD) [2] implements the thread pool
pattern of task parallelism for C, C++ and Objective C. While it offers
extensions to those languages to ease the specification of closures, it
can also be used without these extensions, which is why we classified
it as a library approach. The GCD runtime system schedules light-
weight tasks on work queues, which are implemented using OS-level
threads. Similarly to Insieme-RS, it also features an event system to
asynchronously trigger the execution of tasks.

Although the library approach to parallelization has many advantages
– new technologies can be implemented, distributed, and iterated on more
quickly than in a compiler or language standard, the base language tools
can largely be reused, and shared library improvements can be made even
if only a binary distribution of a program is available – it also precludes
the compiler from understanding and optimizing parallelism. As research
in Insieme-RS focuses on how close integration between a parallelism-aware
compiler and a runtime system can be utilized in optimization, a pure library
implementation is not possible in our case.

Research-focused Systems There has been a large number of other par-
allel runtime systems specifically designed for and dedicated to research
proposed over the past decades. Often, these are one-off projects that are
quickly created to study some particularly interesting behaviour or algo-
rithm, and then dropped shortly after. A few are designed to be used longer
and remain more extensible: recent, modern examples include libKOMP [19],
a high-performance OpenMP library and X-Kaapi [37], a multi-paradigm
runtime system. Insieme-RS distinguishes itself from these systems by its
central design principle, which specifically provides for – and in some cases
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even depends on – compiler-generated metadata related to and multiver-
sioning of fine-grained program fragments.

1.3 Organization

This thesis is structured into 5 major chapters as follows. Chapter 2 intro-
duces a formal descriptive basis for the programs executed by the Insieme
runtime system, and for the hardware which they are executed on. The
actual runtime system, including the major entities it manages, the set of
possible operations upon them and its integration with the Insieme com-
piler are detailed in Chapter 3. Finally, Chapters 4, 5 and 6 each introduce
a single concrete contribution achieved on the basis of Insieme-RS.

All of these contributions use the unique capabilities of our runtime sys-
tem to solve a problem in parallel computing, and all of them are as or more
effective than existing methods while reducing programming complexity for
the developer. Chapter 4 deals with the efficient scheduling of multiple sep-
arate parallel processes in a shared memory system, Chapter 5 introduces
a combined compiler and runtime approach for fully automatic work distri-
bution in parallel loops and Chapter 6 describes a novel method to regulate
the granularity of parallel tasks.



Chapter 2

Model

In order to accurately describe the operation of Insieme-RS an understand-
ing of the program model and the static object descriptions as well as dy-
namic object instances interacting within the runtime system is required.
Furthermore, how this program model within Insieme-RS relates to the orig-
inal input program of the Insieme Compiler needs to be defined. Addition-
ally, the hardware platforms Insieme-RS programs are executed on must be
formally specified. This chapter begins with an introduction of this hard-
ware model, and then proceeds to detail the static program model which
describes Insieme-RS applications. Finally, the dynamic instantiation of the
objects created during the execution of a program within Insieme-RS, and
their potential interactions, are formally specified.

2.1 Target Hardware Model

In this section the model used by Insieme-RS to describe and interact with
any hardware platform will be presented. This model holds all the informa-
tion needed to describe the hardware and its specific entities (such as CPU
cores or memory blocks) and their properties (e.g. the size of a cache). This
information can then be used to identify entities, query their properties,
associate performance measurements to specific hardware, or decide on the
distribution of data and work items. The model is used to describe the un-
derlying hardware with as much detail as could potentially be required for
Insieme-RS. However, it is not necessary for the runtime system to use all
the information available. For many tasks, a simpler view of the hardware
might be more beneficial. Hence, for specific use cases, the hardware model
might be simplified. Furthermore not all properties described here might
be available on all physical instantiations of this hardware model but are
rather supplied on a best-effort basis, depending on how much information
can be gathered from the user and the system.

9



10 CHAPTER 2. MODEL

2.1.1 Hardware Entities

The target hardware model consists of a directed graph H = (EH, CH). The
set of vertices EH models hardware entities eHi ∈ EH with 0 ≤ i < |EH|,
which are connected by directed edges cH ∈ CH ⊆ EH × EH, whereby an
edge (eHa , e

H
b ) ∈ CH represents a directed connection from eHa to eHb . An

entity can be an instance of any of the following types:

Cores. The main computational units which can execute some work item
on their own without any other computational entities.

Memory blocks. Entities which represent a single, continuous logical ad-
dress space and hold a single or multiple memory segments.

Memory segments. Sub-entities which are capable of holding user or sys-
tem data.

Caches. Memory not explicitly accessed by a user program which is used
to mitigate access delays to memory segments.

Accelerators. Additional, independent computational units (e.g. GPUs)
which are not capable of computing a work item on their own.

Functional units. Special computational units, dependent on and part of
cores but possibly shared among multiple cores. Examples are SSE [39]
and AVX [34] units on x86 processors, or NEON [3] engines on ARM
chips.

Secondary storage. Entities accessed for file I/O or that hold potentially
required data which is not present in any memory block.

Scratchpad memories. A – usually small and low-latency – memory seg-
ment which is uncached and explicitly accessible by a user program.

Network interfaces. These are entities that form connections between
nodes and network attached secondary storage.

The connecting, directed edges – usually representing either a physical
bus or a network – between those entities can be read-only, write-only or
read-write connections. Since the hardware model reflects the underlying
hardware as closely as possible, only entities that have direct connections
should be connected in the model (e.g. a core is connected to the cache and
the cache to the memory segment, there is no direct connection between the
core and the memory segment if the corresponding hardware features a cache
in between those elements). Furthermore, these edges are characterized by
at least two properties, latency and bandwidth, which allow Insieme-RS to
assess their performance.
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Definition 1 (Latency and Bandwidth)

The latency l : CH 7→ R of a connection cH = (eH0 , e
H
1 ) is defined as

the time, in seconds, required to transfer a minimal amount (usually
one byte) of data from eH0 to eH1 . Similarly, the bandwidth b : CH 7→
N specifies the number of bytes that can be transferred from eH0 to
eH1 over a period of one second during a sustained transfer.

Derived Entities

In addition to the concrete entities of the hardware model defined above,
we introduce a set of derived entities. Each of these represent a set of
physical entities, and they are used to allow easier description and depiction
of complex hardware models. These derived entities are defined as follows:

CPU. This derived entity comprises a number of cores and (optionally)
their connected cache levels, scratchpad memories and functional units.

GPU. A GPU consists of a memory block, an accelerator and its associated
caches and scratchpad memories.

Node. Potentially featuring instances of all the concrete entities outlined
previously, a node represents one computer system which may be con-
nected via its network interface to other nodes.

SMMP. A shared-memory, multiprocessor system featuring multiple CPUs
and memory segments, but only a single memory block.
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CPU 
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Figure 2.1: Hardware model for the CPU derived entity.

Figure 2.1 depicts the potential configurations of concrete hardware en-
tities which may form a CPU derived entity. Note that in this and all fu-
ture illustrations of the hardware model, connections between entities which
are already covered transitively are not illustrated by a seperate arrow, to
improve readability. The CPU consists of any number of nodes, each po-
tentially featuring a varying number of exclusive or shared levels of cache,
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functional units and scratchpad memories. The dotted arrows are used to
indicate that functional units and scratchpads need not be connected to
only a single core, but may also be shared among multiple cores. A recent
example of this is the AMD “Bulldozer” architecture [20], in which modules
comprising two cores each share a single vector unit.
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Figure 2.2: Hardware model for the GPU derived entity.

The structure of the GPU derived entity is illustrated in Figure 2.2. Each
GPU consists of an accelerator, its optionally associated caches and scratch-
pad memories and a memory block representing the GPU global memory
pool. Note that unlike CPUs, most modern GPUs offer the possibility of di-
rect, uncached memory access to this pool. This is reflected in the hardware
model.

Secondary 
Storage 

Memory Block 

Memory Segment 

Network 
Interface 

… 

CPU0 

… 

G
P

U
0

 

…
 

N
o

d
e

 

CPU1 

… 
CPUn 

… … … 

Memory Segment Memory Segment … 

G
P

U
1

 

…
 

G
P

U
m

 

…
 

… 
Secondary 

Storage 
… 

Network 
Interface 

… 

… 

Figure 2.3: Hardware model for the node derived entity.
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Finally, a node derived entity, as depicted in Figure 2.3, encompasses
potentially multiple CPUs, GPUs, secondary storage devices and network
interfaces, all using the same main memory address space and thus memory
block. This memory block may however be split into several segments, e.g.
when modeling a NUMA architecture. In this figure, connections to derived
entities such as GPUs and CPUs are shown: these are merely a visual aid,
representing actual connections to concrete entities within the respective
CPUs and GPUs.

Example Instance

Any instantiation of the Insieme-RS target hardware model must consist of
at least of one core and one memory block containing a single memory seg-
ment. Other entities such as additional memory segments, caches, acceler-
ators, functional units, secondary storage devices and scratchpad memories
are optional.
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Figure 2.4: Target hardware model example.

Figure 2.4 illustrates a simplified instance of this hardware model for a
typical shared memory node comprising two quad-core CPUs and an accel-
erator. The node is connected to a network interface, which may further
connect to more nodes to describe a distributed memory cluster.

All the concrete hardware entities listed above and their general proper-
ties and inter-relationships will be described in detail below.
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Cores

A core is a computational unit capable of executing some work item on its
own with no other computational entity involved. Examples are the cores of
any current general purpose CPU. The computational units in most current
GPUs and accelerator hardware are excluded, as they require the coopera-
tion of some external CPU core to orchestrate and initiate the computation.

Possible connections of a core and their semantics are listed below. Note
that some of these connections may only be realized transitively, e.g. a
modern CPU core is likely to be connected to a memory block only via an
intermediate hierarchy of caches.

• Functional units. Machine code executed on this core will make use
of its connected functional units. The most relevant type of functional
unit are vector units, which allow for the execution of specifically tuned
work items.

• Caches. The core uses this cache to read and/or write (according to
the properties of the connection) data stored in memory.

• Memory segments. The core manages this memory segment and all
memory requests to this memory segment need to be performed via
this core.

• Scratchpad memory. The core has direct access to this scratchpad
memory and can read/write (according to the property of the connec-
tion) data from/to it.

• Network interfaces. The core can access this network interface to
send or receive data from other nodes or storage.

Cores are further described by these properties:

• Architecture. Denotes the instruction set architecture (ISA) of this
core. Examples include x86 64, PowerPC64 and ARMv9.

• Frequency range. Describing the clock frequency range that this
processor can operate at, which can be used for power/energy saving
purposes.

• Number of hardware threads. The number of independent threads
the core can execute simultaneously in hardware. Usually just one
hardware thread is supported, but e.g. IBM’s Power 7 cores support
up to four hardware threads each.
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Memory Blocks

A memory block consists of at least one, but possibly more memory seg-
ments which constitute a single, continuous address space. Therefore, a
memory block can spread over multiple memory controllers in hardware,
with possibly varying access latency properties for individual memory seg-
ments. Memory blocks have the follwing properties:

• Memory size. Denotes the total amount of memory available in this
memory block, in bytes.

• Set of memory segments. The memory segments contained in this
memory block.

Memory Segments

A memory segment is an entity with a continuous address space, capable of
holding data items so that they can be managed by the runtime system. In
hardware each memory segment is managed by a single memory controller.
Caches are not modeled as memory segments, since the runtime only has
very limited direct control over their operation. They hold the following
additional properties:

• Memory size. Denotes the total amount of memory available in this
memory segment, in bytes.

Caches

Caches cannot be directly addressed or managed by the runtime system,
however, since their properties have a significant impact on the performance
of a processor and the effectiveness of various optimization strategies, these
properties are reflected in the hardware model.

Caches hold connections to memory segments, with the semantics that
they cache accesses to those memory segments. Cache coherency informa-
tion is implicitly contained in the way individual cores are (transitively) con-
nected to caches. Multiple caches may be connected to each other to model
a cache hierarchy. The following set of properties characterizes caches:

• Cache size. Denotes the total amount of memory available in this
cache, in bytes.

• Line size. Describes the length of a single cache line, in bytes.

• Associativity. A number representing how many different locations
inside of the cache can be used to store a single memory location, which
has an impact on its performance and how replacements are performed.
A direct mapped cache would be represented by an associativity of one.
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• Replacement policy. The replacement policy used to decide which
cache lines to drop.

Accelerators

Accelerators are computational units which are managed by Insieme-RS but
are not capable of executing any work items on their own. They can only
do so with the assistance of cores. Examples for accelerators are graphics
processors (e.g. Nvidia Kepler [62]), the SPEs on an IBM Cell processor [25]
or correspondingly configured FPGAs.

Accelerators can be connected to scratchpad memories, caches and mem-
ory segments with the following semantics:

• Scratchpad memory. Accelerators can read/write (according to the
properties of the connection) data stored in this scratchpad memory.

• Caches. Accelerators can use this cache to read/write (according
to the properties of the connection) data stored in memory segments
connected to the cache.

• Memory segments. Accelerators can directly read/write (accord-
ing to the properties of the connection) data stored in this memory
segment.

The following additional properties describe accelerators:

• Type. The type of accelerator, which determines the type of programs
that can be executed on it.

• Frequency range. Denotes the clock frequency range that this ac-
celerator can operate at, which can be used for power/energy saving
purposes.

Functional Units

Functional units are special units associated with a core that are not man-
aged by Insieme-RS but used directly by the code that is executed (e.g.
SIMD units used by SSE code on x86 hardware). Such units may be shared
among multiple cores. Functional units are only used by cores, and are not
connected to any other entity.

Properties:

Vector width. For vector units, denotes the register width that can be
operated on, in bits.
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Secondary Storage

Secondary storage holds data or work items which are not loaded into mem-
ory in such a way that they can be managed by the runtime. Furthermore it
might be used for additional data operations like file I/O processing. Since
secondary storage is a passive entity it does not hold any connections.

Scratchpad Memory

Scratchpad memory is uncached memory with a contiguous address space
that can be accessed randomly by either cores or accelerators (e.g. the local
storage in various OpenCL devices [76]). It can be either shared amongst
multiple computational units or be exclusive. Scratchpad memory is a pas-
sive entity, it does not hold any connections.

Properties:

• Size. Denotes the total amount of memory available in the scratchpad
memory, in bytes.

Network Interface

Network interfaces are entities used for inter-node communication and for
accessing network-attached secondary storage. Network interfaces can be
connected to other network interfaces or secondary storage. The – possi-
bly complex – network structure between two network interfaces or network
interfaces and secondary storage is not mapped precisely at this point. In-
stead, a node A holds a single connection to each network interface of all
other nodes accessible by node A and all secondary storage entities (if acces-
sible by node A). However, this simplified model can still adequately capture
important parameters relevant to runtime decision making processes, such
as the relative latency between nodes, as each connection between network
interfaces provides its own latency and bandwidth parameters.

Addressing

Every entity eHi in the hardware model may be addressed using a triple
(n, TH, i), consisting of the node n this entity belongs to, a type identifier
TH (e.g. accelerator, memory block, ...) and a unique identifier i over all
entities of type TH present on that node in the hardware model.

Edges are addressed as tuples (eHi , e
H
j ) connecting two identified entities,

which are directional from ei to ej . The addressing scheme itself does not
prohibit any connection between arbitrary entities of the hardware model,
however, only the connections defined above for each type of entity are
semantically correct.

For example, eH0 = (0, core, 0) would address the first CPU core in
node 0 of the hardware model, while eH1 = (0, cache, 0) would address the
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first cache in the same node. cH0 = (eH0 , e
H
1 ) ∈ CH implies that this CPU

core is connected to the cache. A value of l(cH0 ) = 5 ∗ 10−9 would mean
that the latency for the core accessing this cache is 5 nanoseconds, and
b(cH0 ) = 21474836480 would imply that 20 Gigabytes of sustained transfer
per second are possible over this connection.
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2.2 Static Program Model

Insieme-RS is designed to run parallel programs on hardware architectures
such as those described by the model introduced in Section 2.1. All such
programs are required to conform to a parallel program model which will be
detailed in this and the following section.

The program model is split into two separate parts, distinguishing be-
tween static, descriptive objects and active, dynamic objects. The former
are those which have a directly identifiable counterpart in the program code,
while the latter are instantiated during the execution of a program and exist
in memory at that point. This section will provide a model for the static
objects and structures which exist before the execution of the program, and
remain unchanged throughout its execution.

2.2.1 A Simple Sequential Program Model

As a basis for further discussion in this thesis, we will now provide a sim-
ple descriptive framework for sequential programs. This model is based on
the control flow graph of a program and will subsequently be extended to
support parallelism and other advanced features.

Note that we will not define the underlying statements and expressions
which could be used in conjunction with this model to fully describe a pro-
gram, or introduce a complex visibility concept for variables. This repre-
sentation was deliberately chosen to be as simple as possible, while being
sufficient for the purpose of accurately describing the semantics of our run-
time system.

Definition 2 (Sequential Program)

P = (C, V )
C = (S,E)

A program P comprises a directed graph C defined on a set of pro-
gram statements S, and a set of variables V . The directed edges
e ∈ E define the possible control flow between the statements s ∈ S,
which form the nodes of the graph. In particular, e0 = (sa, sb) ∈ E
means that there is a possible control flow from sa to sb.

In each program P, there is exactly one ss ∈ S for which the indegree
(i.e. the number of edges (si, ss) ∀si ∈ S) deg−(ss) = 0. This statement
ss is called the entry point of the program P. There can be multiple nodes
se ∈ S for which the outdegree (i.e. the number of edges (se, sj) ∀sj ∈ S)
deg+(se) = 0, all of these are called exit points of the program.

A central concept in our program model are regions. They will be used
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as building blocks for more complex objects throughout this chapter, and
are defined as follows.

Definition 3 (Program Region)

A subset R ⊆ S is called a single-entry single-exit program region
within P iff the following conditions hold:

∃re ∈ R ∀r ∈ R ∀o ∈ S \R : (o, r) ∈ E → r = re
∃rx ∈ R ∀r ∈ R ∀o ∈ S \R : (r, o) ∈ E → r = rx

The statement re is then called the entry node of the single-entry
single-exit program region R, and rx is called the exit node.

ss sa sc 

sb 

sd 

se sf 

se 

Figure 2.5: Simple sequential program control flow graph.

Figure 2.5 depicts the graph C for a simple program P. Its entry and exit
points are labeled ss and se, respectively. The subset R = {sc, sd, se, sf} is
a single-entry single-exit program region in P, with the entry node sc and
the exit node se.

v = (τ, n, sz) (2.1)

Each variable v ∈ V is defined by a type τ , a dimension n, and an n-
dimensional tuple sz which defines its size. Scalars are defined with n = 0,
consequently, sz for such a variable will be the empty tuple. For example,
(float, 2, (10, 10)) would define a 2-dimensional 10 by 10 array of floating
point numbers, while (int, 0, ()) defines a scalar integer value.

For each statement s ∈ S, we define two functions which determine the
relation between such a statement and the set of variables V .

r : S × V 7→ (Rl, Ru) ∪ ⊥ ∪ >
w : S × V 7→ (Wl,Wu) ∪ ⊥ ∪ > (2.2)

The function r captures the read accesses to variables within a given state-
ment, while w captures write accesses.

Rl and Ru are n-tuples signifying the lower and upper bounds of the
orthotope accessed within an array, respectively. If there are no accesses then
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⊥ is returned, and > is used to signal an access to a scalar. Definition 2.3
clarifies the semantics of the r function, and w is defined equivalently for
write accesses.

r (s, v = (τ, n, sz)) =



⊥, if v is not accessed in s

>, if v is read in s and n = 0

((rl1), (ru1)) , if v is read in s and n = 1

((rl1, rl2), (ru1, ru2)) , if v is read in s and n = 2

. . .

w (s, v = (τ, n, sz)) =



⊥, if v is not accessed in s

>, if v is written in s and n = 0

((wl1), (wu1)) , if v is written in s and n = 1

((wl1, wl2), (wu1, wu2)) , if v is written in s and n = 2

. . .

(2.3)
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2.2.2 Parallel Extensions

To extend Definition 2 for parallel programs, the set S of nodes in the control
flow graph needs to be extended, and new semantics need to be defined for
the additional nodes and edges between them.

Definition 4 (Parallel Program)

Pp = (Cp, V )
Cp = (Sp, E, P )
Sp = S ∪Ψ ∪X ∪ Γ

The definition of a parallel program Pp closely mirrors the sequential
definition P, but with three new node types (Ψ, X,Γ), and a new
edge type (P ), with the following semantics:

• ψ ∈ Ψ nodes represent parallel spawn operations. These
nodes feature a single outgoing edge e ∈ E, which we call
the sequential control flow, and another outgoing edge p ∈ P
which we call the parallel control flow. Unlike for other nodes,
where only a single outgoing edge is taken on a path, all edges
(ψ, ) ∈ E ∪ P are taken, at the same time.

• χ ∈ X nodes represent parallel communication operations.
An edge (χa, χb) ∈ E represents communication between the
nodes χa and χb which are being executed in parallel.

• γ ∈ Γ nodes represent parallel join operations. All edges
( , γ) ∈ E ∪ P need to be taken before proceeding through an
outgoing edge of γ.

For edges in E, exactly one is taken by a path during the sequen-
tial execution of a program. Conversely, edges in P may be taken
0 to n ∈ N times in parallel. Edges in P are further restricted to
only be of either the type (ψ, re) or (rx, γ) for any entry node re or
an exit rx, that is, the parallel operation needs to be a single-entry
single-exit code region.

Each join operation γa corresponds to a spawn operation ψa according
to the following principle: let E−1 be the inverse relation to E, that is
(sa, sb) ∈ E → (sb, sa) ∈ E−1, and P−1 the inverse relation to P in similar
fashion. Then ψa is the first ψ ∈ Ψ encountered when proceeding transitively
along E−1 and P−1. The correspondence between any given ψa and γa is
uniquely defined due to the fact that each parallel operation is a single-entry
single-exit code region.
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ss se sa sb sc χ ψ γ 

sd 

Figure 2.6: Simple parallel program control flow graph.

Figure 2.6 depicts the graph Cp for a simple parallel program Pp. Its
entry and exit points are labeled ss and se, respectively, and dashed arrows
represent elements of P while full arrows represent elements of E. The
single-entry single-exit region {sa, χ, sb, sc} is executed in parallel with the
statement sd.

At this point, we would will define some common terms related to parallel
programs, which will be used throughout the remainder of this thesis.

Speedup Let T1 be the sequential execution time of a parallel program
region Pp, and Tn the execution time of the same region executed
with n-fold parallelism. The speedup Sn is then given by Sn = T1

Tn
.

Ideal Speedup When a speedup of Sn = n is obtained for a code region,
it is said to exhibit linear or ideal speedup.

Scalability The scalability of a code region describes how its execution
time varies with the degree of parallel execution n. The scalability of
a code region is considered good if the achieved speedup remains close
to ideal even for high n.

2.2.3 Modeling Nondeterministic Choice

The sequential and extended parallel program models presented so far re-
late to existing work in the area of parallel computing. However, they are
insufficient to represent a central feature of the Insieme compiler and run-
time system, namely the ability to specify nondeterministic choice between
different code regions with equivalent semantics. We call these code regions
implementation versions and model a parallel program with nondeterminis-
tic choice Pn according to Definition 5.
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Definition 5 (Parallel Program with Choice)

Pn = (Cn, V )
Cn = (Sn, E, P )
Sn = S ∪Ψ ∪X ∪ Γ ∪Θ

The addition of nondeterministic choice only requires one ad-
ditional node type compared to the parallel program Pp in Defini-
tion 4. Nodes θ ∈ Θ represent nondeterministic choice. All outgo-
ing edge (θ, ) ∈ E are required to model the same semantics – that
is, regardless of which outgoing edge is chosen, the input/output
behaviour of the program will remain the same.

The addition of θ nodes allows for different implementation versions of
the same functionality to be modeled as separate sub-graphs within Cn.

ss se 

sa sb χa 

ψ γ θ sf 

sg 

sh χb 
si 

Figure 2.7: Simple parallel program control flow graph with nondeterminis-
tic choice.

Figure 2.7 illustrates the graph Cn for a simple parallel program with
nondeterministic choice Pn. As before, dashed arrows represent members
of P while full arrows represent members of E. The single-entry single-exit
regions characterized by the sets of nodes {sa, χa, sb} and {sf , χb, sg, sh}
are semantically equivalent, and the node θ enables nondeterministic choice
between them.

2.2.4 Work Item Descriptions

All computations which constitute the execution of a program by Insieme-
RS are organized using work items. Work items describe a single-entry
single-exit, potentially parallel code region within a program, which can be
independently scheduled and executed by the runtime system. We distin-
guish between work item descriptions, which are passive, static descriptions
of computations as they are represented in the program source code gener-
ated by the compiler backend, and work item instances, which are objects
actively allocated in memory during the execution of a program.
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Each work item description w ∈ W is an aggregate, structured rep-
resentation of a single-entry single-exit code region, its parallel properties,
resource requirements, potentially multiple implementation versions and ad-
ditional meta-information. The total number of work item descriptions |W |
is known statically and remains constant throughout the entire execution of
a program. However, every work item description may be instanced multiple
times, as described in Section 2.3.2 which deals with work item instances.

Definition 6 provides a formal definition of a work item description w.

Definition 6 (Work Item Description)

w = (I, vw, q)
i = (Rn, c,m) i ∈ I c ∈ {True,False}

m : Km 7→ V m

A work item description w consists of a set of work item imple-
mentation versions I – with each implementation i ∈ I realizing the
same program semantics, but potentially differing in non-functional
behaviour (e.g. execution time, memory usage, parallelism or power
consumption), a variable vw which will be used during program exe-
cution to identify individual parallel instantiations of the work item
description, and the resource requirement function q.

Each implementation version i further comprises the following
components:

• The executable single-entry single-exit program region Rn it
encapsulates, which may use vw to implement diverging par-
allel control flow.

• A boolean value c indicating whether fully parallel execution
is required. If this value is set to True, the runtime system
is not allowed to partially sequentialize the execution of the
individual parallel control flows launched based on this work
item description.

• The partial function m representing optional meta-information
associated with the implementation. It maps a generic set of
keys Km to values V m and is described in more detail in Sec-
tion 3.4.3.

For example, the work item description

w0 = ({i0 = (Rn0 ,False, {}), i1 = (Rn1 ,False, {schedule = dynamic})} , q0)

could represent a parallel loop with two separate implementation versions,
which are expressed by the single-entry single-exit regions Rn0 and Rn1 . Note
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that c is set to False in both versions, which matches the general seman-
tics of a parallel loop – i.e. individual iterations can be executed either in
parallel or may be partially sequentialized. The implementation version i1
features additional meta-information, in the form of the key/value mapping
“schedule = dynamic”, which could indicate to the runtime system that the
iterations of this loop should be scheduled dynamically.

A value of c = False is generally advantageous in terms of performance,
as the runtime system has more potential control over the exact degree of
parallelism used. However, in some cases it is not possible to allow such
flexibility while maintaining program semantics, for example if the paral-
lel code region Rn encapsulated by the work item contains communication
operations (χ nodes).

Ranges of Parallel Operations

While not part of the definition of a work item description (as they are
only actively instantiated during program execution), it is still important
to note that each work item description can be launched for a range of
parallel operations (l, u) numbering between some lower bound l and an
upper bound u. This way, the semantics of a ψ node within a parallel
program can be mapped to a work item, as a variable number of parallel
control flows can be spawned. For each such control flow, the variable vw
will be used to store a separate identifier. These ranges and their semantics
are detailed in Section 2.3.2, where work item instances are treated. This
section also provides code examples and illustrates the mapping of common
parallel structures to work items and operations on them.

Resource Requirement Function

q : N2 × I → 2V×N
∗×{RO,RW,WO} × 2H (2.4)

The work item resource requirement function q is detailed in Definition 2.4.
It maps a range of parallel operations (l, u) and a particular implementation
to its resource requirements, which can include access to data item sub-
ranges and particular hardware entities. In this definition, H is the set
of special accelerators or functional unit entities as defined in section 2.1
potentially available within the system, and an instance of the powerset 2H

of H as returned by q represents the specific hardware components required
to process the given range and implementation version.

The structure V × N∗ × {RO,RW,WO} describes some sub-range of
a variable in V , and specifies either read-only (RO), read-write (RW ) or
write-only (WO) access. Its powerset 2V×N

∗×{RO,RW,WO} thus captures any
number of accesses of any type to any variables or their sub-ranges.
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For example, in

q ((0, 10), i0) =
( {

(v0, [0], RW ),
(v7, [0 . . . 10, 0 . . . 10], RO),
(v9, [0 . . . 10],WO)

}
,{

eH0 = (0, ACC, 0)
})

the value of q ((0, 10), i0) indicates that executing the range (0, 10) of work
item implementation version i0 will require read-write access to the scalar
value stored in variable v0, read-only access to a 10-by-10 sub-region of the
two-dimensional array in v7 and write-only access to a sub-range of the one-
dimensional array in v9. Additionally, it will require access to the hardware
model entity eH0 , which is of the accelerator type.

The resource requirement function is generated by the compiler based on
the the functions r and w defined in Equation 2.2. They are evaluated for
every variable v and each statement s in Rn, and the results are gathered
to form the powerset 2V×N

∗×{RO,RW,WO}.
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2.3 Dynamic Program Model

Most of the objects (work items, data items, and communication groups)
and interaction between them which make up a parallel program running on
Insieme-RS do not exist statically within the program source code. Rather,
they are dynamically instantiated during execution, often in ways that are
impractical to capture in a static model – such as recursive task parallelism
or the dynamic, demand-based distribution of work or data across hardware
resources. This section describes the dynamic objects which form our pro-
gram model, including their formal definition, any potential operations on
or between them and their dynamic state.

2.3.1 Program State

Describing the semantics of operations within the dynamic program model
requires a concept of the program state of a parallel program with nonde-
terministic choice as specified in Definition 5.

Definition 7 (Program State)

ŝ =
(
H, V̂

)
h = (s0, s1, . . . , sN ) ∀i ∈ [0, N ] : si ∈ Sn
V̂ = {v0 = e0, v1 = e1, . . . , vk = ek}

The state ŝ of a program is formally defined by a tuple with two
components:

• A set of paths h ∈ H on the extended control flow graph
(Sn, E ∪ P ). All the paths in H must be valid in the given
program Pn, thus for each h: ∀i ∈ [0, N − 1] : (si, si+1) ∈
(E ∪ P ).

• V̂ , a set of pairs of variables vi and their current values ei.
For each program variable vi ∈ V there exists exactly one
pair vi = ei in V̂ . For each variable vw identifying a parallel
instantiation (see Definition 4), there exists a tuple of values
with each entry corresponding to one parallel path.

Note that a program state ŝ as per Definition 7 captures the entire execu-
tion path of each active program-level thread at a given point in time. This
is very useful to define the semantics of program constructs, but obviously
not feasible in practice, and is not representative of the real implementation
within Insieme-RS.



2.3. DYNAMIC PROGRAM MODEL 29

Program State Examples

In order to gain a better understanding of the possible program states al-
lowed by Definition 7 in a parallel program with nondeterministic choice,
Figure 2.8 provides an example of such a program. The content of each
statement node is provided in a simple pseudo-code notation. Additional
information about the spawn operation ψ is also specified: its range of par-
allel operations is fixed to (v1, v1) and the variable used in its work item
description to identify the parallel instantiation (see Definition 6) is set to
vψ. Note that for simplicity, sequences of statements without branching
control flow are depicted as a single node (in the case of ss and sb) – this
is equivalent to a sequence of single-statement nodes with direct sequential
connections.

Semantically, the example program performs the initialization of a 4-
element array stored in v2, with one nondeterministic option implementing a
sequential initialization (option a), while the other performs the initialization
in parallel (option b).

ss se 

sb sc 

ψ γ θ sd 

Ss: 

Sa: 

Sb: 

v0 = 0; v1 = 4; v2 = [0,0,0,0]; 

v3 = v0; 

v2[v3] = v3;  
v3 = v3 + 1; 

ψ:  (l,u) = (v1, v1)   |   vψ 

sa 

if(v3 == v1): se; 
else: sb; 

Sc: 

Sd: v2[vψ] = vψ; 

Figure 2.8: Example program for program state.

We will now define a selection of possible states during the execution of
this program, using both the formalism defined above as well as an informal
textual description.

• ŝs = ({(ss)}, {v0 = 0, v1 = 4, v2 = [0, 0, 0, 0]}). This is the starting
state of the program, after the execution of the statements in ss. A
single path exists, which shows that ss has been executed, and the
variables have been given their initial assignment.

• ŝa1 = ({(ss, θ, sa)}, {v0 = 0, v1 = 4, v2 = [0, 0, 0, 0], v3 = 0}). In this
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instance, the edge (θ, sa) was chosen nondeterministically, and sa was
executed, setting v3 = 0.

• ŝa2 = ({(ss, θ, sa, sb, sc, sb)}, {v0 = 0, v1 = 4, v2 = [0, 1, 0, 0], v3 = 2}).
Continuing from state ŝa1, two iterations of the initialization loop have
been executed, setting v2 = [0, 1, 0, 0].

• ŝa3 = ({(ss, θ, sa, sb, sc, sb, sc, sb, sc, sb, sc, se)}, {v0 = 0, v1 = 4, v2 =
[0, 1, 2, 3], v3 = 4}). Final state on path a, all four iterations of the
initialization loop have been executed, setting v2 = [0, 1, 2, 3].

• ŝp1 = ({(ss, θ, ψ)}, {v0 = 0, v1 = 4, v2 = [0, 1, 0, 0], vψ = (0, 1, 2, 3)}).
In this instance, the edge (θ, ψ) was chosen nondeterministically, which
will initiate parallel execution, providing the tuple of assignments of
vψ for each parallel path.

• ŝp2 = ({(ss, θ, ψ, γ), h0 = (ss, θ, ψ), h1 = (ss, θ, ψ), h2 = (ss, θ, ψ, sd, γ),
h3 = (ss, θ, ψ, sd)}, {v0 = 0, v1 = 4, v2 = [0, 0, 2, 3], vψ = (0, 1, 2, 3)}).
Subsequently to ŝp1, the original program path continued on to the
join node γ, and four new parallel paths h0 to h3 were generated. The
progress of these individual paths is arbitrary – in the example, h0 and
h1 have not progressed yet, while h2 has completed (including reaching
the join node γ), and h3 has completed sd but has yet to reach the γ.
This results in an assignment v2 = [0, 0, 2, 3], with the values at index
2 and 3 written but not those at index 0 and 1.

Note that regardless of which path is chosen in θ, the final value assigned
to v2 when the statement se is reached is always v2 = [0, 1, 2, 3]. Thus,
the program fulfills the requirement of the θ node that all possible outgoing
edges lead to a semantically equivalent execution.

2.3.2 Work Item Instances

While Section 2.2.4 defined work item descriptions, these descriptions are
only the static templates from which work item instances are generated
during the execution of a program. We will now clarify how these instances
relate to descriptions, how they are generated and what operations can be
performed on them. For improved readability, in the remainder of this
document, we use the name “work item” interchangeably with “work item
instance”, but always refer to work item descriptions by their full name.
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Definition 8 (Work Item Instances)

w = (w, (l, u), t)
t ∈ {initializing, ready, running, suspended, resumable, done}

The structure of an individual work item instance is defined above.
It consists of the following components:

• A static, constant work item description w, as per Definition 6.

• An integer range (l, u) ⊂ N 6= ∅, defining the range of parallel
operations encapsulated by the work item, and their indices.

• A state t, which can take on one of six values, the semantics
of which are detailed later in this section.

The set of all active work item instances W during the execution of
a program dynamically forms a directed acyclic graph (W,L) where each
node w ∈W represents a work item and every edge (w1, w2) ∈ L describes a
“launched by” relation between two work items. The full work item graph is
not known a-priori. It is established on-the-fly during the execution of each
program. Furthermore, note that two different executions of the same static
program may result in different sequences of work item execution, and thus
graphs (W,L), due to decisions made by the runtime environment regarding
the scheduling of work items and the distribution of data items.

Work Item Generation

Within a parallel program with nondeterministic choice Pn modeled ac-
cording to Section 2.2.3, a work item can potentially be generated for every
single-entry single-exit code region. In case a work item w is generated from
a parallel region – that is, one starting with an entry node ψ and ending
with an exit node γ – that work item can potentially have a range (l, u) of
more than one parallel operation.

In case the work item features a node θ allowing nondeterministic choice,
this will be reflected by its work item description w providing more than one
implementation variant i ∈ I. In particular, |I| = deg+(θ) – one implemen-
tation variant is generated for each outgoing control flow path from θ.

A node ψ in the original program maps to a work item spawn operation,
which can launch a work item with either a fixed number of parallel opera-
tions or a variable one, depending on the program semantic. A fixed number
is represented by supplying an interval (l, u) with l = u. To allow individual
parallel invocations of the sub-graph Rn representing the code region mod-
eled by a work item w to each perform different operations (it is not usually
the goal of a parallel invocation to perform the exact same operations mul-
tiple times), the variable vw designated for the work item in its description
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will be assigned a different value in each parallel work item instance gener-
ated by the spawn operation. More exactly, given V̂ as the set of variable
assignments prior to passing a ψ node and performing a spawn operation,
a range of k potentially parallel operations, and the assignment V̂ ′ in each
parallel control flow after passing the ψ node: V̂ ′ = V̂ ∪{vw = (0, . . . , k−1)}.

Semantic Description

Every work item consists of a set of parallel operations (the set may include
only a single operation if there is no parallelism) indexed by the interval
(l, u) as described in Definition 8 above. Every work item, by way of its
associated work item description w, may have multiple implementations,
each of those being a member of I 6= ∅. The various implementations may
target different hardware requirements (e.g. distributed vs. shared memory,
CPU vs. GPU, . . . ), optimization goals or data distribution patterns. The
boolean value c determines for the various implementations whether the
entire range of parallel operations has to be carried out simultaneously using
parallel hardware (e.g. for a message passing based implementation or a
shared memory based implementation involving mutual communication via
channels or locks). This also requires that the entire index range is split
up into smaller fractions in a single step - just before all of the resulting
fragments are computed. On the other hand, if c = False for some i ∈ I, the
order of computation may be arbitrary. Sub-regions of the index range may
be further subdivided, thereby generating a larger number of work items
which might be used for improved load balancing.

Every implementation can be invoked for an arbitrary sub-range of the
index interval. The resource requirement function function q maps any of
the implementations and an arbitrary sub-range of the index set to its cor-
responding resource requirements, as detailed in Section 2.2.4. The runtime
system selects one of the available implementations, satisfies its require-
ments – allocating the necessary data item instances and provisioning the
requested extra hardware, e.g. accelerators – and then starts its execution.

Insieme-RS may chose to process the entire range of the parallel opera-
tions covered by a single work-item using small steps. This way, work items
can be repeatedly split for load balancing purposes and to generate a vary-
ing amount of parallelism. However, it is equally valid semantically to chose
to compute the entire work item sequentially. In either case, the runtime
system guarantees that every step of the index range is executed exactly
once.

During its execution, a work item instance may create new work items.
Those child work items are handled just like any other work item. In case
the parent node has to be able to synchronize (join) with the spawned work
items, Insieme-RS needs to maintain the parent/child relationship between
these work items.
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running 

initializing 

ready ready 

enqueue 

ready 

start 

suspended 

resumable resumable resumable 

suspend 

activate 

done 

end 

Figure 2.9: Work item states and valid transitions.

Work Item States

Work items can exist in exactly one of the following states:

initializing This state indicates that the work item is currently being
initialized and is not yet ready to be executed.

ready The work item has been placed within a work item queue and is
ready to be executed, split or moved to another queue.

running The work item is currently being executed by some worker.

suspended Execution of this work item has been suspended because of some
synchronisation operation, and it will only be resumed after an event
has occured which indicates that the condition it was waiting for is
fulfilled.

resumable This state indicates that the work item is in the work item pool
of some worker, and ready to resume execution.

done The work item has finished executing.

Figure 2.9 illustrates the possible transitions between these states. Work
items in the ready and resumable states are managed by workers and are
thus accessible to scheduling policies, which is indicated in the figure by
showing multiple items in a queue.

Work Item Operations

There are a number of operations that may either be performed on work
items, or return work items. They often correspond to the state transitions
in Figure 2.9.
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w = spawn(w, (l, u)) Create a new work item instance from a work item
description w and a range (l, u).

enqueue(w, k) Enqueue a work item instance w on some worker k’s work
item queue.

Wn = split(ws) Takes a work item ws = (ws, (ls, us), ts) and generates a
new set of work items Wn, partitioning the range (ls, us) into disjoint
subsets while keeping the description ws and state ts identical. A
special variant is the binary split which generates the following set:

Wn =
{ (

ws, (ls, ls + (us−ls)
2 ), ts

)
,(

ws, (ls + (us−ls)
2 , us), ts

) }
start(w) Start executing a work item. At this point a specific implementa-

tion variant i ∈ I needs to be selected, and the resource requirements
need to be evaluated and fulfilled.

suspend(w) Stops a running work item which has not yet finished execution,
usually to wait for some event (see Section 3.3.2) or the completion of
a group operation (see Section 2.3.4).

activate(w) Generally triggered by some event, this operation is performed
on suspended work items to mark them as ready for resuming execu-
tion.

resume(w) Resumes the execution of a previously suspended and reacti-
vated work item.

end(w) Ends the execution of a work item, signaling the related event (see
Section 3.3.2).

join(wi, wj) Suspends the execution of work item wi until another work
item wj enters its done state.

join all(wi) Suspends the execution of the invoking work item wi until all
work items spawned by this work item enter their done state. This
is equivalent to ∀wt ∈ W, (wi, wt) ∈ L+ : join(wt) with L+ designat-
ing the transitive closure on the “launched by” relation L defined in
Section 2.3.2 above.

Work Item Examples

In order to allow for a better understanding of the work item concepts
defined above and in Section 2.2.4, we will now provide some examples of
typical parallel programming structures, and show how they are modeled
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using work items. Code will be provided in a C-like pseudocode syntax,
utilizing the additional operations and types defined in this thesis.

1 w0 = ({(Rn
0 ,True, {})} , q0) ;

2 w = spawn (w0 , ( 1 , 32 ) ) ;
3 enqueue (w, cur worker ( ) ) ;
4 j o i n ( cur wi ( ) , w) ;

Listing 2.1: Fork-join Parallelism

1 w4 = ({(Rn
4 ,False, {})} , q4) ;

2 wl = spawn (w4 , (100 ,100) ) ;
3 enqueue (wl , cur worker ( ) ) ;
4 j o i n ( cur wi ( ) , wl ) ;

Listing 2.2: Loop Parallelism

1 w1 = ({(Rn
1 ,False, {})} , q1) ;

2 w2 = ({(Rn
2 ,False, {})} , q2) ;

3 w3 = ({(Rn
3 ,False, {})} , q3) ;

4 w1 = spawn (w1 , ( 1 , 1 ) ) ;
5 enqueue (w1 , cur worker ( ) ) ;
6 w2 = spawn (w2 , ( 1 , 1 ) ) ;
7 enqueue (w2 , cur worker ( ) ) ;
8 w3 = spawn (w3 , ( 1 , 1 ) ) ;
9 enqueue (w3 , cur worker ( ) ) ;

10 j o i n a l l ( cur wi ( ) ) ;

Listing 2.3: Task Parallelism

Listings 2.1, 2.2 and 2.3 show basic examples of fork-join, loop and task
parallelism. Each listing consists of two distinct parts, separated by a hori-
zontal line: the upper part provides the work item descriptions used in the
code in the lower part. These definitions are kept minimal on purpose, with
each description providing only a single implementation version, with no
meta-information and an unspecified requirement function. The operations
cur worker() and cur wi() are used as shorthands to refer to the current
worker and work item, respectively.

Fork-Join Parallelism In Listing 2.1 an example of fork-join parallelism
is provided. This is functionally equivalent to e.g. an OpenMP #pragma

omp parallel section. On line 2, a new work item instance w is created
from work item description w0. Note that c = True in w0. This is essential,
as the individual parallel execution paths in fork-join programs often com-
municate with one another, which prevents partial sequentialization. The
parallel range for w is set to (1,32), which means that Insieme-RS is free
to choose any number of parallel instances from a minimum of 1 to a max-
imum of 32 to execute the region Rn0 . The spawn call on line 2 is just an
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initialization operation: after it, the work item w has been created, but no
parallel execution has been started yet.

On line 3, this work item is enqueued on the current worker, which is
the actual fork operation in the fork-join model. From this point onward,
multiple parallel execution paths may exist. On line 4 execution on the
main path is suspended until w has been completed, with the join operation
directly corresponding in name to the join in the fork-join model.

Loop Parallelism Listing 2.2 may seem quite similar to 2.1 at first glance,
however, the semantics differ significantly due to the specification of the work
item description w4 and the parameters of the spawn call. The work item wl

represents a parallel loop with an iteration count of 100, and thus features
a fixed range of (100,100). However, in this case partial sequentialization
is allowed (c = False in w4), as the semantics of a parallel loop restrict com-
munication within the loop body Rn4 . This type of work item is applicable
to modeling all kinds of data-parallel operations, e.g. OpenMP for loops or
OpenCL kernel invocations on a work item range.

Task Parallelism Finally, Listing 2.3 shows an example of task paral-
lelism. Three independent work items w1, w2 and w3 are spawned and en-
queued, each with their own work item specification. As they represent
tasks, their parallel range is fixed to (1,1), i.e. each one of them is exe-
cuted by exactly one control flow path. In this case, the value of c in w1, w2

and w3 is in fact irrelevant, as the execution of each work item is already
inherently sequential. Note that the join all operation is used to wait
for the completion of all the spawned tasks. A variety of task-based par-
allel programming paradigms can be modeled using this method, including
OpenMP 3 tasks and the primitives of the Cilk language.

Summary All three examples are based on the same types (work item de-
scriptions and instances), and use similar operations, but they model entirely
distinct parallel behaviour. This illustrates the flexibility of the Insieme-RT
program model, allowing it to handle many different use cases with a single
representation of parallel work and a comparatively small set of operations.

2.3.3 Data Items

Computation invariably requires data to be applied on, and controlling the
location of data elements is one of the key aspects in improving performance
on modern architectures. Insieme-RS therefore not only focuses on the
scheduling and dynamic optimization of the involved computational tasks, it
also takes control of the placement and distribution of data throughout the
system. The foundation for memory management within Insieme-RS is the
concept of data items – which will be covered in detail within this chapter.
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Definition 9 formally defines a data item.

Definition 9 (Data Items)

d = (τ, n, sz)

Each data item d in the set of all data items D is considered to be
an n-dimensional array of instances of some variable type τ . The
shape of the array is required to be an orthotope - hence, the number
of elements along every dimension is fixed (the index space is the
cross-product of n integer ranges, all starting from 0).

The size of the orthotope is defined by the tuple sz ∈ Nn0 . The
i-th component of the sz tuple thereby defines the number of el-
ements along the i-th dimension of the orthotope. If the number
of dimensions n = 0, the data element represents a single scalar.
Consequently, the sz of such a data item will be the empty tuple.

Note that this definition mirrors the definition of program variables in Sec-
tion 2. This is by design, as variables are mapped to data items as required
to implement the distribution of data in a parallel program.

Semantic Description

Data items are the means by which Insieme-RS manages data access for work
items. Whenever a work item w transitions from the ready to the running

state – a transition which only happens once and locks the work item to a
specific worker – the resource requirement function q corresponding to the
selected implementation i of w is evaluated with the given range of parallel
operations (l, u). It returns a set of data items Dr, and for each d ∈ Dr the
required sub-range and type of access (RO - read only, RW - read write, or
WO - write only).

Subsequently, the runtime system will process the list of required data
item (sub)ranges. Each range which is not yet accessible from the node (as
defined by the hardware model presented in Section 2.1) selected for the
execution of i will be made available on that node. This is accomplished by
allocating memory space in a connected memory segment and copying the
data there. Work item w will only be allowed to transition from the ready

to the running state after all its resource requirements are fulfilled.

Sub-Range Example

Let d = (double, 2, (400, 200)) be a data item representing a 400×200 matrix
of double values. Upon creation the full matrix will be allocated on the
memory closest to the creating work item. Suppose the matrix should be
initialized element-wise with the result of an independent, pure function
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call. This process can obviously be carried out in parallel. In this case the
compiler may decide to perform the operation in parallel, therefore creating
a new splittable work item (see Section 2.3.2). If the runtime system decides
to exploit this potential parallelism, the initial work item will be sub-divided
into smaller work items, each covering only a subsection of the overall matrix
(e.g. each covering several rows). The resulting work items will feature a
resource requirement function qM which demands write-only access to a
sub-range of the original data item.

qM ((l, u), i) = (d, [l . . . u],WO) (2.5)

If the work items are distributed to cores of CPUs mounted on different
sockets of a NUMA system, Insieme-RS might allocate a new data item
instance, referencing the same variable but representing only a sub-range of
the original data item, within the target memory region. Note that in this
case no actual data needs to be copied, as only write access is required. As
soon as the data environment is initialized, the individual work items can
start processing their control flow using the newly allocated memory.

If in a subsequent step the data filled into the matrix needs to be further
processed, the already present data distribution may be exploited or sub-
ranges may be merged, moved or split to improve the data distribution.
Insieme-RS keeps track of the distribution state of every data item. However,
for efficiency reasons portions of data items represented by instances need
to remain orthotopes.

Data Item Operations

These operations are used within the runtime system to manage and utilize
data items:

d = create(τ, n, size) Creates a data item d of the specified type, dimen-
sionality and size.

d′ = access(d, type, range) Allows access to the subrange range of d, by
means of a new data item d′. The dimensionality of range needs to
match n of d, the type of access is either RO, RW or WO.

free(d) Indicates that d is no longer needed and that the runtime system
can reclaim any resources occupied by it.

Data Item Code Example

Listing 2.4 provides a small example of data item usage. A work item
representing loop parallelism is used to initialize the entries of an array
stored in a data item, with the value at position i being set to i*i, in
parallel. The work item operations utilized in the code are discussed in
more detail in Section 2.3.2 and its associated examples.
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1 w0 = ({(Rn
0 ,False, {})} , q0) ;

2 // Rn
0 :

3 l = cur wi ( )−> l ;
4 u = cur wi ( )−>u ;
5 dsub = acc e s s ( cur wi ( )−>params . dmain , WO, ( l , u ) ) ;
6 for ( i=l ; i<u ; ++i ) {
7 dsub−>data [ i ] = i ∗ i ;
8 }
9 end ( cur wi ( ) ) ;

10 // Main :
11 dmain = c r ea t e (double , 1 , (1000) ) ;
12 w = spawn (w0 , (1000 ,1000) ) ;
13 enqueue (w, cur worker ( ) ) ;
14 j o i n a l l ( cur wi ( ) ) ;

Listing 2.4: Data Item Code Example

The listing is split into three parts. In the topmost part, the formal work
item definition is specified. As the work item represents a parallel loop, its
c value is set to False and it can be partially sequentialized by the runtime
system. The next section, starting at line 3, contains the code region Rn0
associated with the work item. In the final section, starting from line 11,
the main code region spawning the work item is described.

In line 11 a data item representing a one-dimensional array of 1000
double values is created. Write-only access to a sub-range of this array
is requested in the work item (line 5). As each parallel instantiation of the
work item initializes the values in the range (l, u), exactly that range is re-
quested and iterated over in the loop. Note that the resource requirement
function q0 would be built based on this request, and would take on a similar
form as in the sub-range example above (qM in Formula 2.5).

2.3.4 Communication Groups

In many cases, work item instances are required to exchange information
in the form of messages. Furthermore, as it is intended to support multi-
ple parallel programming paradigms, all the communication primitives (e.g.
channel and collective operations) generally used in parallel programs need
to be supported by the program model of the runtime system.

While channel communication is always a point-to-point communication,
where the source and destination is determined by the program itself (by
issuing the corresponding commands), collective operations involve an entire
set of work items. The runtime system needs to identify the involved work
items to realize the requested services.
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Definition 10 (Communication Groups)

Let W be the set of all work items within the system. At any given
time, the set of communication groups G = 2W is given by a set
of subsets of W such that for each w ∈ W there is a g ∈ G such
that w ∈ g. Furthermore, whenever there is a work item wi and two
communication groups g1 and g2 such that wi ∈ g1 and wi ∈ g2 it
follows that either g1 ⊆ g2 or g2 ⊆ g1. A work item w ∈ W is said
to be a member of a group g ∈ G iff w ∈ g. Finally, g1 is called a
parent group of g2 iff g1 ⊆ g2.

Semantic Description

Within a parallel program Pn modeled according to Section 2.2.3, collec-
tive communication operations in χ nodes are always issued to all parallel
control flows which have reached a program state by being spawned from
the same ψ node. Therefore, Insieme-RS needs to maintain a list of all alive
work item instances which belong to such a group sharing the same path,
if those groups ever use collective communication. Furthermore, since indi-
vidual control flows may be members of several such groups, membership
in multiple groups has to be supported for work items. However, to reduce
the management overhead, we can leverage fact that groups can only be
organized in a hierarchical fashion within our program model. This prop-
erty ensures that if there are two communication groups and one work item
instance is a member of both groups, one of the groups must be a subset of
the other group.

Internally, communication groups are represented as independent sets,
with no explicit relationship between these sets. Work items may join or
leave any number of groups by registering respectively unregistering them-
selves to and from any such set. Whenever a new group is created by some
ψ node within a program, a new set of work items representing the groups is
also created. It will exist until all of its members have been fully processed.
Note that the creation of a communication group can be elided when imple-
menting a ψ node which creates exactly one work item, as is typically the
case in task parallelism.

Work items within a communication group g are internally numbered
from 0 to |g| − 1.

Communication Group Operations

Communication groups are included in the runtime system primarily to al-
low collective operations to be performed on a group of work items. The
following operations are supported:

g′ = insert(g, w) Inserts the work item w into the group g, g′ = g ∪ {w}.



2.3. DYNAMIC PROGRAM MODEL 41

g′ = remove(g, w) Removes the work item w from the group g, g′ = g \{w}.

pfor(g, wf ) Distributes the work specified by work item description wf over
the work items in group g. This operation needs to be encountered by
every w ∈ g.

barrier(g) Suspends the invoking work item until every w ∈ g has invoked
this barrier.

join(g) Suspends the invoking work item until every w ∈ g has entered its
done state.

index(g, w) Retrieves the index of work item w in group g.

Communication Group Usage

The formalized definition of work groups presented above is simple, but
powerful enough to allow the modeling of concepts required for a vari-
ety of input languages. OpenMP thread teams launched by a #pragma

openmp parallel declaration map to one communication group each, with
every OpenMP thread inserted into the communication group before being
launched, and removed after its completion. Nested parallelism can also be
modeled by the concept of parent groups. Operations on OpenMP thread
teams, like barriers or pfor operations, can then be mapped to their corre-
sponding communication group. See Section 3.4 for more details.

A similar mapping applies for OpenCL. OpenCL work groups map to
communication groups, and the NDRanges used in kernel invocation are
parent groups of these communication groups. Synchronisation operations
at different levels (ie. the work group level or the whole kernel) can then be
mapped to the communication group representing the correct point in the
hierarchy.





Chapter 3

The Insieme Runtime
System

The aim of Insieme-RS is to provide an environment for the execution of
a parallel program specified via INSPIRE and compiled using the Insieme
compiler infrastructure. This program may be an entire end-user application
or multiple smaller sections of a client application – that is, any application
using functionality provided by the runtime system. The runtime system
offers a computation service to the client application, capable of perform-
ing (primarily numerical) computations within a dynamic, heterogeneous,
distributed, auto-tuned shared environment. The program sections to be
executed within Insieme-RS have to be converted into INSPIRE and cus-
tomized by the Insieme compiler.

Within the final phase of the compilation process, code interacting with
the runtime according to the model covered in Chapter 2 is generated. To
handle program execution in a dynamic fashion within Insieme-RS, such
a model describing the general structure of processable control flows is es-
sential. Applications are required to obey the rules and restrictions of this
model, and the runtime system does not guarantee compensating nor even
detecting any violation of the restrictions imposed by the program model.

3.1 Terminology

Within this thesis, some terms unique to the Insieme project are used, and a
few common terms in parallel computing deliberately take on a very specific
meaning. In this section, all of these terms are defined.

Insieme Components

Insieme Compiler The compiler component developed as part of the In-
sieme project capable of translating MPI, OpenMP, OpenCL, Cilk and po-

43



44 CHAPTER 3. THE INSIEME RUNTIME SYSTEM

tentially other C/C++ variants to the Insieme Parallel Intermediate Repre-
sentation (INSPIRE). Furthermore the compiler is capable of analysing and
transforming input programs (while applying static optimizations for spe-
cific or multiple non-functional parameters). Finally, the compiler’s backend
is responsible for generating target code corresponding to the application
model presented by the Insieme-RS API (Chapter 2).

(Compiler) Frontend : part of the compiler capable of translating any
supported (parallel) input programs to INSPIRE.

(Compiler) Backend : part of the compiler capable of translating IN-
SPIRE to a specific type of target code. Typically, the target code will
again be expressed using some high-level language (e.g. C) and based on
additional functionality offered by a runtime environment (e.g. Insieme-RS).

Insieme-RS The Insieme Runtime System (Insieme-RS) is the compo-
nent, active during execution of a program compiled with Insieme, which
manages the hardware infrastructure and provides a model for executing
parallel programs. It also covers the dynamic runtime optimization of code
and the distribution of computational work among multiple hardware re-
sources. Within this thesis, the expression “the runtime system” will always
refer to Insieme-RS unless otherwise noted.

INSPIRE The Insieme Parallel Intermediate Representation [43] used to
represent programs throughout the system. Although mainly used by the
compiler to represent, analyse and transform programs in a uniform way,
INSPIRE constructs are also utilized to convey meta-information from the
compiler into the runtime.

Software Architecture Related Terms

Insieme-RS Process A single instance of Insieme-RS managing a single
shared memory node.

Insieme-RS Environment The network of Insieme-RS processes coop-
erating across shared memory nodes.

Insieme-RS Client Application A program which was compiled with
the Insieme compiler and generated using its Insieme-RS backend. It is built
on the parallel program model offered by the runtime system.

Thread A OS-level thread thread of execution maintained by Insieme-
RS. Typically, each thread is associated with and bound to a single core
of some processor. However, in various cases (Insieme-RS management, IO
operations, host programs for accelerators) multiple threads may share the
same core.
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3.2 Overview

Before providing an in-depth definition of the individual components of
Insieme-RS it may prove beneficial to gain an understanding of how these
components interact at a high level. This section aims to provide such an
overview of the system. Details on all of the components mentioned in this
overview are provided within Section 3.3.

3.2.1 Program-level View

g0 

d0 

w1 w2 w3 w4 

w0 

Figure 3.1: Insieme-RS program-level view example.

As a simple starting point, Figure 3.1 illustrates the active runtime ob-
jects of a basic program running on Insieme-RS and their relationships. It
consists of the following:

• A starting work item instance w0

• A data item allocated by w0: d0

• Four child work items spawned by w0: w1, w2, w3 and w4

• Four sub-regions of d0, each requested by one child work item (using
the access operation as defined in Section 2.3.3)

• The communication group g0, containing all four child work items

Note that this application-centric view abstracts from runtime system com-
ponents such as workers or events – it exclusively contains the objects of the
dynamic program model defined in Section 2.3. While workers, events and
scheduling policies are essential to the operation of Insieme-RS, they are not
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required to describe the semantics of a program. Thus, the description of a
program in terms of its program model is not only independent of the spe-
cific Insieme-RS configuration in use – i.e. in terms of scheduling or event
handling – but also does not depend on the underlying hardware. However,
both the configuration of Insieme-RS as well as the target hardware plat-
form may have an influence on how the components of the program model
are distributed within a system.

Another important observation is that a view of the dynamic objects
representing a program, as depicted in Figure 3.1, is merely a snapshot at a
particular program state. For example, any work item might allocate a new
data item at any point, join or leave a communication group, spawn new
child work items or end.

3.2.2 System-level View

From the perspective of the runtime system, the components of a program
model – including work and data items as well as communication groups –
reside somewhere within the hardware resources managed by Insieme-RS.
Work items can be actively executing on a worker (a system-level component
managing a thread, defined in Section 3.3.1), ready for execution in any
worker’s queue or pool, or suspended pending the completion of an event.
Data items and their sub-regions are stored in memory blocks, and individual
sub-regions might have been moved to optimize access. Both events and
communication groups need to be stored separately, and the latter require
a list of references to their members.

Suspended Worker 0 

d  0 
 w1 w3 w4 

w0 
Active: Queue: Pool: 

Worker 1 

Active: Queue: Pool: 

w2 

Copied 
to NUMA 
region 

Event Table 

g0:  

  all_complete  

   resume(w0) 

g
0
 w1 * 

w3 * 
w2 * 
w4 * 

Figure 3.2: Insieme-RS system-level overview.

Figure 3.2 shows a memory-centric, system level overview of the execu-
tion of the program-level view illustrated in Figure 3.1. The starting work
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item w0 is suspended and waiting for the completion of all items in com-
munication group g0. There are two workers, each of which is currently
executing one item in the group. The remaining two items are depicted as
being stored in the queue of worker 0, however, note that this is an arbi-
trary choice: the semantics would be equivalent were they to be distributed
across both workers’ queues or both stored in worker 2. The actual man-
ifestation depends entirely on the scheduling policies in use at that point.
See Section 3.3.3 for more information.

3.3 System-level Components

The execution of a program within Insieme-RS is defined by the interac-
tions of six major types of objects and processes. The first three of those,
which we collectively refer to as the dynamic program model, are work items,
data items and communication groups. They form the basis for the interac-
tion between any client application and the runtime system by providing a
descriptive framework for computation within Insieme-RS, and were intro-
duced in Section 2.3.

All three of these program components – the list of work items, the
set of data items and any communication groups – are not known a-priori
before executing a program provided by a client application. Essentially, the
code generated by the Insieme-RS compiler backend represents a program
which will dynamically create work items, allocate data items and form
communication groups during its execution. The resulting control flow re-
assembles the semantics of the input program handed over to the compiler,
such that the computational results and IO effects are equivalent to the
output generated by the execution of the original program, while allowing
Insieme-RS to tune its non-functional parameters.

The second set of objects, including workers, events and scheduling al-
gorithms, describes components and processes which are transparent to the
client application, but essential in understanding and describing the be-
haviour of the runtime system. Together with the program model, this
system model forms the complete Insieme-RS model.

A formal description of the concept of workers starts the discussion of
these system-level components of Insieme-RS within this chapter. Work-
ers are responsible for all computation in the runtime system and manage
the execution and distribution of work items. Section 3.3.1 describes their
composition and semantics.

To enable the asynchronous, high-performance tracking of various syn-
chronisation primitives and dependency relations within the program model,
events are used within Insieme-RS. They allow the execution of arbitrary
functions whenever some condition is fulfilled on any object within the
Insieme-RS model. As such, they are a powerful tool in implementing the
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runtime system. They are formally specified and their usage is introduced
in Section 3.3.2.

Finally, an important aspect that has a significant impact on the perfor-
mance of any runtime system are scheduling policies. In Insieme-RS, there
are actually two separate scheduling problems: the scheduling of work items
across workers and the scheduling of collective operations across communi-
cation groups. Since both are interesting research topics, their behaviour is
based on modular components, which are detailed in Section 3.3.3.

3.3.1 Workers

While work item instances describe the computation carried out by a pro-
gram, and data items are used to capture their data dependencies, a compo-
nent is required which actually uses these descriptions to execute a program.
In Insieme-RS, workers are entities which actively perform the computation
described in work items.

Definition 11 (Workers)

k = (id, a, q, p)
q = {wq0, . . . , w

q
N}

p = {wp0, . . . , w
p
N}

K defines the set of all workers, and each worker k ∈ K is assigned
an id ∈ N0 distributed contiguously starting from 0. Thus, if there
are |K| workers, they will use ids ranging from 0 to |K| − 1. The
boolean value a determines whether a worker is active (a = T ), and
is set to a = F for inactive workers. At every point during the
execution of Insieme-RS, ∃i ∈ [0, N −1] : ai = T is required to hold.
The other two components q and p, called, respectively, the work
item queue and the work item pool, each represent a set of work
items that k is currently managing ownership of. Both q = ∅ and
p = ∅ are valid.

Semantic Description

Workers generally correspond to OS-level threads, with at most one worker
spawned for each hardware thread available on the system. The responsibil-
ities of workers include generating, distributing and executing work items.
To this end, each worker is equipped with two semantically distinct sets of
work item instances:

• The work item queue q exclusively contains work items in the ready
state. These work items can be moved freely within the entire Insieme-
RS environment, their execution ranges can be split to increase the
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available parallelism as needed, and the concrete implementation ver-
sion to be used can still be selected.

• The work item pool p, which exclusively contains work items in the
resumable state. These work items can only be migrated within one
Insieme-RS process, and their execution range and implementation
have already been fixed to a specific instantiation and can no longer
be changed.

This distinction is essential, since, as described in Section 2.3.3, the data
environment for each work item is initialized at the point when it transi-
tions from the ready to the running state. At the same time, a specific
implementation variant of the work item is selected. Once this has taken
place, it is no longer possible to migrate the work item to a different memory
block, as it may have allocated private memory which is not managed by
the runtime system.

3.3.2 Events

A common feature in many parallel runtime systems are dependencies which
determine the available work at any point during execution. Work items
could be waiting on the completion of previous work items on which their
results depend, or work items within a communication group might need
to be suspended until some collective operation – for example a barrier –
has completed. To optimize throughput, these dependencies need to be
resolved in an asynchronous, unified manner. The Insieme-RS event system
is designed to fulfill these requirements.

Definition 12 (Events)

ε = (y, t,H)
y ∈ W ∪D ∪G ∪K
h = (hf : U → {T, F}, u)

Each event ε within Insieme-RS is defined by three components.
The source object y, which can be any work item, data item, com-
munication group, or worker, the event type t which semantically
depends upon the type of the source object, and the set of event
handlers H. In the initial state of every event H = ∅. Every indi-
vidual event handler h ∈ H is composed by a function hf defining
the desired response to the event and some data of arbitrary type
u.
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Semantic Description

The event system allows any object within Insieme-RS to wait for any other
source object to trigger some specific event type, and it supports multiple
handlers being registered for every such combination of source object and
event types. The set of event types is pre-defined for each type of object,
and may e.g. include started or finished for work items. When an event
of type t is triggered for some source object y, the function hf (u) is invoked
for each h ∈ H. Event handlers control their own persistence by means
of the return value of hf , which determines for each h whether it will be
included in the new set of event handlers Hnew:

h ∈ Hnew ≡ h ∈ H ∧ hf (u) = T

Thus, event handler response functions which return T will cause their cor-
responding event handlers to persist over multiple occurrences of an event,
while a return value of F will remove the corresponding event handler after
the event has occurred. Note that persistent event handlers are not always
semantically meaningful – for example, the “finished” event for a work item
will only occur exactly once, so even a persistent handler will never be in-
voked again.

Event Usage

Events are used internally to model a number of operations of the runtime
system. For example, a join(wj) operation issued by a work item wi can
be modeled in a straightforward fashion by first registering the event

(wj , finished, (resume, wi))

and subsequently suspending the execution of wi. Once wj transitions to
its done state, it will trigger its finished event, which will in turn execute
the resume event handler, resuming wi. Thus the desired semantics of the
join(wj) operation are fulfilled.

Event Types

Work items Data items Workers Groups

started allocated start sleep joined
suspended moved woken left
resumed deleted all complete
finished
children finished

Table 3.1: Event types triggered by runtime objects
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Table 3.1 lists the defined event types for each object type within Insieme-
RS. The semantics are mostly self-explanatory, with one exception: the
work item event type children finished is triggered for some work item
wa when all child work items of wa, including those launched transitively,
are completed – that is, once the condition ¬∃wb : (wa, wb) ∈ L+ given the
“launched by” relation L as defined in Section 2.3.2 is fulfilled. The event
system is modular and additional event types can be defined easily if the
need arises.

3.3.3 Scheduling Policies

Unlike the previous sections about work and data items, workers, commu-
nication groups and events, which presented objects within the runtime
system, this section will describe a process, namely scheduling. This ne-
cessitates a somewhat different format, however, the scheduling of parallel
work is a fundamental task of Insieme-RS, enabling much of the research
conducted based on it, and thus merits an in-depth discussion.

There are two separate scheduling processes within the runtime system:
work item scheduling and the scheduling of work distribution operations
acting on a communication group. Each will be discussed in a separate
subsection.

Work Item Scheduling

Work item scheduling includes two largely orthogonal concepts: work item
splitting and work item distribution. The former describes how work items
with a range of parallel operations (l, u) incorporating more than a single
element are handled. The latter determines how work items are distributed
across workers.

Work Item Splitting Using the split operation on a work item (see
Section 2.3.2), multiple work items representing sub-ranges of the original
item can be generated. This property can be leveraged in scheduling to
improve load balancing by increasing the amount of available parallelism.
To this end, three important splitting policies have been defined:

• No splitting. All work items are considered to be monolithic, and
no splitting is performed.

• Lazy binary splitting. Before starting a work item w from a queue q,
if its work range is sufficiently large, it is split in two halves w1 and w2

by means of the binary split operation as described in Section 2.3.2.
w1 is started while w2 is enqueued in q. This method allows for good
load balancing while maintaining relatively low overhead, due to its
hierarchical nature [85].
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• Static splitting. Every newly created work item w is immediately
split into fragments w0, w1, . . . , wN−1 with N = |K| representing the
number of workers in the runtime system. This method is particularly
well suited to regular programs which feature an inherently balanced
load distribution.

Work Item Distribution For the distribution of work items among
workers there are two methods, which can either be combined or used sepa-
rately. The first is the push method, which involves a source worker actively
selecting a target and moving a work item to it. Conversely, in the pull
method, every worker only moves work items from another worker to itself.
The most common distribution policies employing these methods are the
following:

• Static distribution. Generated work items are pushed to workers
in a round-robin fashion. This works well for balanced workloads in
combination with a static splitting policy, as it introduces very low
overheads. However, in the case of imbalanced workloads this pol-
icy does not allow the runtime system to perform any dynamic load
balancing.

• Random stealing. Generated work items are initially stored in each
worker’s local queue. When a worker with an empty queue tries to
schedule a work item, it selects a random target worker and tries to
pull one work item from its queue. The exact behaviour of this policy
depends on whether this pull operation takes an item from the head
or tail of the target queue.

Both the splitting behaviour and the work item distribution policy are
exchangeable components in Insieme-RS, and multiple versions of each are
implemented and directly comparable. In Chapter 6, the random stealing
distribution policy is extended to support a novel task optimization ap-
proach.

Work Item Scheduling Examples We will now provide two examples of
common combinations of work item splitting and distribution policies, and
how they affect the execution of work items. In both examples, there are 4
workers k0 . . . k3 and the situation at the start is that worker k0 has one large,
splittable work item while all others are empty. To simplify the graphical
representation, the queue and pool for each worker are not separated.

Figure 3.3 illustrates the scheduling process in case a static splitting
policy is combined with static, push-based distribution. The initial work
item w is immediately split into four fragments by k0. Subsequently, k0

pushes each of these fragments to a worker in round-robin fashion. Only
after all fragments are distributed does k0 start executing its own fragment



3.3. SYSTEM-LEVEL COMPONENTS 53

k0 k1 k2 k3 

w 

Static split 

1 2 3 4 

Static push 
distribution 

Ti
m

e
 

2 

3 

4 

Figure 3.3: Static work item splitting and distribution.

0. The other workers can start executing their assigned fragments as soon
as they receive them.

While Figure 3.3 shows a very static scenario which always proceeds in
exactly the same manner, Figure 3.4 depicts a far more dynamic set of poli-
cies, and thus represents only one possible out come of many. Here, lazy
binary splitting is combined with random stealing as the work item distri-
bution method. When trying to start w, k0 determines that it is sufficiently
large, and splits it into two halves. The second half is immediately stolen
by k2 (this is an arbitrary choice). Both halves are still too large to execute
without further splitting, so both k0 and k2 split their fragment, at roughly
the same time. Subsequently, fragment 1a is executed by k0, and 2a by
k2. The other workers k1 and k3 steal 1b and 2b, respectively (this choice is
again arbitrary).
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Figure 3.4: Lazy binary work item splitting and stealing distribution.

Work Distribution (pfor) Scheduling

The pfor(g, wf) operation was defined on communication groups in Sec-
tion 2.3.4 and distributes the work range described by wf across the set
of work items {w0, . . . , w|g|−1}, which are members in group g. Thus, the
work items already exist and have started executing in their own data envi-



54 CHAPTER 3. THE INSIEME RUNTIME SYSTEM

ronments, and are in the running state at the point where they encounter
the pfor operation. This differs significantly from the work item scheduling
as described above, which operates exclusively on work items in the ready

state.
This scheduling operation is therefore equivalent to partitioning an in-

terval [l, u) ⊂ N into |g| disjoint subsets, each of which will be assigned
to one work item in g. This is similar in concept to loop scheduling in
OpenMP [65], and can use many of the existing OpenMP loop scheduling
methods. The scheduling strategies available in Insieme-RS include:

• Static scheduling, with an optional chunk size parameter c. If the
chunk size is not set, all member of g will be assigned equally sized
chunks (as far as possible, if c = (l − u)/|g| is not an integer). For a
given c, chunks are distributed as follows: [l, l+ c)→ w0, [l+ c, l+ c ∗
2)→ w1, . . . , [l + c ∗ (|g| − 2), u)→ w|g|−1

• Dynamic scheduling, also with an optional chunk size parameter c. In
this case, the interval is again split into chunks of equal size c, which
are distributed to participating work items on a first-come-first-served
basis. The default value for c is 1

• Guided scheduling. Here, the chunk size parameter takes on a different
role, as the size of the distributed chunks is not kept constant through-
out the execution of a given loop. Chunks are distributed dynamically
on a first-come-first-served basis as in dynamic scheduling, but their
size is progressively decreased. The chunk size parameter specifies a
minimum size.

• Fixed scheduling is used by dynamic optimizers in Insieme-RS to di-
rectly manage which sub-ranges are assigned to which work item. For a
group of |g| work items, |g| − 1 cutoff points cu0, cu1, . . . , cu|g|−2 need
to be provided. The loop is then distributed as follows: [l, cu0) →
w0, [cu0, cu1)→ w1, . . . , [cu|g|−2, u)→ w|g|−1

• Balanced scheduling is also intended for use by optimizers. It dif-
fers from fixed scheduling in how the ranges for each work item are
specified. While fixed scheduling uses cutoff points, in the balanced
scheduling strategy a value 0 ≤ si ≤ 1, si ∈ R is provided for each
work item wi, which specifies the relative share of work to be assigned
to that item. Compared to fixed scheduling, this has the advantage of
being applicable to varying loop sizes, but causes slightly higher over-
head and is not as convenient to use for some dynamically adjusting
optimizers. This scheduling policy was used in work relating to the
automated distribution of OpenCL workloads across devices [50].

The dynamic and guided scheduling strategies require communication be-
tween the work items participating in the execution of the pfor, while this
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is not the case for the other methods. A hybrid, automatic loop schedul-
ing algorithm which selects from these methods based on work item meta-
information and information about the current system state is presented in
Chapter 5.

3.4 Compiler Integration

An essential feature of Insieme-RS is its close integration with the Insieme
Compiler. This enables many of the research opportunities investigated in
later chapters of this thesis, and sets it apart from other runtime systems.
In this section, the methods by which this integration with the compiler
is achieved are presented. To allow for a more complete understanding
of the entire process, we start out by briefly outlining the way OpenMP
programs are treated in the Insieme compiler and translated to INSPIRE.
Subsequently, the mapping from INSPIRE constructs to the Insieme-RS
program model, which takes place in the compiler backend, is presented.
Finally, we detail how the primary means of integration between the compiler
and runtime system – work item multiversioning and the transport of meta-
information – are accomplished. A complete introduction of the INSPIRE
language is beyond the scope of this thesis and can be found in a separate
publication [43].

In
siem

e-R
T B

acken
d

 

{…} 
#pragma omp 
 parallel 
{ [A] } 
#pragma omp 
 task 
{ [B] } 
{…} 

parallel(n) 

[A] 

merge 

parallel(1) 

[B] 

merge 

… … 

compound 

O
M

P
 Fro

n
ten

d
 

Insieme Compiler 

WI0 
 
 
 
 
 
 
 
 

{…} 
spawn(WI1,n) 
spawn(WI2,1) 
{…} 
 

meta- 
information WI1 

 
 
 
 
 
 
 
 

[A] 
 

meta- 
information 

WI1 
 
 
 
 
 
 
 
 

[A] 
 

meta- 
information 

WI2 
 
 
 
 
 
 
 
 

[B] 
 

meta- 
information 

WI1 
 
 
 
 
 
 
 
 

[A] 
 

meta- 
information 

WI1 
 
 
 
 
 
 
 
 

[A] 
 

meta- 
information 

WI1 
 
 
 
 
 
 
 
 

[A] 
 

meta- 
information 

Insieme-RT 
  program 

  OpenMP 
  program 

Figure 3.5: Overview of compiler pipeline for Insieme-RS.

Figure 3.5 depicts a simplified version of the pass of an OpenMP program
through the compiler. The OpenMP frontend translates the input program
into an INSPIRE DAG, which is in turn transformed into a set of work item
descriptions by the Insieme-RS backend. Work items are annotated with
meta-information, and work item descriptions representing parallel compu-
tation (WI1 and WI2 in the example) may feature multiple implementation
variants.
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3.4.1 OpenMP in the Insieme Compiler

The vast majority of the experimental evaluation in this thesis is based on
OpenMP programs. OpenMP is a widely used industry standard for paral-
lel programming, and most OpenMP constructs map easily to the internal
representation used within the Insieme compiler, INSPIRE. This section de-
scribes how the OpenMP frontend of the Insieme compiler maps common
structures to INSPIRE, which is a required first step towards running them
on Insieme-RS. Note that Insieme at the current point in time supports only
a subset of the OpenMP 3.2 standard, however this subset is sufficient to
correctly execute a large number of real-world benchmarks and codes.

The parallel Construct

The parallel construct is the most essential part of OpenMP, as it gener-
ates the parallelism used by all other aspects of the language. In Insieme,
the code fragment:

#pragma omp parallel

baseLangStatement;

is translated to the following INSPIRE code:

group g = spawn(1, INT_MAX) {

default {

initLocalDataEnv

baseLangStatement’

teardownLocalDataEnv

}

merge(g)

The details of implementing the various optional clauses which may be
attached to the parallel constructs, as well as the specifics of how local data
environments are constructed are omitted for clarity, for this and all the fol-
lowing descriptions. The Insieme compiler supports the full range of shared,
private and reduction operations by implementing their semantics in IN-
SPIRE (within the initLocalDataEnv and teardownLocalDataEnv blocks
indicated in the listing above), capturing references to variables in the sur-
rounding context, creating local substitutes within the job body (generat-
ing the modified baseLangStatement’) and initializing them accordingly.
However, the resulting code is relatively complex and unnecessary for the
discussion in this thesis.

Note that the INSPIRE thread group g is immediately merged, imple-
menting the OpenMP fork-join model of parallelism whereby the thread
reaching the parallel block is suspended until the whole block has been pro-
cessed.
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Worksharing Constructs

All the OpenMP work sharing constructs – for, single, and sections –
are encoded based on the INSPIRE pfor operator using the iterator range
of the associated loop (in the case of for), a single iteration (for single), or
one iteration per section. An additional barrier is appended in the absence
of a nowait clause on the worksharing construct.

Tasks and Taskwait

OpenMP tasks are modeled using spawn with a fixed range of 1, resulting
in the creation of an INSPIRE thread group consisting of a single thread.
Since the Insieme parallel model allows for recursively nested parallelism,
tasks may spawn additional tasks as required. The taskwait primitive
available for joining tasks in OpenMP is directly translated into a call to
the mergeAll () function in INSPIRE.

Synchronisation

OpenMP barriers, whether explicitly provided in the source code or implicit
in the semantics of a worksharing construct, are equivalent to the INSPIRE
call

redistribute (unit, (array 〈unit〉 data) {return unit; }) (3.1)

where unit is the constant representing the one instance of the unit type.

Other means of synchronization in OpenMP, including critical regions
and locks, are modeled using INSPIRE channels of the type channel 〈unit, 1〉,
which implement locking semantics based on their single-element buffer.
Since channel operations in INSPIRE lock when their buffer is full, and a
channel of type channel 〈unit, 1〉 has only a single-element buffer, it can be
used to model a mutually excluding lock as follows. Acquiring the lock is
equivalent to sending an empty message into the channel (thus occupying
its buffer), which will block further messages (i.e. lock operations) from
being executed. Releasing the lock is accomplished by reading the empty
message from the channel, emptying its buffer and allowing another locking
operation to take place.

Atomic operations are realized using the generic INSPIRE atomic func-
tion.

Other OpenMP Features

Widely used OpenMP features which require special consideration when im-
plemented in Insieme are threadprivate variables. These are represented
in the compiler by allocating a vector containing a copy for each thread at
the entry point of the program, and forwarding a reference to this vector
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to each function which uses the threadprivate variable. The vector is in-
dexed using the INSPIRE getThreadId(0) function, which, in combination
with the parallel implementation outlined above, matches the required
OpenMP semantics.

The omp get thread num family of OpenMP library functions is imple-
mented by mapping the calls to corresponding calls to getThreadId.

3.4.2 INSPIRE → Insieme-RS Mapping

INSPIRE Insieme-RS

thread work item instance

N-d vector N-d data item

threadgroup communication group

spawn(1, 1) use the work item spawn operation to instan-
tiate a single work item

spawn(a, b) create a communication group and multiple
work items in that group

pick(...) create and run a work item, with the work
item description featuring multiple imple-
mentation versions corresponding to the op-
tions in pick

merge join (either on work item or group, depend-
ing on context)

mergeAll joinAll

pfor pfor (need to generate a work item descrip-
tion for the body)

redistribute barrier if it is of the form in declaration 3.1,
redistribute otherwise

getThreadID(N) implemented using the index operation on
the corresponding communication group the
current work item is a member of

atomic mapped to corresponding atomic methods if
the hardware offers them, otherwise uses lock-
ing

Table 3.2: Mapping from INSPIRE to Insieme-RS.

In the Insieme-RS backend of the compiler, INSPIRE structures need to
be mapped to objects of the Insieme-RS program model. As the runtime
system was designed to complement the compiler, this is usually a straight-
forward process, but it is fundamental in understanding how INSPIRE pro-
grams are executed on Insieme-RS. Table 3.2 summarizes the mapping from
INSPIRE types and operators to Insieme-RS objects and operations on these
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objects.

Note that in the cases where there is no direct one-to-one mapping,
the generalized representation in INSPIRE is mapped to several distinct
object or operations in Insieme-RS. This is expected and consistent with
the goals of each of these components of Insieme: INSPIRE aims to provide
a minimal unified representation to simplify analysis and transformation,
while Insieme-RS requires specialized code which optimizes for the unique
use case at hand.

3.4.3 Work Item Generation

A unique feature of Insieme is the close integration between compiler and
runtime system. The primary module where this integration manifests itself
is within the Insieme-RS backend of the compiler, where work item descrip-
tions are generated from INSPIRE code. As defined in Section 2.3.2, work
item descriptions can feature any number of semantically equivalent imple-
mentations of a work item, and each of them can have arbitrary meta-data
associated with it. This section describes how these values are derived from
the INSPIRE representation and analysis performed by the compiler. Note
that while this explanation remains on a more abstract level, Section 3.5.2
details the actual implementation of the mechanisms described here.

Work item descriptions are generated by the Insieme-RS backend when-
ever it translates either a spawn or a pfor operation from INSPIRE. First,
the sub-graph representing the code to be executed within the generated
work item is outlined, and the required parameters are gathered in a new
data item structure. Subsequently, the resource requirements of the code
within the sub-graph are determined, and the resource requirement func-
tion is generated accordingly.

Work Item Multi-Versioning

Tunable non-functional parameters are supported in INSPIRE by means
of the pick operator, defined as (list 〈α〉) → α. Its semantics are simple:
list 〈α〉 is required to be a list of options of an arbitrary, but consistent,
type, which are all semantically equivalent in terms of the functionality of
the program. That is, replacing a call to pick (list 〈α〉) → α with any item
in list 〈α〉 is required to yield a correct program, which in turn means that
the selection of a specific element of the list can be tuned to optimize for
some non-functional parameter.

Work item multi-versioning is thus accomplished in INSPIRE by using
the pick operator within a spawn or pfor operation to select from a list 〈α〉.
Here α represents some function type matching the signature required by the
surrounding context. The Insieme-RS compiler backend can then generate
a set of work item implementations I with |I| = length (list 〈α〉).
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In this set of implementations, each element i = (Rn, c,m) ∈ I corre-
sponds to one option within the list list 〈α〉. The control flow for to the
single-entry single-exit region Rn and the concurrency flag c are generated
individually for each separate INSPIRE sub-graph corresponding to each
option in the list.

Meta-Information

While the generation of single work items and work items with multiple
implementation versions has now been covered, the partial function m :
Km 7→ V m used in Definition 6 to provide meta-information for each imple-
mentation is still unclear. It is kept deliberately loosely specified in terms
of type to allow for a wide variety of research and application scenarios.
It’s closest equivalent in the compiler are annotations, which allow arbi-
trary INSPIRE nodes to be enriched with additional information. For the
Insieme-RS backend, the information in INSPIRE node annotations is one
important source of meta-information – the other is analysis performed on
the INSPIRE sub-graph of each work item implementation version before or
during code generation.

A powerful feature shared by both work item meta-information and IN-
SPIRE annotations is that the data they represent can be richly typed.
This includes not just support for basic types such as integers or floating
point values, but also composite types like structures or lists, and, crucially,
function types. This means that the compiler can internally generate a func-
tion modeling the behaviour of a work item implementation depending on
any number of variables which need not be available at compile-time, and
forward this function as work item meta-information to Insieme-RS. The
runtime system can then use its information advantage – it knows the exact
state of the program and its input – to evaluate the function and use it to
steer its behaviour.

Examples of possible meta-information stored in work items include:

• Feature vectors used in machine-learning optimizations during run-
time. These could e.g. contain the number of vector operations within
the code region, or the ratio of memory accesses to arithmetic opera-
tions.

• Functions estimating some non-functional parameter of the work item.
E.g. a function estimating its execution time or memory usage based
on a set of parameters known at runtime and a model constructed by
the compiler.

• Optimization goals supplied in the input program. E.g. in a real-time
application, a work item representing a decoding step may carry meta-
information indicating that it needs to complete in a certain amount
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of time, but not faster. Insieme-RS can then tune its execution to
use the least amount of resources while still fulfilling the indicated
performance requirement.

Chapter 5 demonstrates the real-world applicability and impact of this ap-
proach.

3.5 Implementation Notes

In this section some aspects of the implementation of Insieme-RS will be
presented with more technical detail. Giving a full technical description of
the entire runtime system at this level of detail would be infeasible in terms
of volume, and also often simply mirror the state of the art – as with any
large software project. Therefore, we will focus on those aspects of Insieme-
RS which are either unique to the system, or implemented in a novel way
which is made possible by the specific requirements of Insieme-RS.

3.5.1 General Overview

Insieme-RS is implemented in C99 [41], with a small number of components
written in inline assembler for select platforms to increase performance. The
primary component this type of optimization was performed for is the user-
level context switching functionality, which is used to implement work item
scheduling on workers.

The runtime system is implemented as a set of headers only. This has
the advantage of enabling the back-end compiler to more easily perform full
optimization and the inlining of small runtime functions. Additionally, it
ensures that each stand-alone program produced by the compiler can be run
on any supported system, without the need to provide separate stand-alone
libraries. The main disadvantage of this approach is the fact that the whole
runtime system has to be compiled every time an application is compiled.
However, since it is pure C, the time for this is insignificant on most modern
computers.

Figure 3.6 illustrates a basic overview of the components comprising
Insieme-RS. Its components are grouped in three major categories:

Abstraction Components that abstract facilities provided from the OS
level to enable portability. This is the only component in which exter-
nal functions and interfaces which are not part of C99 or its standard
libraries are used.

Core Components providing the core functionality of the runtime system.

Utilities Modules which offer functionality required by, but independent
from the core components.
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Figure 3.6: Insieme-RS implementation component overview.

The abstraction layer is intended to encapsulate basic OS-level thread-
ing, synchronisation, and other tasks which require a system-specific im-
plementation (e.g. affinity settings) and provide implementations for each
supported platform. At the point of writing, it features a POSIX [58] imple-
mentation targeting Linux and all compatible systems, as well as a Windows
implementation which is based on native Win32 threading and synchroniza-
tion libraries.

Utilities are components that are largely independent of the rest of the
runtime system, but are used by it to accomplish its tasks. Currently, the
following utilities are implemented:

User-level Context Switching A user-level (lightweight) threading and
context switching library which provides high-performance implemen-
tations for x86 and x86-64 architectures and features a thread switch-
ing overhead of less than 10 cycles. A fallback implementation using
the POSIX ucontext library is also provided for unsupported hard-
ware.

Thread-safe Containers High-performance, thread-safe container struc-
tures based on atomic operations and fine-grained locking. Includes
stacks, deques, counting deques, lookup tables and circular buffers.
Some of these are described in more detail in Section 3.5.3.

Timing Highly accurate timers and sleeping functions, as well as calibra-
tion support to convert to/from CPU ticks and time units.

System Monitoring Provides information about the system state, such
as the current externally generated CPU load.

Finally, core components encompass the central implementation of the
runtime, including all the program objects and system-level components
detailed in Sections 2.3 and 3.3.
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Work Items The basic unit of work in the runtime system, as formalized
in Definition 8. A user-level thread with additional meta-information
about its data requirements and properties, with any number of im-
plementations.

Workers OS-level threads which accomplish the scheduling and manage-
ment of work items, see Definition 11.

Communication Groups Groups of work items which can perform aggre-
gated operations, as defined in Section 2.3.4. Includes barriers, work
distribution methods and aggregated data exchange functions operate
on work groups.

Data Items The basic unit of data in the runtime, see Definition 9. Pro-
grams use data items to enable the runtime to optimize the distribution
and usage of data throughout a program.

Event System A generic system that allows the components of the run-
time – work items, workers, groups and data items – to generate and
receive events. Events, formally introduced in Section 3.3.2, consist of
a source, which is one of the above objects, an event ID and an event
lambda, which is a combination of data and function executed when
the event occurs.

Scheduling This component includes two separate systems: task schedul-
ing and loop scheduling. Task scheduling implements the distribu-
tion of work items to workers, by means such as task stealing. Loop
scheduling distributes the iterations of a loop among the members of
a work group. Both are described in further detail in Section 3.3.3.

Optimizers The optimization of various processes performed by compo-
nents listed above, such as scheduling and data distribution, is rele-
gated to the optimizers in this module.

Instrumentation Instrumentation provides information about the non-
functional behaviour of programs executed by the runtime as well as
the runtime itself, either during execution or post-mortem.

3.5.2 Compiler → Runtime Mapping

Section 3.4 Provided a high-level description of the mapping of various par-
allel structures in OpenMP to the Insieme intermediate representation, and
how that representation is in turn mapped to the structures of the runtime
system. In this section, more detail on how work items descriptions and
data items are implemented in the program generated by the Insieme-RS
backend of the compiler will be provided.
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The backend collects all work items (implicitly) defined within the pro-
gram, including any entry points and regions within a parallel spawn con-
struct. For each description of such a work item, a line in the work item
description table is generated. Similarly, the type table contains an entry for
each data item type used in the program. Both of these structures are gath-
ered within a program context, which is initialized by a function generated
by the compiler backend.

1 typedef struct i r t c o n t e x t {
2 i r t c o n t e x t i d id ;
3 i r t c l i e n t a p p ∗ c l i e n t app ;
4 uint32 t y p e t a b l e s i z e ;
5 i r t t y p e ∗ t ype t ab l e ;
6 uint32 w i d e s c t a b l e s i z e ;
7 i r t w i d e s c r i p t i o n ∗ wi d e s c t ab l e ;
8 } i r t c o n t e x t ;

Listing 3.1: Program Context Data Structure

Listing 3.1 describes the content of a program context data structure. In
this and all further code listings within this section, C99 syntax is assumed,
and unimportant implementation details (such as forward declarations) may
be omitted for the sake of clarity. Each irt context contains a unique
identifier, a pointer to a data structure identifying the client application,
and the essential work and data item tables which will now be described in
detail.

Work Item Description Table

The work item table is a statically allocated array of data structures filled
by the compiler backend. Each entry in the array corresponds to one work
item description w, and the size of the array is equal ti the total number of
work item descriptions in the program |W |.

1 typedef struct i r t w i d e s c r i p t i o n {
2 uint32 num variants ;
3 i r t w i imp l ementa t i on ∗ va r i an t s ;
4 } i r t w i d e s c r i p t i o n ;
5

6 typedef enum i r t w i imp l emen ta t i on type {
7 IRT WI IMPL SHARED MEM, IRT WI IMPL DISTRIBUTED,

IRT WI IMPL ACCELERATOR
8 } i r t w i imp l ementa t i on type ;
9

10 typedef struct i r t w i d i r e q u i r emen t {
11 i r t d a t a i t em i d d i i d ;
12 i r t d a t a r an g e range ;
13 } i r t w i d i r e qu i r emen t ;
14

15 typedef void wi implementat ion func ( i r t wo rk i t em ∗) ;
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16 typedef void w i d i r e q f un c ( i r t wo rk i t em ∗ ,
i r t w i d i r e qu i r emen t ∗) ;

17 typedef void wi channe l r eq func ( i r t wo rk i t em ∗ , i r t c h ann e l ∗)
;

18

19 typedef struct i r t w i imp l ementa t i on {
20 wi implementat ion func ∗ implementation ;
21 i r t w i imp l ementa t i on type type ;
22 uint32 num requi red data i tems ;
23 w i d i r e q f un c ∗ data requ i rements ;
24 uint32 num requi red channe l s ;
25 wi channe l r eq func ∗ channe l r equ i r ements ;
26 i r t w i imp l emen t a t i o n v a r i a n t f e a t u r e s f e a t u r e s ;
27 i r t w i imp l ementa t i on runt ime data r t da ta ;
28 } i r t w i imp l ementa t i on ;

Listing 3.2: Work Item Descritpion Table Data Structures

Listing 3.2 contains definitions for all the essential data structures and
functions required to define a work item description. Every individual
irt wi description consists of a fixed number of implementations of type
irt wi implementation. Each implementation in turn comprises the fol-
lowing components:

• The implementation function pointer. This function actually imple-
ments the program semantics of single-entry single-exit region encap-
sulated by this work item implementation.

• An irt wi implementation type, describing whether this implemen-
tation variant is intended to run on a single shared memory node, a
cluster of nodes or an accelerator.

• The number of data items required by this implementation, and a
pointer to a function which generates a set of irt wi di requirements,
each representing a sub-range of a particular data item.

• An equivalent setup for the communication channels required by the
data item. The implementation type, data item and channel require-
ment functions together implement the resource requirement function
q described in Definition 2.4.

• A features data structure of type irt wi implementation variant

features. This structure can be used to transport arbitrary data or
functions from the compiler to the runtime, and is used to attach
meta-data to each work item implementation version as described in
Section 3.4.3.

• Finally, a rt data structure, which is not filled in by the compiler but
rather used by Insieme-RS optimizers to store information associated
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with each work item implementation (e.g. performance information
about a work item representing a parallel loop, to be used for schedul-
ing should the loop be encountered again).

Data Item Type Table

While data items as described in Defintion 9 are generated dynamically dur-
ing program execution by means of the operations presented in Section 2.3.3,
the types τ for each data item need to be communicated from the compiler
to the runtime system. The data item type table accomplishes this task,
and its central data structures are presented in Listing 3.3.

1 typedef enum i r t t y p e k i n d {
2 IRT T BOOL,
3 IRT T INT8 , IRT T INT16 , IRT T INT32 , IRT T INT64 ,
4 IRT T UINT8 , IRT T UINT16 , IRT T UINT32 , IRT T UINT64 ,
5 IRT T REAL16 , IRT T REAL32 , IRT T REAL64 ,
6 IRT T STRUCT = 0xFF00 , // complex type s t a r t
7 IRT T UNION , IRT T FUNC, IRT T POINTER,
8 IRT T ARRAY, IRT T VECTOR, IRT T CHANNEL,
9 IRT T BASIC

10 } i r t t y p e k i n d ;
11

12 typedef struct i r t t y p e {
13 i r t t y p e k i n d kind ;
14 uint32 bytes ;
15 uint32 num components ; // 0 f o r ba s i c t ype s
16 i r t t y p e i d ∗components ; // num components e n t r i e s
17 } i r t t y p e ;

Listing 3.3: Data Item Type Table Data Structures

Each entry in the type table corresponds to one irt type, comprising
the following components:

• A kind, either of basic type such as bool or of a complex, potentially
composed type such as a struct.

• The number of bytes the type occupies in memory.

• A number of components if the type is composed of sub-types, which
defaults to 0 for basic types.

• A list of the components of the type, which are in turn references to
entries in the type table.

The size of each type in bytes is essential to the functionality of the runtime
system, as it is used when allocating memory for data items composed of
the type. The further specification of the sub-components of the types al-
lows for reflection on the type at runtime and may e.g. be used to convert
between little-endian and big-endian systems when transferring data items
in a heterogeneous cluster.
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3.5.3 Thread-Safe Data Structures

In the implementation of many components of Insieme-RS, thread-safe data
structures are required. While any data structure can be made thread-safe
by the application of coarse-grained locking, such an implementation would
lead to performance and scalability issues, particularly in highly congested
data structures. Lock-free data structures [1] would appear to lend them-
selves well to this purpose, but are currently only mature and available for
a limited set of container types, such as stacks and queues.

There are two central data structures in the runtime system which re-
quire concurrent parallel access and are not suitable for a lock-free imple-
mentation. These data structures are event tables (used to implement the
event system described in Section 3.3.2) and circular work buffers, which
serve as the containers used to represent the work item queue q and pool p
as per Definition 11.

Event Tables

The event system detailed in Section 3.3.2 is a core component of Insieme-
RS, and used in the implementation of many basic functions. Events are
defined to originate from one source object y, and each event has a event
type t (see Definition 12). Multiple event handlers h can be registered for
each such combination of source and event type. In programming terms,
each such handler is a closure [79] – a combination of a function and its
data environment.

Providing this functionality in a C program in a way which is both
fast and thread-safe requires some infrastructure. In Insieme-RS, the event
system is based on event tables. For each type of source object (e.g. work
items or data items) a hash table of event registers is allocated. Hashing is
performed on the object ID of the event source y, and collisions are resolved
using separate chaining with list heads. This allows for parallelism using
fine-grained locking on each line in the hash table.

Each event register contains an array of occurrence counts and an array
of linked lists of event handlers, both of these arrays are equal in length to
the number of event types t which exist for the given source object type
(as listed in Table 3.1). Finally, each event handler consists of a handler
function matching the semantics defined in Section 3.3.2 and an arbitrary
data environment.

1 typedef bool ( i r t w i even t l ambda func ) ( i r t w i e v e n t r e g i s t e r ∗
s o u r c e e v e n t r e g i s t e r , void ∗ use r data ) ;

2

3 typedef enum i r t w i e v e n t c o d e {
4 IRT WI EV STARTED,
5 IRT WI EV SUSPENDED,
6 IRT WI EV RESUMED,
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7 IRT WI EV FINISHED ,
8 IRT WI CHILDREN FINISHED ,
9 IRT WI EV NUM // s e n t i n e l

10 } i r t w i e v e n t c od e ;
11

12 typedef struct i r t w i e v e n t h and l e r {
13 i r t w i even t l ambda func ∗ func ;
14 void ∗data ;
15 struct i r t w i e v e n t h and l e r ∗next ;
16 } i r t w i e v e n t h and l e r ;
17

18 typedef struct i r t w i e v e n t r e g i s t e r {
19 p th r e ad sp i n l o ck t l ock ;
20 i r t w i e v e n t r e g i s t e r i d id ;
21 uint32 occur rence count [ IRT WI EV NUM ] ;
22 i r t w i e v e n t h and l e r ∗handler [ IRT WI EV NUM ] ;
23 struct i r t w i e v e n t r e g i s t e r ∗ l o okup tab l e nex t ;
24 } i r t w i e v e n t r e g i s t e r ;

Listing 3.4: Event System Data Structures

Listing 3.4 contains the C definitions of the central data types used for
work item event handling in Insieme-RS. Note that this code is a simplified
representation specialized for work items – the actual implementation is
generated from a parameterized macro representation for different source
object types.
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Figure 3.7: Insieme-RS implementation of event tables.

Figure 3.7 illustrates the relationship between the data structures in-
volved in work item event handling, and the granularity of locking. While a
full line of the hash table needs to be locked to find or add an event register,
this lock can be released and only the register itself is locked to evaluate
or manipulate event handlers. This distributed, fine-grained locking design
allows for high event throughput even with a large number of parallel event
invocations.
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Circular Work Buffers

Workers store work items which are ready to execute in a queue and pool,
as defined in Section 3.3.1. The queue and pool containers differ in se-
mantics, but can be based on the same implementation. In Insieme-RS,
multiple different versions of these essential container structures have been
implemented. All of them need to support the following features:

• Store a sorted list of work items, which may be empty.

• Work items can be added and removed arbitrarily at the front (top)
and the back (bottom) of the list, but not in its middle. We will call
these operations pushFront and pushBack for adding elements and
popFront and popBack for removing them.

• Any combination of these operations can be invoked in parallel.

• Determining the number of items in the container needs to be a low-
cost operation (this is an important parameter for some scheduling
algorithms, in which it is repeatedly queried).

A basic implementation would be a simple doubly linked list with global
locking and a separate element count. However, such an implementation
results in congestion whenever any two threads need to access any part of
the container, even if they e.g. try to perform pushFront and pushBack
operations which should semantically be able to execute in parallel.

While relatively mature lock-free implementations for queues exist, lock-
free deques of arbitrary length which fulfill all the requirements outlined
above are still a research topic and often quite complex [78]. For our pur-
poses, a good balance between the sequential complexity of adding, removing
and counting elements and parallel congestion is essential.

Circular work buffers in Insieme-RS were designed to fulfill the require-
ments outlined above. They are based on a fixed-size array of a length of
2N which is indexed using 4 16-bit values packed into a 64-bit quadword.
This indexing data structure has the advantage that it can be updated
atomically on all target hardware platforms. Listing 3.5 depicts this data
structure. The four indexing values are top val, bot val, top update and
bot update.

1 #define IRT CWBUFFER LENGTH (1<<N)
2 #define IRT CWBUFFERMASK (IRT CWBUFFER LENGTH−1)
3

4 typedef union i r t cwb s t a t e {
5 uint64 a l l ;
6 struct {
7 union {
8 uint32 top ;
9 struct {
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10 uint16 top va l ;
11 uint16 top update ;
12 } ;
13 } ;
14 union {
15 uint32 bot ;
16 struct {
17 uint16 bo t va l ;
18 uint16 bot update ;
19 } ;
20 } ;
21 } ;
22 } i r t cwb s t a t e ;
23

24 typedef struct i r t c i r c u l a r w o r k b u f f e r {
25 volat i le i r t cwb s t a t e s t a t e ;
26 i r t wo rk i t em ∗ i tems [IRT CWBUFFER LENGTH] ;
27 } i r t c i r c u l a r w o r k b u f f e r ;

Listing 3.5: Circular Work Buffer Data Structures
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Figure 3.8: Insieme-RS circular work buffer semantics.

Figure 3.8 illustrates how circular work buffers are organised and how
synchronisation is handled. The semantics of the indexing values are defined
as follows:

• top val (T V ) is the index of the work item at the front/top of the
buffer.

• bot val (BV ) is the index before the work item in the back/bottom
of the buffer.

• top update (TU ) is the same as T V in the steady state of the container.
During operations on the top of the buffer, it differs from T V : if it is
less than T V , the elements between the two indices are being removed
from the top of the buffer – otherwise, the elements between the two
indices are being added.
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• bot update (BU ) is the same as BV in the steady state of the con-
tainer. During operations at the bottom of the buffer, it differs from
BV : if it is less than BV , the elements between the two indices are
being added at the bottom of the buffer – otherwise, the elements
between the two indices are being removed.

Note that – due to the circular nature of the buffers – in this description,
“less than” refers to the modulo space of size IRT CWBUFFER LENGTH in the
following manner: TU is considered less than T V iff (TU < T V ∨ (TU >
T V ∧ T V < BV )). The second part of the condition covers the case where
the buffer spans across the end of the array. Equivalently, BU is considered
less than BV iff (BU < BV ∨ (BU > BV ∧BU > T V )).

Following these definitions, the 8-element buffer in Figure 3.8 is in these
configurations, from left to right:

• Left: Steady state, no operation is being performed. Three work items
are stored in the buffer, at indices 2, 3 and 4.

• Middle: A work item is in the process of being added on top of the
buffer, at index 5.

• Right: While the addition of one work item at index 5 is still in
progress, one work item is removed from the bottom of the buffer
in an independent parallel operation.

Using this data structure and atomic operations on the state variable,
parallel operations can be independently executed at the top and bottom
of the buffer without any congestion, as long as the buffer is not empty. If
multiple operation on the same end of the queue are invoked in parallel, one
of them will succeed and the others will retry. Determining the number of
elements in the container is trivial:

1 uint32 i r t cwb s i z e ( i r t c i r c u l a r w o r k b u f f e r ∗ wb) {
2 return (wb−>s t a t e . t op va l − wb−>s t a t e . bo t va l ) &

IRT CWBUFFERMASK;
3 }

3.5.4 Memory Reuse

Despite the advances made in generic memory allocator performance, partic-
ularly in multi-threaded scenarios [56], memory management is still a major
performance hot spot in any runtime system. For all data structures with
a potentially high frequency of allocations and deallocations (such as work
items or event registers) Insieme-RS manages an individual reuse stack on
each worker. When data structures are no longer in use, they are attached
to their respective reuse stack on the current worker. When a new data
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structure of some type is required on a worker, it first checks its reuse stack
for unused data structures of this type – new memory is allocated only if
the reuse stack is empty.

Keeping the reuse stack local to workers has multiple advantages. It
is cache- and NUMA-friendly, as data is only reused locally. Even more
critically, it allows the omission of any kind of synchronisation or mutual
exclusion for operations on the reuse data structures. Each worker only
accesses its own reuse stacks, and consequently there is no possibility of any
race conditions occurring.

However, in one use case this type of object-based local reuse has proven
to be insufficient. When recursive, task-based programs with a high number
of interdependent tasks are executed, the number of active stack spaces
in memory required for execution can get very high. To solve this issue
Insieme-RS uses Asteroidea stacks.

Asteroidea Stacks

work item instance 

“launched by” relation 

allocated stack space 

reused stack 

Figure 3.9: Reuse Pattern of Asteroidea Stacks.

Asteroidea stacks, named after the family of starfish for their ability to
split up and function independently, are a mechanism designed to allow the
partial reuse of stacks allocated for parent work items by their children.
They are based on the observation that, in almost all task-based recursively
parallel programs – which are usually the type of programs generating large
amounts of work items – a work item will first create some arbitrary number
of child work items, and subsequently wait for their completion by invoking
the join all operation (see Section 2.3.2). As the parent work item can only
continue its execution after all its children have completed, these children
are free to reuse any remaining stack space available on the parent stack.

To implement this behavior, any time a work item is started, Insieme-RS
checks whether it has a parent, and if so, whether this parent is currently
suspended in a join all operation. Finally, an additional flag governing the
availability of the parent work item’s stack is checked. If it can be atomically
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acquired, this stack is reused for the child work item. This process can be
repeated arbitrarily for further children of the child work item.

Figure 3.9 illustrates how stacks could be reused in a recursively task-
parallel program where the launched-by relation L forms a binary tree (e.g.
a basic task-recursive implementation of the Fibonacci algorithm). Note
that this is only one possibility, and the exact reuse pattern depends on the
number of workers executing the program as well as the scheduling policy
employed.

24 workers 4 workers

N S (MB) A (MB) S (MB) A (MB)
5 232 216 96 56
10 552 288 400 144
20 1680 296 1520 144
30 2800 296 2640 144
40 3920 296 3864 144

Table 3.3: Asteroidea Stack Impact on Memory Use.

Table 3.3 lists stack memory usage measurements for a program forming
a binary tree of work items such as the one illustrated in Figure 3.9. N
represents the height of the tree, the S columns contain the memory use (in
MB) without Asteroidea stacks, while they are active for the measurements
in the A columns. With Asteroidea stacks, the maximum memory usage is
a function of only the number of parallel workers used, while it grows with
N for the default case.





Chapter 4

Topology-aware
Multi-Process Scheduling

4.1 Introduction

Due to recent developments in hardware manufacturing, the number of cores
in shared memory systems is rising sharply. Nowadays it is not unusual to
find 32 or more cores in a single multi-socket multi-core system, possibly
with an even larger number of hardware threads. The topology of these sys-
tems is often complex, with hierarchies comprising multiple levels of cache
and heterogeneous access latencies in a non-uniform memory architecture
(NUMA). Future many-core architectures [70] are likely to further increase
the architectural complexity. While OpenMP [16] is one of the most widely
used languages for programming shared memory systems, particularly in
the field of High Performance Computing (HPC) [33], existing methods and
implementations are often not well suited for this evolving hardware land-
scape.

This chapter presents experiments demonstrating that many existing
OpenMP applications and implementations fail to scale fully on such shared-
memory, multiprocess systems (SMMPs). They also do not take into account
modern CPU power saving technologies increasingly employed in the name
of green computing, which usually work on a per-socket basis [38]. As one
possible way to overcome these difficulties and enhance throughput we pro-
pose the centralized process-level scheduling of multiple OpenMP workloads
(jobs), taking into account available topology information. In this context
we define throughput as the number of OpenMP jobs completed in a given
time period. Our approach is immediately applicable to existing applica-
tions without any changes required from the user or programmer, which is
a significant advantage considering the large number of OpenMP codes in
active HPC use.

The contributions which will be presented in this chapter are as follows:

75
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• A client/server architecture for centralized mapping of all OpenMP
parallel workloads in a system to the available hardware resources.

• An implementation of this architecture as part of the Insieme compiler
and runtime system [28].

• A topology-aware scheduling algorithm optimizing throughput and
power consumption of SMMPs processing OpenMP workloads.

• Evaluation and analysis of the actual performance of our architecture
and scheduling algorithm in terms of both execution time and power
consumption. We compare our results to the Insieme compiler without
multi-process management of parallel jobs as well as to results obtained
using GCC’s GOMP OpenMP library [60].

The remainder of this chapter is structured as follows: In the follow-
ing section, we present benchmarks and analysis serving to explicate the
problem and motivate our multi-process scheduling approach. Section 4.3
gathers some references to related work. Section 4.4 describes the architec-
ture as well as the implementation of our client/server OpenMP runtime
system and scheduling algorithm. The results of simulations and experi-
mental evaluation are gathered in Section 4.5. Finally Section 4.6 presents
a conclusion, and an outlook on potential future improvements.

4.2 Motivation

We start our discussion by assuming a n-core SMMP system and m OpenMP
programs (jobs) that should be executed on this system. Additional jobs can
be added at any time. This situation corresponds to a realistic scenario in
scientific computing and is the basic assumption for the experimental setting
adopted throughout this chapter. There are a number of natural options for
executing and scheduling multiple OpenMP jobs:

• Sequentially execute the jobs, and have each job allocate n threads
– the default specified by the OpenMP standard. Standard queuing
system in HPC clusters use this method.

• Start all m jobs in parallel and leave thread scheduling to the OS. As
we will show, this option can have a severe detrimental impact on the
resulting performance (see Section 4.5.3).

• Run less than m jobs in parallel, each of them using less than or equal
n threads. A standard OpenMP implementation enables this option,
which however requires some manual queuing. The thread scheduling
is still left to the OS.
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(a) Set of 8 jobs, large problem sizes.
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Figure 4.1: Multi-process scheduling: initial experiments.
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Figure 4.1 shows some initial benchmarking results. For a complete
description of the experimental setup and hardware used throughout this
chapter see Section 4.5.3. The three parallel execution strategies shown
relate to the options presented above as follows: No thread count adaptation
simply uses n threads per job ignoring the number of parallel jobs running in
the system; Conservative thread count adaptation uses min(n, bn/(0.5 ∗m)c)
threads; Full thread count adaptation uses n

m threads. With the first option,
many more threads are running on the system than hardware cores are
available, while for the third option the numbers are equal. The conservative
option presents a compromise between these two strategies.

In both Figure 4.1(a) and 4.1(b), simple serial execution (1 parallel job)
is clearly shown to be far from ideal. For the batch of 8 large jobs featured
in the first experiment, an improvement in total runtime of 37% compared
to serial can be achieved by exploiting job parallelism, while for the second
batch an impressive 5-fold increase in throughput was measured. This un-
derutilized performance potential is the motivation behind our approach of
introducing a novel, job-level OpenMP scheduling.

4.2.1 Scaling behavior of popular OpenMP codes

In order to explain the performance improvements of job-parallel OpenMP
execution demonstrated above we investigated the scalability of the OpenMP
codes contained in the NAS parallel benchmarks [9] (BT, LU, MG, CG, IS,
FT and EP) and two locally developed simple kernels (mmul and gauss, per-
forming dense matrix multiplication and Gaussian elimination respectively).
While our initial tests dealt with programs as monolithic units, we now de-
termine the scalability of each OpenMP parallel region separately, since the
differences between e.g. initialization code and actual computation or dif-
ferent phases of computation make a per-region analysis more informative
and effective.

Figure 4.2 shows the scaling behavior of each parallel region contained
in the test programs. Regions in the chart are identified by the program
name, program size and line number of the first statement inside the region.
As an example, bt.B:bt130 identifies the parallel region starting at line 130
of the BT benchmark in the NAS suite, when run using the predetermined
problem size B.

Note that, while this approach provides a relatively fine-grained view of
the performance characteristics of the parallel regions, it does not account
for the effects of external system load on region scalability. All test in this
chapter were performed on a system without any applications running which
are not managed by our infrastructure. Conversely, Chapter 5 presents an
approach that adaptively adjusts parallel execution to a variable external
system load.

In Figure 4.2, optimal scaling limit denotes the upper limit on the num-
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Figure 4.2: Per-region scaling of OpenMP codes. Regions identifiers are
shown along the x-axis.

ber of threads at which the speedup obtained lies within 20% of ideal (as
defined in Section 2.2.2). The maximal scaling limit is the number of threads
with the largest absolute speedup. Using the latter achieves the lowest exe-
cution time for a single job, while the former is more power efficient and less
wasteful if multiple jobs are to be run in parallel. Note that, for many par-
allel regions, the default OpenMP behaviour of choosing the same number
of threads across all program regions as there are hardware cores available
is greatly inefficient on our 32 core target system.

4.3 Related Work

Enhancing OpenMP to make better use of locality and increase scalability,
particularly on multicore architectures, is a topic that has been repeatedly
investigated over the past years [23, 59]. Recently, particular attention has
been paid to scheduling tasks (as introduced by OpenMP 3) [30]. How-
ever, these efforts focus on improving the scalability and performance of
single OpenMP programs. Conversely, our system overcomes individual
program’s scalability limitations by scheduling additional programs, opti-
mizing the whole system’s throughput. In the existing literature, locality is
often signaled by nested parallel regions, which are still not widely used in
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practice. Our system simply improves locality of subsequent threads of each
process, but does so for multiple processes at a time. A popular approach
to developing scalable software for large machines is hybrid OpenMP/MPI
programming [51]. Since this method produces multiple OpenMP processes,
it is complementary to our process-level scheduling approach.

The scheduling of multiple independent processes is generally considered
to be the duty of the operating system, not user-level software. However,
one of the primary goals of multiprocessor scheduling at the OS level is
fairness [54], while our OpenMP scheduling system is intended to optimize
throughput. Even beyond that, the defining difference between OS-level
scheduling and OpenMP process scheduling is that in the latter case the
number of threads used can be determined by the scheduler itself, while it
is fixed by user-level applications in the former. Also, when dealing only
with OpenMP programs, some more useful assumptions can be made, like
data locality being most important between subsequent threads (due to the
default loop distribution strategies defined in OpenMP).

4.4 Method

Our topology-aware OpenMP job scheduling system consists of three major
components:

• A component in the Insieme compiler which enables per-region pro-
filing (e.g. for OpenMP parallel regions) and unique region identifiers.
These can be implemented using meta-data on the work item descrip-
tions corresponding to each OpenMP parallel region, as described in
Section 3.4.3.

• Insieme-RS managing each client application. It is configured to
work like a standard OpenMP library for most operations, but com-
municates with a central server when opening and closing a parallel
region.

• The Insieme OpenMP server, a management process that keeps
track of available CPU cores and outstanding requests for threads, and
makes mapping and scheduling decisions based on system topology and
load.

Note that the work presented in this chapter was completed using an
early version if the Insieme runtime system. This required a separate server
and client infrastructure. In its current version, Insieme-RS is capable of
managing and executing work items from multiple programs within a single
process, further reducing communication overheads.
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4.4.1 Process Communication

Process communication is required to implement the centralized manage-
ment of system resources across Insieme-RS processes. In practice this
means that multiple Insieme-RS client applications – upon encountering
a work item invocation corresponding to the start of a parallel region – re-
quest hardware resources from the management process (server), including
information about the expected scalability of the related region. The server
then decides which and how many cores to dedicate to the requesting process
and sends a reply indicating them.

In our system this communication is achieved by means of UNIX System
V message queues [75]. The message queue mechanism was chosen because
of its good semantic fit with the desired functionality and relatively low
overhead of less than 6 microseconds for each paired send/receive operation
on our hardware.

...
]

Figure 4.3: Process communication.

Figure 4.3 illustrates the typical communication operations associated
with each parallel region in the source program. PID stands for the unique
process id of the user program, optcount and maxcount refer to the scaling
descriptors introduced in Section 4.2.1 and gray arrows represent communi-
cation over a message queue.

When a new parallel region is encountered (equivalent to the spawning
of a work item), its unique identifier (generated at compile time and stored
as meta-data with the work item description corresponding to the parallel
region) is looked up in the table of available profiling information by the
runtime system. The retrieved data is included in a request dispatched to
the central server process, which additionally includes the process ID of the
user program making the request. Upon receiving this request, the server
makes its mapping and scheduling decisions (see next section for details).
Unless the system is fully loaded (in which case the request is postponed) a
reply is sent immediately, containing the number of threads/cores assigned
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(N) as well as a list of core ids to be used. The runtime system on the client
side then sets up the requested number of workers, and binds each of them
to a specific core as specified by the list sent by the server. After dispatching
the reply, the server flags the cores it indicated as in use in its internal data
structures.

4.4.2 Topology-aware Scheduling

In multi-socket multi-core NUMA systems, there are multiple levels of mem-
ory hierarchy to be aware of, with significant differences in terms of access
latency and bandwidth. An example of such a hierarchy, ordered from fastest
to slowest: L1 cache, L2 cache, shared L3 cache, node local RAM, RAM one
hop distant, RAM n hops distant. We call a scheduling process topology-
aware if it seeks to minimize memory accesses to slow, distant memories by
explicitly making use of information on the structure of a system.

One critical difference between scheduling as it is generally encountered
in e.g. OS-level schedulers and our OpenMP job scheduling is that, due to
the flexibility of most OpenMP programs, we can freely decide not just which
threads to run when and on which hardware, but also the number of threads
to use for specific regions of a program. This decision should be based on
knowledge about the scalability of the regions in question (currently gained
through profiling) as well as the current and expected future load of the
system.

For the implementation of our system we use information gained from
libnuma [48] and the Linux /proc/cpuinfo mechanism to construct a dis-
tance matrix with one distance value for each pair of cores. From here on,
we refer to the the entry at position i, j in this matrix as dist(i, j). These
numbers correspond to the total latency of all the connections in a path
(eH0 , e

H
1 , . . . , e

H
n ) between two CPUs i = eH0 and j = eHn in a NUMA system

according to the hardware model introduced in Section 2.1:

dist(i, j) =

n−1∑
k=0

l(eHk , e
H
k+1)

In practice, it is often not possible to determine these values exactly, how-
ever, as long as the relative orders of magnitude between them are correct
they are useful for topology-aware scheduling. In Section 4.5.1 we demon-
strate that, on our evaluation system, the distance estimates obtained using
[48] and the Linux /proc/cpuinfo mechanism are strongly correlated with
real latency measurements taken by a microbenchmark.

Figure 4.4(a) provides an example topology of a relatively small system,
and Table 4.4(b) shows the corresponding distance matrix. Note that the
factor of distance amplification for each higher level of hierarchy can be
chosen arbitrarily, but should always be larger than the maximum distance
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possible on the previous level. For clarity we have chosen a value of 10 in
the example.

SMMP system

(a)

0 1 2 3 4 5 6 7 8 9 A B

0 0 0 1 1 10 10 10 10 20 20 20 20
1 0 0 1 1 10 10 10 10 20 20 20 20
2 1 1 0 0 10 10 10 10 20 20 20 20
3 1 1 0 0 10 10 10 10 20 20 20 20
4 10 10 10 10 0 0 1 1 10 10 10 10
5 10 10 10 10 0 0 1 1 10 10 10 10
6 10 10 10 10 1 1 0 0 10 10 10 10
7 10 10 10 10 1 1 0 0 10 10 10 10
8 20 20 20 20 10 10 10 10 0 0 1 1
9 20 20 20 20 10 10 10 10 0 0 1 1
A 20 20 20 20 10 10 10 10 1 1 0 0
B 20 20 20 20 10 10 10 10 1 1 0 0

(b)

Figure 4.4: Topological core distance example.

Cores are selected based on a greedy algorithm that locally minimizes
the distance from the previously selected core to the next one. This is
performed rapidly via lookups in statically cached lists of close cores. While
not always resulting in a globally optimal core selection, the low overhead
and importance of local distances for many algorithms (see Section 4.5.2)
make this method well suited for our purpose.

Our OpenMP job server supports some flags to adjust the core selection
and mapping process, which will be described next. Fragmentation in this
context means that, over time, threads belonging to many different OpenMP
processes will be assigned to cores belonging to a single topological unit
(e.g. ones sharing a level in the memory hierarchy), due to earlier scheduling
decisions. This has negative effects on locality and the effectiveness of shared
caches.

Locality Turns on and off the use of topology information to improve local-
ity. Useful to check the base assumption that higher locality improves
performance.

Clustering Reduces fragmentation over longer running periods by pref-
erentially maintaining clusters of close resources as free or occupied.
This approach can also reduce power consumption on systems with
per-node power management (see Section 4.5.3). However, it induces
small overhead costs in processing time and server memory require-
ments.

Enhanced Clustering In conjunction with clustering, allows the server
to further reduce fragmentation by slightly decreasing the number of
cores provided to a process in cases where a new, previously unused set
of cores would become fragmented when using an unmodified selection.
Abbreviated as [ehc] in the algorithmic description.
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Strict Thread Counts If enabled, the Insieme OpenMP server may post-
pone requests when highly loaded instead of starting them with a
smaller number of threads than ideal. Beneficial when there is a mix-
ture of jobs with varying scalability.

The impact of these options is examined in Section 4.5. Note that mini-
mizing distance by means of clustered scheduling is not always ideal on a
NUMA system which is not fully loaded, since memory bandwidth intensive
applications may benefit from threads being spread out across nodes. How-
ever, our algorithm is optimized for the case of the full system being utilized
by numerous threads from multiple processes.

Algorithm 4.1
Topology-aware multi-process scheduling core selection algorithm.

CA number of cores available
RT target number of cores
C,PC core identifiers
LC list of core identifiers
optcount, maxcount request parameters (Sec. 4.4.1)
[strict], [local], [clustering], . . . scheduling flags (Sec. 4.4.2)
loadfactor, threshold ∈ [0, 1] depending on system state

RT = optcount + loadfactor ∗ (maxcount− optcount)
if CA < 0 or ([strict] and CA < optcount) then

put current request on FIFO queue
return {}

end if
while RT > 0 do

C = Free core
if [local] then

Choose C from close core list of PC
if [clustering] and C from new set then

Prefer C from (in order):
↪→ Occupied core set containing exactly RT free cores
↪→ Occupied core set containing > RT free cores
↪→ Any free core set

end if
if [ehc] and dist(PC,C) > threshold ∗ |size(LC)−RT | then

return LC
end if
LC = LC ∩ {C}
PC = C
RT = RT − 1

end if
end while
return LC

Algorithm 4.1 provides a definition of the decision procedure performed
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by the server when receiving a new request for threads from a client process.
The close core list is a list precomputed for each core that contains the core
identifiers of all other CPU cores in the system, listed in order of topological
distance. For clustering, a core set is a set of cores which share some level of
memory hierarchy. Consequently there can be multiple levels of core sets, in
which case the algorithm tries to find suitable cores starting from the lowest
level of hierarchy. In the example shown in Figure 4.1 there are 2 levels of
core sets, the first sharing cache (e.g. cores 0 and 1) and the second sharing
memory segments (e.g. cores 0 to 3).

When a client sends a message signaling the end of a parallel region, the
cores are marked as free and, if outstanding requests are in the FIFO queue,
they are processed as described above.

4.5 Evaluation

In this section our topology-aware multi-process scheduling algorithm is eval-
uated, firstly by performing simulations and calculating some theoretical
metrics and secondly by performing experiments and measuring runtimes
and power usage. All experiments were performed on Sun X4600 M2 servers
with AMD Opteron 8356 processors. This is an 8 socket architecture, with
4 cores each containing private L1 and L2 caches and sharing 2 MB of L3
cache. The sockets have a distance of one to three hops each [77]. Figure 4.5
depicts this architecture in the model introduces in Section 2.1.
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Figure 4.5: Evaluation system hardware architecture.

The systems run CentOS version 5 (kernel 2.6.18) 64 bits. To compile
the reference version of the example programs, GCC version 4.3.3 was used
with the -O3 option to reflect a production environment. As for our own
software, SVN revision 277 of the Insieme source-to-source compiler and
runtime system was employed, using the same GCC version and options as
above to perform back-end compilation.
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To ensure statistical significance each experiment was repeated 10 times,
and the median result is reported. In charts vertical error bars are used to
show the standard deviation of a set of experiments.

4.5.1 Topological Distance Matrix Verification

In order to verify our libnuma-based method for deriving a distance metric
(described in Section 4.4) on our evaluation hardware, we have measured the
latency of memory accesses between each pair of CPUs in the system. This
is accomplished by creating a specifically formed array, which is designed to
be iterated on using a series of indirect memory accesses. Each entry in the
array is set such that the next address will be in a different cache line from
the current one, as depicted in Figure 4.6 for a small example.

1 5 6 7 8 9 1110 1312 1514 20 43

Figure 4.6: Memory latency indirection array (cache line size 4).

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 579 664 626 897 739 735 801 944 0 10 12 12 14 14 14 14 16

1 665 572 897 641 727 718 690 780 1 12 10 14 12 14 14 12 14

2 673 747 498 735 618 618 780 780 2 12 14 10 14 12 12 14 14

3 780 664 727 498 611 605 780 769 3 14 12 14 10 12 12 14 14

4 780 763 611 619 498 732 690 780 4 14 14 12 12 10 14 12 14

5 780 753 619 611 718 489 748 664 5 14 14 12 12 14 10 14 12

6 780 671 727 747 641 897 579 664 6 14 12 14 14 12 14 10 12

7 944 780 739 734 897 626 672 572 7 16 14 14 14 14 12 12 10

Figure 4.7: Distance matrices. Left: measured / Right: estimated

Figure 4.7 shows the distance matrices obtained on our evaluation sys-
tem using this measurement method, as well as the distance provided by
libnuma. The real values are depicted on the left, in nanoseconds. A value
of 664 in line 0, column 1 means that it took 664 nanoseconds to perform
an uncached memory access from a core belonging to cpu 0 to a memory
location in memory segment 1.

These measured values correspond well to the theoretical values reported
by libnuma, which are shown to the right. Crucially, for all CPUs, forming a
close core list for Algorithm 4.1 based on the real, measured timings will be
equally as valid as ordering them according to the theoretical results. Both
matrices also conform to the expectations set by the system architecture
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illustrated in Figure 4.5 – the access latency and distance is a function of
the number of hops between CPUs and their memory segments.

One curious, but perfectly repeatable, aspect of the measured data is the
fact that access latencies are not completely bijective. For example, access-
ing memory in segment 3 from core 0 takes slightly longer than accessing
memory in segment 0 from core 3. These results are believed to be related to
the specific cache consistency implementation used in this particular hard-
ware platform, and they do not significantly alter the relative order in each
close core list.

4.5.2 Simulation

To evaluate the impact of the scheduling options presented in Section 4.4.2
we performed a simulation of client requests and calculated the following
metrics:

Overhead The average amount of time required to make a scheduling de-
cision, in microseconds.

Target miss rate The difference between the desired number of threads
(RT) and the number actually provided (N).

Three distance metrics LC = {c1, ..., cN} denoting the set of cores pro-
vided:

• Total distance:
∑N

i=1

∑N
j=1 dist(ci, cj)

• Weighted distance:
∑N

i=1

∑N
j=1

dist(ci,cj)
|i−j|+1

• Local distance:
∑N−1

i=1 dist(ci, ci+1)

Which distance metric has the best predictive qualities depends on the access
patterns the code exhibits. Weighted and local distance are more significant
than total distance for many real-world OpenMP kernels which rely on the
default distribution of loop iterations, resulting in data access locality being
higher in subsequent (according to OpenMP numbering) threads.

Distance
µs MR Total Weight Local

none 1.26 2.94 8003 2098 893
locality 1.28 2.94 6765 1537 485

clustering 1.3 2.94 6054 1289 340
clustering2 1.29 3.09 5760 1173 275
c2 + strict 1.3 2.07 7159 1340 327

Table 4.1: Multi-process scheduling metrics computed in simulation.
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Figure 4.8: Relative multi-process scheduling performance metrics for dif-
ferent settings, computed in simulation.

In our simulation we evaluated the results of 1000 requests to the Insieme
OpenMP server, with four different configurations corresponding to different
settings of the flags introduced in Section 4.4.2: none disables all flags;
locality enables the use of locality; clustering enables locality and clustering;
clustering2 enables locality, clustering and enhanced clustering; c2 + strict
enables all flags. The simulation uses the same system topology as the
experimental setup described in Section 4.5.3, randomly simulating jobs
with sizes normally distributed and ranging from 1 to 32 threads.

Table 4.1 shows the raw values while Figure 4.8 illustrates the relative
impact of the different scheduling options by normalizing the values. The
columns contain, in order from left to right: the amount of time, in mi-
croseconds, required for the scheduling decision; the target miss rate; and
the three distance metrics described above.

The impact on response time and target miss rate of the locality and
clustering options is negligible, but they can reduce the weighted distance
of the returned set of cores by around 40% and the local distance by up to
64%. Enabling the strict thread counts option significantly reduces the miss
rate, but at the cost of reduced locality. In the next section the practical
impact of these options will be evaluated.

4.5.3 Experiments

Figure 4.9 shows the results of a small-scale experiment performed to com-
pare the total execution time of a fixed set of benchmarks using the following
options:
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Figure 4.9: Multi-process scheduling – small-scale experiment.

GOMP, sequential : traditional sequential execution using the GCC com-
piler and GOMP OpenMP library.

GOMP/OS, optimal thread count : execution using operating system
scheduling, the GCC compiler and GOMP OpenMP library and hard-
coding the optimal number of threads for each benchmark (determined
using an exhaustive search).

our server, no locality : Uses our multi-process scheduling system pre-
sented in this chapter, but without any topology information.

our server, locality : Our system with hardware topology information.

our server, locality + enhanced clustering : Our system with hard-
ware topology information, with the enhanced clustering option pre-
sented in Section 4.4.2 enabled.

The specific set of programs used in this experiment was the follow-
ing (randomly selected from the set of test applications introduced in Sec-
tion 4.2.1): mg.C, gauss.large, is.A, matrixmult.medium, cg.A, gauss.small,
bt.B, mg.A, ep.B, ft.A, is.A, lu.A, matrixmult.small.

The theoretical advantages of locality-based scheduling and clustering
shown previously are confirmed by an improvement of 28% by exploiting
the former and 39% by additionally enhancing the latter, compared to using
our system without making use of topology information. The improvement
compared to traditional sequential execution is 40%, and 19% remain when
comparing standard OS parallel scheduling of the processes and statically
forcing optimal thread counts. In other words, in this experiment, a reduc-
tion in total execution time of around 21% can be achieved by improving
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the exploitation of hardware parallelism by selectively using multiple par-
allel processes. On top of this improvement, an additional gain of 19% is
possible by enhancing the locality of CPU sets executing parallel regions via
topology-aware scheduling.

Large-scale Experiments and Power Consumption

As a second step of evaluation we performed a large scale experiment. Over
5 hours, a new OpenMP process was randomly selected and started every
10 to 60 seconds. The programs were again chosen from the set introduced
in Section 4.2.1. The random number generator seeds for program and
interval selection were kept constant throughout the experiment to guarantee
repeatability and comparability.

During the runtime of the experiments, we continuously measured and
logged the system power consumption using the Sun ILOM service [77],
which allows for a resolution of several measurements per second.

Table 4.2: Multi-process scheduling – performance results of 5 hour experi-
ment.

Scheduling type Total Time (s) % of sequential

Sequential 28356 100.00 %
OS parallel, no limit 121855 429.73 %
OS parallel, limit 8 82417 290.65 %
OS parallel, limit 2 23591 83.20 %
server, OS 21527 75.00 %
server, no locality 27959 98.60 %
server, locality 21240 74.91 %
server, clustering 18941 66.80 %

Table 4.2 lists the total runtime required to finish execution of all the
programs launched during the 5 hour testing period, for various scheduling
methods. Sequential refers to standard sequential execution, OS parallel
executes a number (up to some limit) of processes in parallel without any
explicit scheduling and Server uses our system. Server, OS only assigns
the amount of threads to use, but leaves their placement up to the OS. The
other options enable the corresponding flags described in Section 4.5.2.

Fully parallel execution using standard OS scheduling leads to a very
large number of active threads and a performance collapse due to context
switching overhead. While this method can achieve good results in the
small-scale experiments shown in Section 4.2 care must be taken to select a
suitable limit for production use. In this experiment, a limit of two parallel
processes leads to an improvement of 17% compared to sequential execution.

Our client/server mapping system performs well, and is capable of greatly
improving throughput compared to traditional sequential execution or non-
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managed parallel processes. With locality information and clustering the
best result is achieved, a 33% improvement compared to sequential execu-
tion.
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Figure 4.10: Power consumption over time during large-scale process
scheduling experiment.

However, there is another important advantage to offered by clustered
thread scheduling and affinity mapping. By reducing inter-node communi-
cation and preferentially keeping entire nodes and related core sets empty
this technique allows hardware power saving technologies to function more
effectively. On our target system, and most servers currently in use, power
saving technologies like frequency scaling only work on a per-node basis and
not on the individual cores of a node. Clustered, locality-aware scheduling
preferentially keeps entire nodes free of work, allowing them to enter an
appropriate low-power state.

Figure 4.10 shows the measured power consumption, over the time pe-
riod of the experiment, of standard OS scheduling and clustered scheduling
using our server. The average power consumption of the former is 1014
Watts, which the latter reduces by 12% to 904 Watts. Note that around
8 measurements per second are taken, and that the black lines represent a
central moving average over 25 data points.

4.6 Summary

The process-level scheduling and mapping solution presented in this chapter
uses system topology information to improve thread locality for multiple
OpenMP programs executing in parallel. Additionally, a suitable number of
threads is automatically selected for each OpenMP parallel region depending
on scalability estimates and current system load. The implementation is
based on the Insieme source-to-source compiler, a separate server process
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that manages hardware resources and the Insieme runtime system. Insieme-
RS was adjusted to communicate with the server, managing the affinity of its
workers as instructed to allow for cooperation between multiple processes.

The evaluation of various distance metrics in simulation indicates that
the presented method succeeds in improving locality, and both small- and
large-scale benchmarks show consistent improvements in processing through-
put. Additionally, with clustering of related computations on various levels
of the memory hierarchy, a marked decrease in average power consumption
can be observed.

One drawback of our method is the need for reliable per-region scal-
ing data. This necessitates either developer-supplied information or instru-
mented benchmarking runs. However, using the Insieme infrastructure this
process can be largely automated.



Chapter 5

Automatic Loop Scheduling

5.1 Introduction

OpenMP [16] is one of the most widely used languages for programming
shared memory systems, particularly in the field of High Performance Com-
puting (HPC). Despite the introduction of task-based parallelism in recent
versions of the standard [30], loop parallelism remains a very important
part of most OpenMP programs. Thus, the question of how to map parallel
loop iterations to threads and cores has been continually investigated since
the standards’ inception. In Section 5.3 we provide an overview of some of
this existing work, and describe how our approach improves upon previous
methods.

Like the entire Insieme-RS project, our loop scheduling system is built on
the idea of close integration between a state-of-the-art compiler providing in-
depth analysis and a custom runtime library that continuously monitors the
overall system state while minimizing overhead. Such integration is realized
by having the compiler generate a data structure for each parallel loop in the
original program which captures analysis-derived meta-information about
the loop body in addition to the actual executable code. This approach is
immediately applicable to existing programs without any code-level changes,
a significant advantage considering the large number of OpenMP codes in
active HPC use.

We have implemented this system and evaluated its performance. Our
contributions for automatic loop scheduling are as follows:

• A method using polyhedral model [14] based utilities to obtain effective
estimates of OpenMP loop performance over all potential iteration
ranges.

• A runtime loop scheduling algorithm that uses these estimators as well
as current system state information to make loop scheduling decisions.

93
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• An encoding of meta-information statically collected by the compiler
into executable code usable during the runtime of a program.

• An implementation of this architecture in the Insieme compiler and
runtime system [28].

• Evaluation and analysis of the measured performance of our scheduling
algorithm in terms of program execution time. We compare our results
to results obtained by the version of GOMP [60] included with GCC
4.5.3, using both its default scheduling policy and the best policy for
each program determined by exhaustive search.

The remainder of this chapter is structured as follows: The next section
will provide some experimental results that motivate our approach. Section
5.3 gathers some references to related work. In Section 5.4 we describe the
architecture and implementation of our automatic loop scheduling method,
including the compiler analysis, the runtime scheduling system and their
interaction. The results of experimental evaluation are presented in Section
5.5. Finally Section 5.6 presents a summary, and an outlook on potential
future improvements.

5.2 Motivation

In this section we present some initial experiments using simple OpenMP
kernels in a variety of settings. These results motivated our design of a uni-
fied compiler/runtime approach to loop scheduling. They also demonstrate
the importance of load awareness. For a complete description of the experi-
mental setup and hardware used throughout this chapter see Section 5.5. In
all our figures the relative execution time normalized to the best performing
configuration is shown.

We will investigate three separate factors – program characteristics,
problem size and the degree of external load in the system – and demonstrate
that all of these significantly influence the ideal choice of loop scheduling
policy.

5.2.1 Impact of Program Characteristics

Figure 5.1 illustrates results for two kernels, dense matrix multiplication
with full and triangular matrices, using a variety of standard OpenMP loop
scheduling policies. Execution times in this chart, as well as all further
figures in this section will be depicted relative to the best scheduling policy
for the given program.

Clearly, the ideal loop schedule depends on the characteristics of the
program. The dense matrix multiplication requires an equal amount of work
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(a) Dense matrix multiplication
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(b) Triangular matrix multiplication

Figure 5.1: Initial experiments, impact of program characteristics.

within each iteration of the parallel loop while for the triangular matrix, the
effort per iteration depends on the iterator value.

We say that the dense matrix multiplication has a flat work profile while
the work profile for the triangular matrix is slanted. The former works well
with fully static scheduling, because each equally sized chunk will perform
an equal amount of work. In the latter case, a round-robin loop scheduling
policy such as “static,2” is more effective, as it distributes both large and
small chunks of work equally over all cores. Note that both of these programs
are regular in the sense that their work profile does not depend on input
data, thus static policies are most effective.
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(a) Small problem size (N=160)
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(b) Large problem size (N=1600)

Figure 5.2: Initial experiments, impact of problem size.

5.2.2 Impact of Problem Size

In the next experiment we investigated the impact of variations in the size of
the problem / data set a program operates on on the ideal loop schedule. In
Figure 5.2, the performance of the triangular matrix multiplication sample
with two different problem sizes is compared. We see that with a small
problem size, the negative performance impact of scheduling policies with a
runtime component (dynamic, guided) increases, most likely due to thread
scheduling overhead. Also, the increase in workload per chunk mitigates the
slightly worsened load balance for a static chunk size of 8, leading to this
configuration showing the best result.

With a larger problem size, the relative overhead of runtime scheduling
is much smaller, tough still measurable. The round-robin static scheduling
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policy “static,1” features acceptable load balance with relatively low over-
head, making it the best performing configuration.

5.2.3 Impact of External Load
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(a) Low load (desktop) scenario

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

 
Re

la
tiv

e 
Ex

ec
ut

io
n 

Ti
m

e

(b) High load (workstation) scenario

Figure 5.3: Initial experiments, impact of external load.

Finally, we look at a scenario that has often been neglected in loop
scheduling research: the impact of external system load on the execution of
a program. While this is an unusual situation in traditional HPC, where
a cluster of servers is reserved for exclusive use by one program, it is the
default on desktops, workstations and some large shared memory servers.
With on-chip parallelism steadily increasing – even on embedded systems –
and OpenMP being employed in end-user applications and games [49], we
believe that an automatic loop scheduler needs to take this scenario into
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account.

Figure 5.3 shows the same program configurations as Figure 5.1(b) in
two distinct load scenarios (for information on how the load simulation is
performed, see Section 5.5). With increasing system load, more fine-grained
runtime scheduling policies gain a significant advantage of up to 46%, com-
pared to the default policy. These figures contain error bars since there
was a slightly larger variance in the measurements – particularly for static
scheduling – as a result of operating system scheduling behaviour.

To summarize, these initial findings guided the design of our loop schedul-
ing in the following ways:

• As per the first set of figures, the automatic loop scheduler clearly
needs to be aware of the program structure. This is accomplished via
compiler analysis.

• However, as the second set of examples shows, just having static in-
formation is insufficient. The problem size is usually only known at
runtime, which requires the integration of static compiler analysis with
a runtime system.

• Finally, when exclusive use cannot be assumed, being aware of external
system load is of utmost importance when selecting a scheduling policy.
Thus, the runtime needs to consider the system state.

5.3 Related Work

Enhancing OpenMP loop scheduling is a topic that has been repeatedly
investigated over the years. However, most research has focused on pure
runtime solutions to the problem [86][6][91]. Conversely, our approach in-
tegrates an intelligent scheduling algorithm performed during runtime with
meta-information provided by compiler analysis. Additionally, our runtime
system takes into account external load, which is usually not considered in
loop scheduling.

Recent work on compiler-based OpenMP loop scheduling by Wang et
al. [88] uses machine learning to estimate the best loop scheduling policy at
compile time. Since this is a pure compiler approach, it cannot deal with
changing runtime conditions. Also, unlike the single-pass, symbolic analysis
of our approach, it requires an extensive training phase.

The polyhedral model has been used in a few recent work related to
OpenMP: some systems use OpenMP in conjunction with the polyhedral
model to generate parallel code [17][10]. Others investigate its use in tool
support by using information provided by polyhedral analysis of OpenMP
programs to improve programmer error detection [12]. None of these works
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aim on improving loop scheduling by forwarding static analysis results to a
runtime system.

5.4 Method

Our loop scheduling system consists of the following components:

• An advanced analysis component in the Insieme source-to-source com-
piler which generates a symbolic effort estimation function for each
parallel loop in the target program, or a less accurate per-iteration
effort value as a fallback.

• An extension to the Insieme-RS backend of the compiler which allows
forwarding of this meta-information from the compiler to the Insieme
runtime system.

• A monitoring component within Insieme-RS that measures the current
external system load.

• An extension to the loop scheduling component of the Insieme runtime
library, implementing a loop scheduling algorithm based on the meta-
information provided by the compiler, the exact iteration range of the
current loop and the external load.
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Figure 5.4: An Overview of the Architecture of our System

Figure 5.4 illustrates how these components interact on a high level. In
the following subsections each component will be discussed in detail.
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5.4.1 Compiler Analysis

The main goal of our compiler analysis is to obtain, for each parallel loop, an
effort estimation function feffort ∈ N2 → N. Given lower and upper iteration
bounds a and b, the evaluation of feffort(a, b) provides an estimate for the
computational cost of the corresponding subrange of the covered loop.

This effort estimation function is derived in several steps, starting from
the parallel loop body B:

1. Enclose B in a for loop iterating over the symbolic range [a, b).

2. Extract a polyhedral representation of this parameterized loop.

3. Set the effort estimation function feffort(a, b) := 0

4. For each statement stmt ∈ B:

(a) Use the barvinok [87] library to obtain a piecewise affine function
for the statement’s cardinality fcard(a, b)

(b) Weight this function with the effort estimation eff(stmt) for the
statement, computing fstmt(a, b) := fcard(a, b) ∗ eff(stmt)

(c) Add the statement effort to the total effort function
feffort(a, b) := feffort(a, b) + fstmt(a, b)

5. Algebraically simplify feffort(a, b) using CUDD [73]

In step 2, the internal representation (in INSPIRE) of the loop B is
analyzed and a polyhedral representation is extracted. In-depth discussion
of the polyhedral model and its application in compilers goes beyond the
scope of this thesis – a thorough introduction is provided by Bastoul [11].
For our purpose, it suffices to mention that the polyhedral model can be
applied to Static Control Parts (SCoPs). SCoPs are program regions that
fulfill the following conditions:

1. All control structures are for loops or if statements with affine bound-
aries and conditions.

2. Arrays are the only complex data structures, and are accessed with
affine subscript expressions.

3. Subscripts, bounds and condition expressions depend only on loop
iterators and symbolic constants.

The polyhedral model assigns to each statement an n-dimensional poly-
tope describing exactly how often it is executed within the modeled loop
nest. Using this representation, a piecewise affine function expressing the
number of executions of each statement can be calculated by computing
its cardinality (4a). Note that the creation of a polyhedral representation
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of INSPIRE code was implemented by Simone Pelligrini, and that Herbert
Jordan implemented the handling of symbolic algebraic functions in the In-
sieme compiler. Both of them are co-authors of the paper [82] in which this
loop scheduling approach was initially published.

In step 4b we arrive at an effort estimation function for each such state-
ment by weighting its cardinality function with an estimate for the cost of
executing it once. The weighting factor eff(stmt) takes into account the
expected number of CPU instructions and memory accesses required for the
given statement. This estimation is rather simplistic in our current imple-
mentation: we count the number of memory accesses and floating point
operations required to perform the statement in our internal representation,
without taking into account any transformations performed by the back-end
compiler. However, as only the relative effort of statements throughout the
iteration space of each loop (that is, how much effort it is to execute a given
sub-range of the iteration space compared to another sub-range of the same
loop) is relevant for our loop scheduling system, this simple estimation is
sufficient.

Special considerations apply when performing the SCoP analysis for
our use case. Generally, the polyhedral model is used to transform code
fragments (see Section 5.3), while we only use it to estimate effort. In the
former case, the analysis needs to accurately cover all effects of the code
to maintain the program semantics. For estimation, failing to fully analyze
some statement means that the estimation function might be less accurate,
potentially weakening the performance of the scheduling algorithm, but the
program semantics are preserved. In practice, this allows us to extend the
applicable range of our analysis by ignoring the side effects of external func-
tion calls, as long as we can provide an effort estimate for them (e.g. printf).
We further extended the interprocedural applicability of our estimation by
applying implicit inlining which is only done to calculate performance esti-
mates, without affecting the generated code.

In the case where a loop can still not be covered by the polyhedral model
despite these extensions, as is the case when control flow depends on input
data, we make simplifying assumptions for loop boundaries and conditionals
to generate a single scalar effort estimation representing one iteration of the
parallel loop. Loops are assumed to have a 100 iterations, and conditions are
assumed to be taken exactly half of the time they are encountered. Section
5.5.2 provides some experimental data on how commonly this fallback needs
to be employed in real programs. Note that even this form of analysis failure
provides useful information for the loop scheduler: if no static model can
be established, it is more likely that the affected loop executes an input-
dependent workload, and should thus be scheduled dynamically.
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5.4.2 Compiler Backend

The Insieme compiler produces C code, which is in turn translated into a bi-
nary by a secondary compiler – typically GCC. As detailed in Section 3.4.3,
the Insieme-RS compiler backend enumerates all the parallel loops included
in the program, and, for each of them, generates a work item structure. To
pass loop-related meta-information from the compiler to the runtime system,
this structure is modified to include a (optional) function pointer of type
uint64 effort estimator(int64 lower, int64 upper) and a scalar fall-
back value uint64 iteration effort. For each loop where our analysis
was successful, the function pointer is set to a compiler generated C imple-
mentation of the deduced effort estimation function, otherwise it is set to
NULL and the loop scheduling algorithm will use the fallback value.

5.4.3 Runtime Monitoring

The resource monitoring component of the runtime needs to measure the cur-
rent external load, that is, CPU load generated by processes other than the
managed parallel program. This is obtained by using the Linux proc filesys-
tem. Specifically, the current processes’ CPU usage values from /proc/

self/stat are compared with the system-wide values obtained from /proc/

stat, and a value between 0.0 and 1.0 representing the total external load
across all cores is computed.

To minimize the overhead of this method and to increase measurement
reliability, this value is cached and updated at most ten times per second.
Increasing the update frequency did not improve scheduling performance in
our experiments, and the overhead for performing the measurement at most
ten times per second was proven to be negligible in our experiments (with
a performance impact of less than 0.5%).

5.4.4 Loop Scheduling Algorithm

All information gathered by the components outlined above is used by the
Insieme-RS loop scheduler to make a scheduling decision for each individ-
ual execution of every parallel loop. The decision procedure is outlined in
Algorithm 5.1 and consists of four major steps:

1. Immediately schedule tiny loops if the estimated effort is small (lines
1-8)

2. Check the external load and use an adaptive dynamic schedule if it is
greater than a threshold value (9-12)

3. If an effort estimator is available, use the calculated perfectly balanced
distribution (13-15)
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Algorithm 5.1 Automatic loop scheduling algorithm.

lower, upper lower and upper bound of iteration range
members number of members in the current communication group
estimator effort estimation function for current loop
iter effort scalar per-iteration effort estimate for current loop
load current external system load
MINEFF minimum effort for consideration (constant per-system)
MINLOAD minimum load for consideration (constant per-system)

1: if estimator available then
2: estimate = estimator(lower, upper)
3: else
4: estimate = (upper− lower) ∗ iter effort

5: end if
6: if estimate < MINEFF then
7: return immediate
8: end if
9: if load > MINLOAD then

10: chunk = max((MINEFF/iter effort) ∗ (1− load), 1)
11: return dynamic(chunk)
12: end if
13: if estimator available then
14: shares = compute shares(lower, upper, members, estimator)
15: return balanced(shares)
16: else
17: chunk = max(MINEFF/iter effort, 1)
18: return dynamic(chunk)
19: end if

4. Otherwise, assume irregular load and schedule dynamically (16-19)

The result of the algorithm determines the loop scheduling behaviour
for the current loop execution instance. Three modes are available (see
Section 3.3.3 for more information on and formal definitions of these modes):

immediate no parameters. Immediately executes the whole loop on the
first work item to encounter it.

dynamic one parameter, the chunk size. Works like the standard OpenMP
policy with the same name, dynamically distributing chunks of the
loop range to requesting threads.

balanced requires an array of floating point values determining the relative
size (in a fraction of the total number of iterations) of the shares
for each member of the communication group. For example, [0.25,
0.25, 0.25, 0.25] would implement an equal distribution amongst four
participants, while [0.6, 0.3, 0.06, 0.04] assigns progressively smaller
chunks to subsequent members in the group.
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The algorithm makes use of the compute shares(lower, upper, members,
estimator) function. It generates a balanced distribution that tries to as-
sign approximately the same amount of work to each member of the current
communication group. It first estimates the total effort for the given range
[lower, upper], divides it by the number of work group members, and then
uses a binary search to find a suitable chunk for each thread using the es-
timation function. Though this is usually a very quick process since the
estimation function only takes a few cycles to run, the result is cached and
reused if the same loop is executed for the same range again (memoization).
This is a very common occurrence in HPC codes, and using memoization
minimizes overhead in this case.

The parameters MINEFF and MINLOAD need to be set once per system. We
have not yet developed a rigorous method for deducing these automatically.
Nevertheless, experience indicates that systems are relatively insensitive re-
garding the precise values of these parameters, making them easy to tune
manually.

5.5 Evaluation

In this section our system and algorithm are evaluated, starting with small
kernels designed to allow easy analysis of the behaviour of the algorithm,
followed by tests in a real-world setting. All experiments were performed
on a SuperMicro 7046GT-TRF server with two Intel Xeon 5650 processors,
containing 6 cores (12 hardware threads) each. The system runs CentOS
version 5 (kernel 2.6.18) 64 bits. To compile the reference version of the
example programs and as a secondary compiler for the code produced by
Insieme, GCC version 4.5.3 was used with the -O3 flag set to reflect a pro-
duction environment. When we refer to a “default” scheduling policy, we
specifically mean the default implementation of the version of GOMP [60]
included with this version of GCC.

To ensure statistical significance each experiment was repeated five times,
and the median result is reported. In cases where significant statistical vari-
ance occurred vertical error bars are used to show the standard deviation.
We depict three values per configuration (combination of program and sys-
tem load state): the default OpenMP behaviour, the best result obtained
using OpenMP policies for each configuration, and the result obtained by
our method. The “best” OpenMP policy is found by exhaustive search
across the following settings: [(no change), auto, static, dynamic, guided].
The latter three are tested with the chunk sizes 1, 2, 8 and 32. All values
are normalized to the execution time of the best performing version.

External load profiles were recorded by monitoring each individual core
of a reference system. During experiments, these profiles were replayed by
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a custom load generator. We used two separate load profiles, a “desktop”
profile and a “workstation” profile. The former features generally lower load
and short peaks of activity, while the latter shows a higher average load level
and fully saturates some cores.

5.5.1 Kernel Experiments

For illustrative purposes, we will apply our method to three small kernels: a
dense matrix multiplication, a triangular matrix multiplication, and a pen-
dulum simulation. These represent three major classes of problems. Both
the dense and triangular matrix multiplication satisfy the SCoP constraints
and can therefore be rigorously analyzed. The former has a flat work pro-
file and is thus ideally suited to static OpenMP scheduling, while the latter
has a slanted work profile. Finally, the per-iteration work in the pendulum
kernel strongly depends on the input data, hence it can not be covered by
SCoP analysis.
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Figure 5.5: Dense matrix multiplication results.

Figure 5.5 shows the results for dense matrix multiplication. In the
absence of external load, fully static scheduling is ideal for this kernel, and
our implementation is 1.7% slower than the best (and default) OpenMP
policy. With external load, the default policy is ineffective, and our result
improves on the best OpenMP policy by 10% to 15%. The best policy found
for desktop load is “dynamic,8” while the best policy for the workstation
load profile is “dynamic”. The reason for the good result demonstrated by
our method is that due to the detection of external load the chunk size is
adapted to fit the load profile at every point during the program’s execution.
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Triangular Matrix Multiplication
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Figure 5.6: Triangular matrix multiplication results.

Next, we look at the triangluar matrix multiplication kernel, which has a
more interesting load profile. As Figure 5.6 illustrates, the compiler-assisted
workload distribution performed by our method in the unloaded case is very
effective, improving performance by 82% compared to the default behaviour,
and by 27% compared to the best OpenMP scheduling policy, “static,2”.

This improvement over the block-cyclic scheduling can be explained by
the fact that even round-robin loop scheduling with a chunk size of 2 as
performed by the “static,2” policy is not perfectly balanced. Furthermore,
our scheduling distributes a single chunk to each thread, which induced less
overhead and allows for better cache reuse than distributing many small
chunks.
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The effort estimation function generated by our analysis for the trian-
gular matrix multiplication test case and the per-thread shares computed
for 16 threads in this scenario are shown in Figure 5.7. In the upper part,
the effort estimation for each iterator value is plotted: iterations below zero
perform no work, above that the amount of effort increases with the iterator
value as the lower left triangular matrix rows become progressively wider.

For this test case, the best scheduling policy with a loaded system is
“dynamic” for both load profiles. Our scheduling is the fastest for both
situations, though in the “workstation” case the difference compared to the
best OpenMP policy is negligible (3%).

Pendulum Simulation
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Figure 5.8: Pendulum simulation results.

The performance results for the pendulum kernel are depicted in Figure
5.8. This benchmark computes the resting points of pendulae under the
effect of magnetic fields, from many starting locations. It is communication-
free but has an unpredictable, input data dependent load imbalance, causing
default scheduling to be sub-optimal. For the case with no load, the “dy-
namic,2” policy is best, while for the other two cases “dynamic” performs
best.

When the workstation external load profile is active, our method per-
forms slightly (0.7%) worse than the “dynamic” OpenMP policy. For this
load profile and the loop effort estimated for this kernel, our scheduler always
decides to dynamically distribute a single loop iteration, thus performing ex-
actly the same operation as the “dynamic” policy. The 0.7% difference can
be explained by the overhead introduced by our scheduling process.
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5.5.2 Real-world Applicability

While the results measured on small kernels are encouraging, methods based
on extensive compiler analysis often fail when applied to larger code bases.
However, the polyhedral model has been successfully used in production
compilers [84], and, as described in Section 5.4.1, we were able to further
relax some of its constraints for our use case.

In this section, we present an experimental analysis on some of the bench-
marks contained in the NAS Parallel Benchmarks (NPB) [9] suite. As a first
step we investigate the extent to which the parallel loops contained within
these programs can be treated with our analysis method.

Table 5.1: Applicability of our analysis on NPB loops.

State Number of loops % of loops

Total 465 100.0%
Fully analysed 373 80.2%
Non-affine expressions 57 12.3%
Data-dependent control flow 33 7.1%
Contain while loops 2 0.4%

Table 5.1 lists total number of loops contained within the NPB programs,
the amount that were fully analysed, and groups those that could not be
analysed into categories depending on the reason for the analysis failure.
Note that the number of loops listed here is higher than the amount statically
contained within the program source code, due to our method analysing each
call site separately.

More than 4 out of 5 of all parallel loops contained in the set of bench-
marks can be analyzed. The most common reason for analysis failure are
non-affine boundary, condition or subscript expressions, followed by data-
dependent control flow. Two of the parallel loop nests contain while loops.

The results of our performance evaluation are summarized in Table 5.2.
The “Default” and “Best” columns list the relative difference in execution
time achieved by our scheduling system compared to default scheduling (as
specified by the benchmarks) and the best scheduling policy found in the
search space described earlier. For example, 4.2% in the ft.B/none/default
cell means that executing the ft benchmark with no external load and the
default scheduling policy took 104.2% of the time the same configuration
took using our scheduling system.

Predefined problem size B was chosen for all the benchmarks as a good
compromise between realistic size and maintaining a feasible duration for
the experiments. The GM values are the geometric means, for each config-
uration, across all benchmarks, and Figure 5.9 illustrates these values.
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Table 5.2: Nas Parallel Benchmark performance results.

Gain Over
Name External Load Default Best Best Config

ft.B none 4.2% -0.2% static,1
ft.B desktop 21.8% 4.4% dynamic,2
ft.B workstation 59.9% 11.2% dynamic

ep.B none 14.0% -1.9% dynamic,8
ep.B desktop 3.2% -0.9% dynamic
ep.B workstation 19.7% 3.0% dynamic,32

bt.B none -2.4% -2.4% static
bt.B desktop 70.8% 65.2% dynamic
bt.B workstation * * *

cg.B none 8.4% 3.9% guided,32
cg.B desktop 113.4% 111.2% guided,32
cg.B workstation 471.3% 451.7% guided,8

mg.B none 51.7% 5.3% dynamic
mg.B desktop 56.1% 33.0% dynamic
mg.B workstation 157.4% 110.8% dynamic,2

GM none 13.7% 0.9%
GM desktop 48.2% 36.8%
GM workstation 94.9% 67.7%
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Figure 5.9: Geometric mean of real-world benchmark results.
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Some points that deserve particular attention are:

• The bt benchmark with workstation external load could not be com-
pleted due to time constraints – the execution time increased dispro-
portionately with increased load across all scheduling policies.

• There is only a single case where our algorithm performs worse than
the default: bt with no load. It is the only benchmark where the
default scheduling (static) is also the best policy. For most loops within
bt our method picks this optimum, but for one of them the analysis
fails, causing a fallback to a slightly less efficient dynamic schedule.

• The best speedup in a load-free scenario occurs for mg. This is due
to the nature of the algorithm implemented by this benchmark, which
leads to some loops being executed with very small iteration domains.
These are identified as low-effort by our method and immediately
scheduled as a whole on the first thread available.

• Generally, higher levels of external load favour our system, which can
effectively adapt to them.

• Even with no external load, our method tends to achieve a marked im-
provement over default scheduling due to the availability of compiler-
deduced meta-information. The average speedup obtained in this set-
ting is 13%.

5.6 Summary

This chapter presents an automatic OpenMP loop scheduling method which
combines advanced compiler analysis with a load-aware runtime system,
leveraging the strengths of the Insieme compiler infrastructure and its in-
tegration with Insieme-RS. Polyhedral analysis is used to calculate a pa-
rameterized effort estimation function for each parallel loop, based on the
cardinality of all statements it contains. Executable code for this function
is generated by the compiler backend, and invoked at runtime to calcu-
late an ideal balanced schedule or estimate efficient chunk sizes for dynamic
scheduling. Additionally, external CPU load is taken into account during
the scheduling process.

We evaluated our system on small kernels as well as programs from the
NAS Parallel Benchmarks suite, and achieved improvements of up to 82% in
the unloaded state, and 471% with heavy external load, compared to default
OpenMP scheduling.

To estimate the absolute effectiveness of our approach, we performed
an exhaustive search over a broad range of standard OpenMP scheduling
policies and compared with the best results. Our scheduling frequently



5.6. SUMMARY 111

improves upon even this tuned result, particularly in scenarios featuring
external load. The results of our automatic scheduling algorithm are stable
across a wide range of programs and execution environments: in fact, the
worst-case performance achieved by our fully automatic approach is within
3% of the best standard OpenMP policy.





Chapter 6

Optimizing Granularity in
Task-based Parallelism

6.1 Introduction

Task-based parallelism is one of the most fundamental parallel abstractions
in common use today [4]. While relatively easy to implement and use, achiev-
ing good efficiency and scalability with task parallelism can be challenging.
A central feature of every task-based parallel program that significantly af-
fects both efficiency and scalability is task granularity [32]. The granularity
of tasks is defined by the length of the execution time of a single task between
interactions with the runtime system, such as spawning new tasks.

Very fine-grained, short-running tasks lead to a loss in efficiency com-
pared to sequential execution due to the runtime overhead associated with
generating and launching a task, as well as synchronizing its completion with
other tasks in the system. On the other hand, coarse-grained, long-running
tasks minimize overhead, but are hard to schedule effectively and may there-
fore fail to scale well on large parallel systems. Previous work in this area
has focused mostly on runtime systems or user-controlled cutoffs to man-
age granularity (see Section 6.3). Conversely, we propose an approach that
combines a multiversioning compiler with a runtime system which adaptively
selects from the generated versions. Our goal is to maximize efficiency by
increasing task granularity – and thus decreasing overheads – without neg-
atively affecting load balance or scalability.

We implemented our method for OpenMP [65] tasks within the Insieme
compiler and runtime system, but the idea is equally applicable to any other
task parallel language. Our concrete contributions are the following:

• A compile-time multiversioning transformation that generates a set
of task implementations of increasing granularity by recursive task
unrolling and subsequent elimination of superfluous synchronization

113
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primitives. This transformation is applicable to both simple recursion
and N -ary mutual recursion.

• A runtime heuristic for the dynamic adaptation of granularity based
on the concept of task demand, which automatically choses the code
version to execute at each task spawning point.

• Evaluation and analysis of the performance of our method on a num-
ber of well-known task parallel benchmarks. We compare with other
OpenMP implementations, our own implementation without the mul-
tiversioning optimization and Cilk [15] versions which represent the
state of the art in fine-grained task parallelism.

In this chapter, we use the word task to generically refer to any way of
implementing tasks, e.g. when describing operations or overheads that are
part of any such implementation. In Insieme-RS, tasks map to work item
instances, as laid out in Section 2.3.2. Therefore, we refer to work items
when we describe the specific implementation within our system.

The remainder of this chapter is structured as follows. In Section 6.2 we
provide some initial results which motivated our approach, followed by an
overview of related work in Section 6.3. We then describe our method in
detail in Section 6.4 and evaluate its performance in Section 6.6. Finally,
Section 6.7 summarizes and concludes our findings.

6.2 Motivation
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Figure 6.1: Initial Task Experiments, N-Queens N = 13, Single-threaded.
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In this section we present some initial benchmark results that motivate
our multiversioning method. Figure 6.1 shows single-threaded execution
times measured for the Barcelona OpenMP Tasks Suite (BOTS) [31] N-
Queens benchmark with N = 13. For details on the hardware, compiler
versions and programs used refer to Section 6.6.

The lowest execution time amongst the OpenMP versions is achieved
by our compiler and runtime system (Insieme), however, this time is still
28% higher than purely sequential execution. Even the Cilk version, while
more efficient than any OpenMP implementation, is 19% slower than the
sequential version. Our multiversioning method is designed to address this
inefficiency. Throughout this chapter, when we refer to inefficient execution,
we mean execution which takes longer than executing purely sequential code
(assuming ideal speedup as defined in Section 2.2.2).
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Figure 6.2: Initial Task Experiments, N-Queens N = 13, Scaling from 1 to
2 threads.

Note that the OpenMP runtime systems of ICC [40] and GCC [74] per-
form special case handling when only a single worker thread is used. This is
visible in Figure 6.2, which shows their performance degrading when switch-
ing from one to two threads. Further experiments in Section 6.6 confirm this
behavior, with scaling starting after some initial performance degradation
when activating multi-threaded execution. The OpenMP version compiled
with Insieme and the Cilk version do not suffer from this issue, however they
still induce a relative overhead of about 20% compared to ideal linear scaling
from the sequential version. We identified the following potential causes for
this inefficiency:

1. Task generation overhead. This includes generating a task structure,
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populating it with values and enqueuing it. In Insieme-RS, it equals
the creation of a work item instance, as defined in Section 2.3.2, and
the allocation of its required data items.

2. Synchronization primitive overhead (e.g. taskwait). At the very least,
this involves keeping track of all the subtasks launched by each task,
and signaling when they are complete. (Performed by the event han-
dling system in Insieme-RS, see Sections 3.3.2 for the definition of
its semantics and Section 3.5.3 to understand the associated overhead
costs)

3. Task library calls. The runtime methods required for tasking are gen-
erally implemented in a separate library, and the overhead for their
invocation is incurred even if they perform no actual work.

4. Non-inlineable, indirect program function calls. Since the program
function implementing a given task needs to be called by the tasking
library, a pointer to it is usually passed to the library function. Even
if the runtime library decides to directly execute the call, this pre-
vents the benefits – improved instruction scheduling and a reduction
in overhead – associated with inlining.

Issues 1 and 2 can be mitigated by a pure runtime approach, e.g. the
runtime library can dynamically decide whether to generate a full task struc-
ture or directly call the task function. This method is usually referred to as
lazy task creation [57]. However, the basic overhead of library function calls
(issue 3) and the fact that indirectly called functions in the original program
can not be inlined (issue 4) can not be changed at runtime and need to be
handled at compile time. This limitation of pure runtime systems motivates
our compiler-aided multiversioning approach.

Time 
(a) 

(b) 

… task spawn … synchronisation … task execution 

(i) (ii) (iii) 

Figure 6.3: Timelines for default task execution and execution with variable
granularity.

All four potential causes for inefficient execution identified above are di-
rectly related to and influenced by the granularity of tasks. The more often
individual tasks are generated and synchronized, the higher the impact of
the associated overheads on execution time. However, simply increasing the
granularity of all tasks is not a solution: such an approach will lead to load
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imbalance, and it increases the probability of workers idling. Therefore, our
goal, as illustrated in Figure 6.3, is the generation of different implemen-
tations for each task. The upper timeline (a) shows the default execution
of a single Insieme-RS worker in a task-parallel program. All tasks have
the same granularity and execution time. The lower timeline (b) depicts
our ideal goal, involving dynamic selection from a set of implementations
at each task spawning point. Early on, at point (i), a fine-grained task is
generated so that the desired degree of parallelism is achieved quickly. At
later points (ii) and (iii) the system is saturated and therefore the task
granularity is gradually increased, reducing the inherent overhead caused
by any interactions with the runtime library.

6.3 Related Work

Much previous work on parallel tasks has focused on runtime systems [19]
or scheduling policies [64]. As described in section 6.2, pure runtime modifi-
cations are incapable of dealing with all the causes for inefficiency that our
combined compiler and runtime approach covers. Moreover, our proposed
multiversioning scheme is orthogonal to task scheduling decisions and can
be combined with any scheduling policy.

A common approach towards dealing with task granularity issues is hav-
ing the user provide thresholds or cut-off values [32]. In our work, task
granularity is controlled entirely by the compiler and runtime system, with-
out requiring manual programmer support. Duran et al. [29] describe an
adaptive cut-off method which does not require manual adjustment, but
their pure runtime approach does not offer the performance benefit of full
sequentialization in the compiler.

Inlining of recursive functions has been previously performed in sequen-
tial program transformation [35], even with the express purpose of improv-
ing performance in divide and conquer programs by reducing overheads [69].
However, these works do not deal with parallelism, while our approach fo-
cuses primarily on minimizing the overhead incurred by parallel task creation
and synchronization.

Some recent publications have used compiler multiversioning in a parallel
setting [26][42], but they focused exclusively on loop-based data parallelism.
Conversely, our multiversioning approach is designed for task-parallel, re-
cursive programs.

Very recently, Deshpande and Edwards used recursion unrolling to im-
prove opportunities for parallelism in Haskell programs [27]. Unlike our
method, they do not use multiversioning or version selection at runtime,
and their compiler transformations are designed for the Haskell functional
language while we process input programs written in C with OpenMP.
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6.4 Method

In this section our task multiversioning method is described. Section 6.4.1
provides an overview of our central idea, and how the compiler and run-
time components work together in order to control task granularity. Section
6.4.2 details the compiler transformations used during the multiversioning
process, while 6.4.3 describes the scheduling heuristic employed in the run-
time system.

6.4.1 Overview

Figure 6.4 illustrates the major components of our proposed method. Start-
ing from an OpenMP program with parallel tasks, our compiler generates
an Insieme-RS client application in which multiple different implementation
versions of each task are encoded. During execution of the program, when-
ever a specific task is invoked, Insieme-RS selects and launches a version of
this task.
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Insieme compiler 

Unroll 
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program 
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Select version 

Figure 6.4: Overview of our Method

6.4.2 Compile-time Multiversioning

During compilation our goal is to generate multiple versions of each parallel
task, with varying granularity. As depicted in Figure 6.4 this involves a
three step process, which may be applied multiple times to further increase
the task size. The individual steps are as follows:

1. Task unrolling. Replaces each task invocation site with a direct
call to the task function, which is subsequently inlined. This can
be thought of as a context and parallelism-aware recursive function
inlining step. The name task unrolling is adapted from Rugina’s usage
of recursion unrolling [69].

2. Sequentialization. This step focuses on identifying which synchro-
nization primitives – if any – were rendered superfluous by the partial
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elimination of parallel task invocations due to task unrolling, and re-
moving them. It is described in more detail below.

3. Simplification. The unrolling and sequentialization may have gener-
ated code that can be simplified by basic optimizing compiler trans-
formations such as arithmetic simplification, constant propagation or
dead code elimination. Thus, these are performed before any further
processing.

The number of generated versions depends on the granularity of the
initial tasks and the largest granularity desired. The versions are generated
and encoded into the output program in the following order.

1. Original. The original version from the input program.

2. N times unrolled versions. Starting from N = 1. In these ver-
sions, only partial sequentialization is performed. Outer task spawn-
ing points are removed, but the innermost spawning location is kept.
This process is illustrated in detail in a code example in Figure 6.6,
described below.

3. Fully sequentialized version. In this version all task spawning
points are removed and replaced with plain function calls.
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Figure 6.5: Version Generation and Control Flow.

Figure 6.5 illustrates the result of generating 3 versions for a mutually
recursive task set consisting of two functions F1 and F2. The original
program thus has two task spawning locations, A (which spawns F1) and B
(spawning F2). In the parallel program model introduced in Section 2.2.2,
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{A,B} ⊆ Ψ, that is, A and B are nodes which generate a new parallel
control flow. To improve the clarity of the illustration, these task spawning
points have been replicated in the figure, however they are still all referring
to the same task.

Version (1) is identical to the original program, except that at each
spawning point there is now a choice between 3 distinct implementations
of each function. In version (2), consisting of F1′ and F2′, each recursive
task invocation was unrolled once, forming tasks of increased granularity.
Clearly, if this version is used, more work is performed between individual
task invocations and interactions with the runtime library. Finally, version
(3), comprising F1′′ and F2′′, is fully sequentialized. Once this version is
invoked, no further parallel tasks will be spawned on this branch of the
recursive descent.

Code Example

fib(n) = {  
  if(n<2) return n; 
  a = spawn(fib(n-1)); 
  b = spawn(fib(n-2)); 
  merge_all (); 
  return a + b; 
}  

fib(n) = {  
  if(n<2) return n; 
  a = (n’){  
    if(n’<2) return n’; 
    a = spawn(fib(n’-1)); 
    b = spawn(fib(n’-2)); 
    merge_all (); 
    return a + b; 
  } (n-1); 
  b = […]; 
  merge_all (); 
  return a + b; 
}  

fib(n) = {  
 if(n<2) return n; 
  if(n-1<2) a = n-1; 
  else {  
    a’ = spawn(fib(n-1-1)); 
    b’ = spawn(fib(n-1-2)); 
    merge_all (); 
    a = a’ + b’; 
  }  
  […]; 

merge_all (); 
 return a + b; 

}  

fib(n) = {  
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else {  
    a’ = spawn(fib(n-2)); 
    b’ = spawn(fib(n-3)); 
    merge_all (); 
    a = a’ + b’; 
  }  
  […];  
  return a + b; 
}  

(a) 
Input code 

(b) 
Unrolled 

(c) 
Inlined 

(d) 
Simplified 

merge_all dropped 

Figure 6.6: Example task transformation - Fibonacci - Version generation.
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Figure 6.6 illustrates the effect of the steps taken during compilation to
generate a task version that has been unrolled once. A pseudo-code formula-
tion is used for reasons of clarity and size. It is C-like, but without the need
for explicit type specification, and with two additional keywords: spawn im-
plies the generation of a new parallel task (corresponding to #pragma omp

task untied in OpenMP and a work item spawn operation in Insieme-RS),
while merge all waits for the completion of all launched subtasks (equiva-
lent to #pragma omp taskwait and a work item join all operation).

In (a), the original input code is shown. Moving on to (b), first-level task
invocations are removed and replaced with in-place calls of the associated
functions. Context-sensitive inlining of these calls results in (c). Finally,
redundant applications of the merge all operation are removed and arith-
metic simplification is applied. The final generated code for this version is
listed in (d). This process can be repeated N times to generate increasingly
larger task sizes.

fib(n) = { 
  if(n<2) return n; 
  a = spawn( pick( 
    fib(n-1), 
    fib_u1(n-1), 
    fib_seq(n-1) ) ); 
  b = spawn( pick( 
    fib(n-2), 
    fib_u1(n-2), 
    fib_seq(n-2) ) ); 
  merge_all(); 
  return a + b; 
} 

fib_u1(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = spawn( pick( 
      fib(n-2), 
      fib_u1(n-2), 
      fib_seq(n-2) ) ); 
    b’ = spawn(pick(…)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 

fib_seq(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = fib_seq(n-2); 
    b’ = fib_seq(n-3); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 
 

(a) 
Original 

(b) 
Unrolled Once 

(c) 
Fully Sequentialized 

Figure 6.7: Example task transformation - Fibonacci - Generated versions.

After all the versions are generated, each version needs to be modified to
enable runtime selection. Figure 6.7 contains the final code for the original
version with task selection (a), the unrolled version as discussed previously
(b) and a fully sequentialized version (c).

The pick keyword implies a possible choice between semantically equiv-
alent versions, which is deferred to the runtime system. Its semantics are
equivalent to those of the θ node introduced in our model of parallel pro-
grams with nondeterministic choice (Definition 5). This choice is included
at the spawning points of the original version, as well as all unrolled ver-
sions. In the fully sequentialized version, the spawning point is removed and
replaced with a direct recursive call to the sequentialized function.
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Partial Sequentialization

In most parallel programs there will be some superfluous synchronization
statements after task unrolling. Since the execution has been partially se-
quentialized, instructions that wait for the completion of a task that was un-
rolled are no longer necessary and should be removed. The transformation
eliminating unnecessary synchronization acts as detailed in Algorithm 6.1
on a task version T , effectively removing all merge all operations for which
there is no possibility of any task being spawned between them and a pre-
vious merge all.

Algorithm 6.1 Superfluous Synchronization Elimination Algorithm.

T input/output task version

1: Determine the set M of all merge all invocations in T .
2: for all merge all m ∈M do
3: Compute the set of all execution paths F

from the entry point of T to m.
4: for all paths f ∈ F do
5: Reverse f and remove the first entry.
6: end for
7: if ∀f ∈ F : f encounters no spawn before a merge all then
8: Remove m from T .
9: end if

10: end for

Superfluous Synchronization Elimination Example

As an example, Algorithm 6.1 is applied to the task version generated in
Figure 6.6 (c). The full code for this stage in the version generation is given
in Listing 6.1, and we will refer to the code statements by their line number,
as well as the labels added for spawn and merge operations. Computing the
set M as per the algorithm for this example yields M = {ma,mb,m1}.

For ma, the set F = {(1, 5, 6, 7)}. Reversing the single included path
and removing the first entry results in F = {(6, 5, 1)}. The statement at
line 6 is sa2, a spawn operation, thus ma is kept. For mb the situation is
similar, and a spawn operation is encountered immediately on the reversed
paths, but the paths are slightly more complex.

Finally, consider m1. In this case, the initial set of paths is given by

F = { f0 = (1, 5, 6, 7, 8, 12, 13, 14, 15, 17),
f1 = (1, 3, 12, 13, 14, 15, 17),
f2 = (1, 5, 6, 7, 8, 10, 17),
f3 = (1, 3, 10, 17) }



6.4. METHOD 123

Reversing each path and removing the first entry results in

F = { f0 = (15, 14, 13, 12, 8, 7, 6, 5, 1),
f1 = (15, 14, 13, 12, 3, 1),
f2 = (10, 8, 7, 6, 5, 1),
f3 = (10, 3, 1) }

On the path f0, the merge all operation mb is encountered at 14, before any
spawn. On f1, the situation is the same. On f2, the merge all operation
ma is encountered at 7, again before any spawn. Finally, no spawn operation
is contained in f3. Thus, the condition holds for all paths and m1 can safely
be eliminated.

1 f i b (n) = {
2 i f (n<2) return n ;
3 i f (n−1<2) a = n−1;
4 else {
5 a = spawn ( f i b (n−1−1)) ; sa1
6 b = spawn ( f i b (n−1−2)) ; sa2
7 merge a l l ( ) ; ma

8 a = a + b ;
9 }

10 i f (n−2<2) b = n−2;
11 else {
12 a = spawn ( f i b (n−2−1)) ; sb1
13 b = spawn ( f i b (n−2−2)) ; sb2
14 merge a l l ( ) ; mb

15 b = a + b ;
16 }
17 merge a l l ( ) ; m1

18 return a + b ;
19 }

Listing 6.1: Synchronization Elimination Code Sample.

6.4.3 Runtime Version Selection

The previous section outlined how multiple versions with different granular-
ities and trade-offs are generated in the compiler. This provides the runtime
system with an opportunity of making a version choice every time a task
is spawned. Making the wrong choice can result in reduced efficiency, or,
at worst, greatly diminish parallelism – e.g. in case a fully sequentialized
version is chosen too early. We considered the following design goals and
observations when developing our version selection method:

• At the start of the program, the original (most fine-grained) version of
the tasks should be used, since the parallelism available in the system
is not yet fully leveraged and load-balancing is a priority.
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• The impact of conservative behavior – i.e. using more fine-grained
tasks – causes more gradual performance degradation than using tasks
that are too coarse grained, potentially leading to some worker threads
idling.

• The decision procedure needs to be simple, causing only little over-
head, otherwise it could negate any benefits from multiversioning.

• The decision making process should be distributed – no new synchro-
nization points between worker threads should be introduced to facil-
itate version selection.

Taking these points into account led to the development of a distributed
version selection heuristic based on two parameters that are tracked for each
individual Insieme-RS worker. The first parameter is task demand, which
keeps track of other worker’s unfulfilled attempts to steal tasks from the
local worker. The second parameter is the queue length of each worker,
which indicates how many tasks it currently has available for execution or
stealing.

Task demand is tracked in a surprisingly simple, but effective, manner.
The demand is stored as an integer which starts at a positive value equal
to the maximum task queue length. Whenever a task is generated by a
worker thread, it reduces its own task demand value by 1. When a worker
k1 attempts to steal from another worker k2 which has no tasks available,
then the task demand value of k2 is reset to the maximum task queue length.

Algorithm 6.2 Task Version Selection Algorithm.

queue length current queue length
task demand current task demand
num versions number of versions generated for current task
MAX QUEUE maximum queue length (fixed)

output: 0 ⇔ original task
N = 1 . . . num versions− 2 ⇔ unrolled N times

num versions− 1 ⇔ fully sequentialized

1: version = num versions−d(task demand/MAX QUEUE) ∗ num versionse
2: if version >= num versions− 1 then
3: if queue length == MAX QUEUE then
4: return num versions− 1
5: end if
6: return num versions− 2
7: end if
8: return version

Our version selection procedure is listed in Algorithm 6.2. In conjunction
with the demand tracking outlined above, it has the following desirable
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properties:

• Evaluating the selection function only takes a few dozen cycles, as-
suming that all the required values are cached.

• The way in which task demand is reset to the initial value if any
work item stealing operation fails, but is only reduced gradually during
normal execution, mirrors the earlier observation about the negative
performance impact of wrong granularity selection. It makes the ex-
pensive case of idle workers unlikely by reacting very strongly to failed
stealing attempts.

• Selecting the fully sequentialized version is a step that should only
be taken after careful consideration, since it will prevent any further
parallelism from being generated on this branch of the recursive de-
scent. Therefore, the heuristic only takes this step if there has been
no demand for additional tasks over a large number of spawn points
and the queue is full.

The choice of the MAX QUEUE parameter has an impact on the effectiveness of
this approach. Experimental evaluation has shown that generally, a longer
queue is beneficial on systems with a larger number of cores. For the evalu-
ation in Section 6.6, MAX QUEUE was set to 32.

Task Version Selection Example

Let us assume for this example that 4 code versions were generated for a
given work item corresponding to a task, that is num versions = 4. Given
the mapping in Algorithm 6.2, this means that version 0 is the original code,
in version 1 recursive task invocations have been unrolled once, in version 2
they have been unrolled twice and version 3 is fully sequentialized.

Now, assume two workers k1 and k2, and MAX QUEUE = 4 (a very low value
chosen for illustrative purposes). Both workers start with a task demand

tdk1 = tdk2 = 4. Let us now investigate the execution of the simple fibonacci
code sample used previously in this setting, with k1 starting the outermost
task execution. At the start of the program, version = 4−d(4/4) ∗ 4e = 0,
which means that the initial code version (with the smallest granularity) is
chosen. This results in the spawning of two new work items, decrementing
tdk1 by 1 each, resulting in tdk1 = 2. At this point, k2 may or may not steal
work items from k1 – it does not change the further execution unless the
queue in k1 becomes empty. If that happens, tdk1 gets reset to 4. Let us
assume for this example that this does not occur.

When k1 selects a follow-up task version, the selection algorithm will
evaluate to version = 4 − d(2/4) ∗ 4e = 2. Thus, the 2 times unrolled
version is selected, which generates 8 new work items. This will fill up the
queue and set tdk1 = 0. At this point, as long as the queue remains full,
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version >= num versions− 1 && queue length == MAX QUEUE will eval-
uate to true, and the next task will be executed with full sequentialization.
As soon as k1’s queue loses an element, either because it is stolen by k2 or
launched by k1 itself, it will fall back to executing the unrolled but not fully
sequentialized code version 2, immediately refilling the queue. Thus, un-
less a stealing attempt fails later on, this particular program will complete
using primarily the highly efficient fully sequentialized versions, with some
interspersed partially unrolled versions.

6.5 Implementation

We will now describe how the method outlined above was implemented in our
compiler and runtime system. The compiler transformations implemented
for this work are detailed in Section 6.5.1 while Section 6.5.2 provides infor-
mation about how version selection is accomplished in the runtime system.

6.5.1 Compiler Transformations

Four categories of transformations are used in our multiversioning method.
Task unrolling, sequentialization and simplification are performed to gener-
ate the different versions, and, in a final step, version selection is introduced
at each remaining task spawning point in every generated version. All these
transformations are applied on INSPIRE.

Task Unrolling For each spawn point, this transformation replaces the
indirect task invocation with a direct call to the function implementing the
task. This function call is then inlined. Simple arguments (e.g. variables)
are replaced directly while arguments deduced from complex expressions
(e.g. those containing function calls) are stored in newly generated local
variables. If there are multiple return statements, control flow structures
are adjusted or introduced to maintain the original semantics while replacing
the return statements with assignments. The effects of this transformation
are illustrated in Figure 6.6 (b) and (c).

Parameterizing this transformation with an unrolling factor N is achieved
by repeating the process outlined above N times. The maximum degree of
unrolling needs to be controlled in order to prevent an excessive increase in
code size, which may impact the effectiveness of the CPU instruction cache
and branch prediction unit. This can be accomplished by continuously mea-
suring the code size (in INSPIRE) of the generated versions during compila-
tion and aborting further unrolling and version generation when a threshold
value is reached.



6.5. IMPLEMENTATION 127

Simplification In the simplification step, we apply a number of well
known transformations to ease further processing of the code and simplify
unnecessarily complex structures that may have been introduced during the
previous processing steps. The transformations applied include inlining of
very small function calls, constant folding, copy propagation, algebraic sim-
plification, strength reduction and unused code elimination [8].

Version selection Once all the versions are generated, recursive task
spawning in each version needs to be adjusted to include the possibility of
choosing a different code version at runtime. As described in Section 3.4.3,
INSPIRE offers the pick primitive to enable multiversioning. All the ex-
pressions listed in the pick call need to be semantically equivalent, which
means that replacing the pick primitive by any of its listed expressions is
a valid operation maintaining the semantics of the program. The intention
is for expressions to be equivalent in their effect on the computational re-
sult of the program, but implying distinct performance behavior. Figure 6.7
illustrates a practical application of this primitive in supporting the task
multiversioning approach introduced in this chapter.

In the compiler backend, if an instance of pick is encountered, code for
all versions of the given expressions needs to generated for the corresponding
work item. This is accomplished by generating each individual version as a
separate function and storing pointers to these functions within a table that
is statically generated and embedded within the resulting multiversioned
code (Figure 6.8).

# Version 0 Version 1 Version 2 Version 3 Version 4 

1 t0_ver0 - - - - 

3 t1_ver0 t1_ver1 t1_ver2 - - 

5 t2_ver0 t2_ver1 t2_ver2 t2_ver3 t2_ver4 

3 t3_ver0 t3_ver1 t3_ver2 - - 

… … … … … … 

Index 

0 

1 

2 

3 

foo: 
  … 
  spawn_task(0, …) 
  … 
  spawn_task (2, …) 
  … 
t3_ver1_impl: 
  … 
  … 
 

global task table code 

Figure 6.8: Task multiversioning implementation in generated code

6.5.2 Runtime System

While the topic of this chapter is an optimization method that could feasibly
be applied independently of the task scheduling strategy employed, we will
shortly describe the scheduler used in the experiments presented in this
chapter. This explanation is intended to make it easier to interpret and
compare our results.
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The task scheduler we choose to extend with version selection is a ran-
dom stealing based work item scheduler (as described in Section 3.3.3). It
uses the low-congestion Insieme-RS circular work buffer data structure (see
Section 3.5.3) in each worker to keep track of active work item instances.

For this work, we extended this task scheduler. In addition to the circular
work buffer, each worker stores an integer value representing current task
demand. This value is updated when new work items are generated or
a stealing operation fails, as described in Section 6.4.3. Whenever a new
instance of a work item is started, the Algorithm 6.2 is evaluated to decide
which code version implementing the task should be chosen. This version
is then selected from the table generated by the compiler backend (Figure
6.8) and executed.

6.6 Evaluation

In this section we will evaluate the performance impact of our optimization
on multiple benchmark programs. Subsection 6.6.1 details our measurement
methodology and the experimental setup used. We will perform an in-depth
evaluation of two programs in Subsection 6.6.2, and then proceed with an
overview of the results of a number of other codes in order to provide a
balanced overall impression.

6.6.1 Experimental Setup

For our experiments we used an Intel-based parallel system, incorporating
4 Xeon E7-4870 processors, each comprising 10 physical cores (20 hardware
threads) and 3 levels of cache. Table 6.1 summarizes the configuration of
this system.

Table 6.1: Hardware and software platform for experimental evaluation.

Sockets/ Cache Software
Cores L1d/i L2 L3 OS Kernel GCC ICC Insieme

4/40 32K/32K 256K 30M CentOS 6.3 2.6.32 4.6.3 12.1 g4614502

When running experiments using a subset of cores, all involved threads
were bound to individual physical cores such that the resources of one chip
are fully utilized before involving an additional processor. All experimental
runs were repeated five times, and the median runtime is reported.

While the most important comparison for our evaluation is between our
compiler with and without our multiversioning method, we also included the
results obtained by other platforms to provide a reference for comparison.
Table 6.1 includes the exact version number of the compilers used in these
comparisons. ICC was used as the backend compiler for the Insieme source
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to source infrastructure, and its built-in Cilk Plus support was employed
to compile Cilk programs. The optimization flag “-O3” was enabled for all
calls to GCC and ICC.

6.6.2 A Detailed Evaluation

N-Queens

The first program we will evaluate is the N-Queens benchmark included in
BOTS [31]. Each task in N-Queens spawns 0 to N child tasks, and the
depth of its task invocation trees varies from 1 to N , while not following
any simple pattern. The size of individual tasks is relatively small.
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Figure 6.9: N-Queens task benchmark results, N = 13, execution time.

Figure 6.9 illustrates the performance of N-Queens using a variety of
compilers and implementations. Four OpenMP versions are shown: GCC,
ICC and Insieme with (“taskopt”) and without (“insieme”) task optimiza-
tion. Additionally, we included the results of a Cilk version and a fully
sequential version without any parallel language primitives. The execution
time is presented in a log-log plot to improve readability. An efficiency plot is
provided in Figure 6.10, which compares the execution times of the parallel
versions against ideal scaling from the sequential version.

In terms of OpenMP results, it is clear that the task granularity in this
benchmark is too small to be handled effectively by GCC’s GOMP imple-
mentation. ICC shows the same behavior that was already partially observed
in Section 6.2 – execution time increases when going from a single-threaded
to a multi-threaded setup. However, starting from two threads performance



130 CHAPTER 6. OPTIMIZING TASK GRANULARITY

0% 

20% 

40% 

60% 

80% 

100% 

1 2 4 8 16 32 

E�
ci

en
cy

 

Cores Used 

OMP - gcc OMP - icc 
Cilk+ - icc OMP - insieme 
OMP - taskopt  

Figure 6.10: N-Queens task benchmark results, N = 13, efficiency.

scales relatively well up to 40. Since both of these OpenMP implementations
seem ill-equipped to handle very fine-grained tasking well, we also included
a Cilk version, which has previously been shown to provide better scaling
for fine-grained tasks [63]. Indeed, this implementation performs better in
the single-threaded case and scales more smoothly to multiple cores than
the GCC and ICC OpenMP versions.

Using Insieme to compile the OpenMP input program results in per-
formance that is comparable to Cilk for up to 16 cores, and scales slightly
better beyond this amount. However, a comparison with the fully sequen-
tial version indicates that even the Insieme OpenMP version and the Cilk
version lose around 20% of performance to overheads incurred due to par-
allelization. When our task optimization – that is, multiversioning in the
compiler and adaptive work item implementation version selection at run-
time, as presented in the previous sections – is activated, this overhead
is effectively avoided. Even more importantly, this significant reduction
in overhead is achieved without negatively affecting the scalability of the
program. Performance compared to our implementation without task opti-
mization is improved by 22% to 28% across all measured core counts, with
a 25% increase at the full 40 cores.

Compared to the fully sequential version, our approach achieves an effi-
ciency above 99% up to 8 cores, 97% at 16 cores, 85% with 32 cores and 80%
at 40 cores. The total runtime of our implementation at higher core counts
goes below 0.3 seconds. Note that the drop-off in efficiency primarily occurs
at 16 cores and above. This is due to the problem size N=13 causing each
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initial task to spawn 13 sub-tasks, which means that up to 13 cores can be
supplied with work during the first ”generation” of tasks. When more cores
are used, a larger number of second-generation (and beyond) tasks need to
be distributed.

Using the full system (40 cores), our implementation with task opti-
mization improves N-Queens performance by 56% compared to the best
competing implementation (Cilk).

Fibonacci

For a second in-depth evaluation, we chose the BOTS Fibonacci program.
This is very similar to the code example provided in Section 6.4 (Figure
6.6). As a test case, its most interesting features compared to N-Queens are
a significantly different shape of the task invocation tree and the extremely
small size of individual tasks. In Fibonacci, each task only creates zero to
two sub-tasks, however the maximum depth of the task invocation tree is
much larger. Additionally, the depth of the task chains follows an easily
predictable pattern, unlike N-Queens.

Note that this is obviously an inefficient method of generating the Fi-
bonacci numbers which would not be used in a production code. However, its
properties make it an interesting case study for the overhead of task-parallel
systems.
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Figure 6.11: Fibonacci benchmark results, N = 48.

The performance results achieved in Fibonacci by the set of implemen-
tations included in our comparison are illustrated in Figure 6.11, again ad-
justed to a log-log scale to make them easier to interpret.

The issues with small tasks experienced by the OpenMP implementation
in GCC are exacerbated in this case, due to the extremely fine task gran-
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ularity of the fibonacci program. We stopped the execution of this version
after 15000 seconds in the case of 5 or more threads, since these results have
no meaningful impact on the comparison. ICC’s OpenMP implementation
acts similarly to before, with special handling of the single-threaded case
and good scaling after the initial parallelism overhead. Cilk is about twice
as fast as ICC’s OpenMP version in the single-threaded case, and scales well
from that point.

As with N-Queens, our Insieme OpenMP implementation without task
optimization starts out similarly to Cilk with one and two cores used. How-
ever, with a larger number of cores, our scaling behavior suffers. This is due
to the very fine-grained nature of the tasks, and the fact that generating a
stealable work item induces more overhead in our implementation than it
does for Cilk.

However, the most significant result is the performance of the purely se-
quential version compared to any other existing implementation. Even the
most efficient parallel implementations are slowed down by a factor of 20
when comparing their single-threaded execution time to the fully sequen-
tial program. The only existing system that manages to improve on the
sequential result at all is Cilk, and it requires 20 cores to do so.

With such small tasks, and therefore relatively large parallelism over-
heads, it is reasonable to expect that our multiversioning scheme as intro-
duced in this paper will have a large impact on performance. As Figure
6.11 shows, both absolute performance and scalability are greatly improved.
With a single thread, runtime is reduced by a factor of 26 compared to our
implementation without multiversioning and adaptive granularity adjust-
ment. Interestingly, the single-threaded execution time using our system is
even lower than that of the fully sequential program. This mirrors earlier
results in the field of sequential optimization [69], and shows that for very
fine-grained tasks, even sequential function call overheads have a relevant
impact.

When using all 40 cores of the system, our new approach improves upon
the best existing solution (Cilk) by a factor of 23.

6.6.3 Further Benchmarks

Table 6.2 summarizes our benchmark results. It includes measurements for
the N-Queens and fib benchmarks presented above, as well as a number of
additional programs.

Sort Is the sort benchmark included in BOTS.

Strassen Also from BOTS, matrix multiplication using the Strassen algo-
rithm.
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Table 6.2: Benchmark Results

Cores: 1 2 5 10 20 40 GM
Queens, N = 13 - seq: 7.42

gcc 10.23 36.29 148.28 308.16 545.22 725.98
icc 10.49 16.04 6.45 3.81 1.60 0.91
ins 8.69 4.35 1.74 0.87 0.46 0.27
opt 6.79 3.41 1.48 0.69 0.36 0.21
imp 27.92% 27.52% 17.78% 26.64% 25.35% 24.91% 24.75%

Fib, N = 48 - seq: 31.09
gcc 1960.35 17093.63 >15000 >15000 >15000 >15000
icc 1379.84 2705.65 1135.29 569.15 286.41 157.70
ins 742.40 456.95 247.91 196.59 169.50 155.29
opt 27.06 13.77 6.37 3.30 1.93 1.03
imp 26.43× 32.17× 37.90× 58.15× 86.69× 150.36× 53.92×

Sort, N = 227 - seq: 21.51
gcc 21.98 11.80 7.20 17.17 29.43 42.29
icc 23.87 12.36 5.04 2.80 1.85 1.56
ins 22.94 12.00 4.90 2.71 1.93 1.53
opt 20.81 11.18 4.61 2.52 1.72 1.41
imp 5.61% 5.47% 6.43% 7.47% 7.88% 8.11% 6.75%

Strassen, N = 8192 - seq: 158.15
gcc 159.74 92.45 39.20 22.10 15.36 19.94
icc 164.43 89.94 39.12 21.81 15.69 19.27
ins 168.84 85.97 37.51 21.98 12.94 8.72
opt 154.27 79.80 35.46 19.81 12.03 8.11
imp 3.54% 7.72% 5.77% 10.08% 7.55% 7.52% 6.70%

Stencil, N = 2048 - seq: 18.90
gcc 46.82 62.09 138.51 398.05 576.83 840.61
icc 30.17 24.65 15.63 14.64 13.84 12.04
ins 32.49 18.48 9.27 6.31 7.50 9.67
opt 24.96 13.84 6.66 4.26 5.15 7.54
imp 20.87% 33.49% 39.17% 47.97% 45.50% 28.29% 34.51%

Floorplan, input.20 - seq: 17.86
gcc 27.36 31.04 133.30 352.94 514.51 759.20
ins 23.53 12.48 5.05 2.53 1.72 1.58
opt 17.20 9.51 4.12 2.09 1.43 1.24
imp 36.76% 31.25% 22.62% 21.06% 20.52% 27.68% 26.03%

FFT, N = 229 - seq: 184.78
gcc 222.27 132.66 95.88 276.81 420.00 482.07
icc 189.73 112.13 55.95 37.44 22.64 16.03
ins 187.36 104.85 51.39 36.46 21.01 16.96
opt 183.97 100.02 49.66 35.08 19.07 12.03
imp 1.84% 4.84% 3.48% 3.93% 10.16% 33.21% 5.88%

QAP, chr18a - seq: 237.28
gcc 488.97 931.43 7471.11 >15000 >15000 >15000
icc 785.36 2539.80 823.00 319.87 179.58 114.93
ins 578.57 294.13 112.80 78.65 70.97 60.71
opt 231.62 110.76 40.24 21.88 15.18 9.90
imp 2.11× 2.66× 2.80× 3.59× 4.68× 6.13×
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Stencil A task based 2D stencil computation using the cache-oblivious algo-
rithm presented by Frigo and Strumpen [36]. We included this bench-
mark to represent an important category of cache-oblivious divide-
and-conquer algorithms.

Floorplan The BOTS floorplan benchmark. For this application, the bi-
nary generated by ICC 12.1 repeatably caused a segmentation fault
within ICC’s OpenMP library, regardless of the number of threads
used. Therefore we are unable to present ICC results for this bench-
mark.

FFT A parallel fast fourier transform included in BOTS.

QAP A branch and bound solver for quadratic assignment problems.

For every benchmark, the table contains five rows. The results achieved
using the GCC and ICC OpenMP implementations are listed in the “gcc”
and “icc” rows, respectively. The “ins” row contains the results of our
Insieme compiler and runtime without the task multiversioning optimization
presented in this paper, while it is enabled for the measurements listed in
the “opt” row. Finally, the values in the “imp” row represent the relative
improvement achieved using adaptive granularity control, compared to the
best result among the other three versions. The columns labeled 1 to 40
correspond to the number of cores used for the computation. All times are
given in seconds, and the improvement is provided in percent, except in the
case of the Fibonacci and QAP benchmarks where improvement factors are
listed instead of very large percentages.

As a frame of reference, the purely sequential time for each benchmark
compiled with ICC is provided in each header (“seq”). Note that this time
falls between the Insieme time without optimization and the optimized ver-
sion in most cases, except in the stencil test. Here, the restructuring per-
formed by our compiler prevents some of the low-level sequential optimiza-
tions performed by ICC. However, our optimized version executed with one
thread is still closer to the sequential performance than any other parallel
implementation.

A general trend visible throughout all the benchmark results is the re-
lationship between default task granularity, scaling in GCC and the degree
of improvement possible using adaptive task multiversioning and selection.
The fibonacci and QAP benchmarks have the most fine grained tasks, and
consequently the worst scaling in GCC and the largest improvement with
our optimization. On the other end of the spectrum, the FFT, strassen and
sort benchmarks feature built-in cutoff values that inherently control task
granularity by preventing very small tasks from being generated, resulting
in more modest, but still significant, performance improvements with multi-
versioning. Floorplan, stencil and N-queens fall in between these extremes.
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One interesting behavioral pattern which merits some explanation oc-
curs in FFT. Our multiversioning implementation does not result in any
significant improvement up to 10 cores, however at 40 cores the measured
improvement is 33%. This is due to the FFT benchmark consisting of two
separate phases: coefficient calculation and FFT computation. These phases
exhibit distinct scaling behaviour, and one of them is affected more signif-
icantly by adaptive granularity optimization than the other. Thus, with a
larger number of cores, the phase with bad scaling starts to take up a larger
portion of the execution time, and the effect of multiversioning on overall
performance increases.

6.7 Summary

We have presented a fully automatic, adaptive approach to parallel task
granularity control which goes beyond what can be achieved by improving
either just a runtime system or focusing only on compilation. By combining
a compiler which performs task multiversioning with a runtime system that
adaptively selects from these versions, we were able to minimize parallel
runtime overhead even for very fine grained tasks.

Our method uses a novel combination of compiler transformations to
build an optimized set of semantically equivalent task versions which dif-
fer in granularity. The availability of this set of implementations in the
compiled program in turn enables our runtime selection algorithm to adjust
the amount of tasks generated, while incurring even less overhead than a
traditional lazy task creation system with cut-offs.

Evaluating our proposed method across a set of eight benchmarks has
shown that our optimization is widely applicable, and that the magnitude
of the improvements it enables is related to the task granularity of the in-
put program. For programs with relatively coarse-grained tasks, execution
times are reduced by 5% - 10%, while we can achieve improvements of a
factor of 6 or more compared to the best competing implementations in
fine-grained test cases. Benchmark results also demonstrate that our run-
time selection heuristic successfully ensures that scalability (up to 40 cores)
is not negatively affected by adaptive task granularity adjustment. Cru-
cially, our adaptive granularity control scheme improves performance in all
tested benchmarks and for any given number of cores.
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Conclusion

In this thesis, we have presented Insieme-RS, a parallel runtime system de-
signed to manage multiple types of parallelism – including data parallelism
and nested task parallelism – and to effectively map this parallelism to com-
plex, potentially heterogenous, hardware architectures. The main goals of
this work are two-fold: improve the performance of parallel codes, generally
in terms of execution time but also in other metrics like power efficiency, and
at the same time ease the burden on programmers by attempting to auto-
mate development and optimization tasks which previously required manual
effort. This type of tool support is increasingly necessary as the complexity
of parallel hardware architectures continues to increase.

In order to deal with this variety, both in the structure of parallel soft-
ware as well as in the architecture of target hardware, the Insieme run-
time system implements a multi-paradigm execution engine for parallel pro-
grams. It manages both work and data items in accordance with a novel
execution model, and is designed to target shared memory intra-node par-
allelism, inter-node distributed memory parallelism and accelerator com-
puting. Coarse- and fine-grained task and data parallelism are supported
with little overhead, and their scheduling can be dynamically instrumented,
steered and optimized. As such, it offers an ideal platform for research in
these areas.

As part of the Insieme project, Insieme-RS is closely integrated with
the Insieme source-to-source compiler. This symbiotic relationship enables
program manipulation and optimization which would be impossible to per-
form either entirely statically within a compiler, or entirely dynamically in
a different runtime system without close compiler integration. Two features
enabled by this integration are of particular interest. Firstly, the utilization,
with the aid of high-level compiler analysis, of meta-information about spe-
cific code regions, including symbolic functions which can be evaluated at
runtime. Secondly, the generation and encoding of multiple versions for
some code regions, from which a selection can be made during program
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execution according to the current state of the system.

The ideas and design of our runtime system are validated by a substantial
implementation effort, which, in conjunction with the Insieme compiler, is
capable of executing and optimizing a large variety of off-the-shelf parallel
programs and benchmarks.

7.1 Contributions

A primary contribution of this thesis is the design of the overall Insieme-RS
architecture and its individual components. This includes the specification
of a multi-paradigm execution model for parallel programs with nondetermin-
istic choice, which provides a unified representation of fork/join, data and
task parallelism. It operates on heterogeneous hardware platforms described
by means of a detailed hardware model designed to capture all information
required to support the runtime system in its decision-making processes.

Insieme-RS has been used as a development platform to drive a number
of internationally published research efforts, three of which are presented and
extended in this thesis. In all cases, the performance of a variety of existing
programs is improved over the competitive state of the art by employing
techniques made possible by the unique design of our runtime system and
its integration with the Insieme compiler.

Multi-Process Scheduling This first individual contribution deals with
the automatic scheduling and parallel scaling of multiple OpenMP processes
on NUMA machines [83], and is detailed in Chapter 4. The presented tech-
nique takes system topology information and per-region scalability metrics
into account when making decisions about the degree and mapping of paral-
lelism, and thereby reduces the topological distance between cores executing
the same program region.

In a large-scale experiment with a variety of OpenMP benchmarks, we
were able to decrease execution time by 33%, compared to conventional
methods. Additionally, a 12% reduction in average power consumption was
achieved by clustering worker threads on cores belonging to the same socket
in the NUMA hierarchy.

Automatic Loop Scheduling The automatic parallel loop scheduling
method [82] detailed in Chapter 5 demonstrates the power of a symbiotic
relationship between high-level compiler analysis and an intelligent runtime
system. For each parallel loop, an effort estimation function is generated at
compile time, which maps an iterator range to an estimate for the relative
effort or execution time required to execute these iterations. This function is
encoded by the compiler backend and evaluated dynamically by Insieme-RS
to guide its loop scheduling.
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Consequently, the loop scheduling algorithm can take into account the
characteristics of the program, as determined by the compiler analysis, as
well as dynamic parameters such as the problem size or even external load,
which are only available at runtime. In experiments on a set of OpenMP
benchmarks, this method achieved improvements of up to 82% in an un-
loaded system state, and 471% with heavy external load, compared to de-
fault OpenMP scheduling.

Task Granularity Control The third individual contribution is a method
enabling automatic task granularity control in recursive, task-parallel pro-
grams [81], described in Chapter 6. It uses the multi-versioning capabilities
of Insieme-RS together with a novel compiler transformation to generate
multiple implementation versions of each parallel task with different levels
of granularity. During execution, each time a new task is spawned, an algo-
rithm evaluates the current demand for parallelism in the system and selects
a suitable task granularity – when the system is saturated, a coarse-grained
task version is selected, while fine-grained tasks are preferred when there is
a danger of hardware resources idling.

In experimental evaluations, this approach demonstrates good parallel
scalability even for very fine-grained tasks. Compared to existing systems,
we achieve performance improvements of around 5-10% for programs with
relatively course-grained tasks, while improvements of a factor of 6 or more
were measured compared to the best competing implementations in fine-
grained test cases.

Additional Contributions In addition to the research efforts outlined
above, which were driven primarily by Insieme-RS, it also enabled further
works as part of the Insieme project. The flexible loop scheduling policies of
Insieme-RS were adapted to provide automatic partitioning on heterogenous
GPU compute systems [50], while also using meta-data facilities to forward
information from the compiler. Furthermore, as part of a multi-objective
auto-tuning framework for parallel codes [44], the multi-versioning capabili-
ties of Insieme-RS work items were used to provide statically optimized loop
tiling parameters while maintaining the option of dynamically adjusting to
changing circumstances during program execution.
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7.2 Future Work

Insieme-RS and the whole Insieme project are ambitious efforts, and as such
many opportunities for future work and extensions remain. In particular,
our combined compiler and runtime approach is quite different from what
has been done before in compilers and runtime systems, and requires a re-
evaluation of many of the individual works in both fields from this new
perspective. Furthermore, due to the large problem space covered by the
Insieme-RS design, entire areas of research still remain unexplored.

Distributed Computing One major point of interest is full support for
distributed computing, which, although greatly influencing the design and
specification of the runtime model, is not yet fully implemented. Here, the
knowledge of and ability to manipulate data structures on the compiler side,
and being able to forward information about this data layout to the runtime
system, could open up new opportunities for automatic or semi-automatic
data distribution.

Data Placement The fact that Insieme-RS is aware of the data item de-
pendencies of each work item is not only relevant for fully distributed (clus-
ter) computing. Other potential fields of application include improving data
distribution in NUMA systems, or the automatic use of program-managed
scratchpad memories in existing GPUs and accelerators as well as upcoming
CPU architectures.

Multi-objective Optimization In another area, an even higher level of
interactivity between the compiler, the programmer using it and the run-
time system could enable new approaches in multi-objective optimization,
with the developer stating optimization goals for code regions in the orig-
inal program, the compiler interpreting and encoding these goals and the
runtime system working to implement them. We are currently investigating
an annotation-based specification language for multi-objective optimization
goals which will be processed by the Insieme compiler and forwarded to
Insieme-RS.



Appendices

141





Table of Symbols

S. Semantics P.

b A function returning the bandwidth of a connection in the
hardware model.

11

C The control flow graph of a sequential program. 19
Cp The control flow graph of a parallel program. 22
Cn The control flow graph of a parallel program with nondeter-

ministic choice.
24

CH A set of connections between entities in the hardware model. 10
d A data item. 37
D The set of all active data items during program execution. 37
E The set of edges between statements in a program control flow. 19
EH The set of hardware entities. 10
eH An entity in the hardware model 10
ε An Insieme-RS event. 49
Γ The set of parallel join operations in a program. 22
γ A parallel join operation. 22
g A communication group. 39
G The set of all active communication groups during program

execution.
39

H The directed graph representing a target hardware model. 10
k An Insieme-RS worker. 48
K The set of all active Workers in an Insieme-RS process. 48
l A function returning the latency of a connection in the hard-

ware model.
11

m A partial function to query meta-information. 25

Table 1: Table of symbols (1).
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S. Semantics P.

P A sequential program. 19
Pp A parallel program. 22
Pn A parallel program with nondeterministic choice. 24
Ψ The set of parallel spawn operations in a program. 22
ψ A parallel spawn operation. 22
q The resource requirement function of a work item. 26
R A single-exit single-entry program region 20
r A function capturing read accesses to a variable. 20
S The set of statements in a program. 19
Sp A set of program statements and parallel operations. 22
Sn A set of program statements, parallel and choice operations. 24
s A program statement. 19
ŝ The execution state of a program. 28
Sn The parallel speedup of a program with n-fold parallelism. 22
TH A type identifier in hardware model addressing. 17
τ The type of a program variable. 20
Θ The set of nondeterministic choice operations in a program. 24
θ A nondeterministic choice operation. 24
V A set of variables. 19

V̂ A set of variable assignments in a program state. 28
w A function capturing write accesses to a variable. 20
w A work item description. 25

W The set of all work item descriptions. 24
w A work item instance. 31
W The set of all active work item instances. 30
X The set of parallel communication operations in a program. 22
χ A parallel communication operation. 22

Table 2: Table of symbols (2).
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Rafael Mayo, and Enrique S Quintana-Ort́ı. An extension of the starss
programming model for platforms with multiple gpus. In Euro-Par
2009 Parallel Processing, pages 851–862. Springer, 2009.

[8] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler
transformations for high-performance computing. ACM Comput. Surv.,
26(4):345–420, December 1994.

[9] Lasinski T. Simon H. Bailey D., Barton J. The nas parallel benchmarks.
1991.

[10] Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday
Kumar Reddy Bondhugula, J. Ramanujam, Atanas Rountev, and P. Sa-
dayappan. Compiler-assisted dynamic scheduling for effective par-

153



154 BIBLIOGRAPHY

allelization of loop nests on multicore processors. SIGPLAN Not.,
44(4):219–228, February 2009.

[11] C. Bastoul. Improving data locality in static control programs. PhD
thesis, University Paris 6, Pierre et Marie Curie, France (2004).

[12] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quin-
ton, and D. Wonnacott. ompverify: polyhedral analysis for the openmp
programmer. In Proceedings of the 7th international conference on
OpenMP in the Petascale era, IWOMP’11, pages 37–53, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[13] Pieter Bellens, Josep M Perez, Rosa M Badia, and Jesus Labarta.
Cellss: a programming model for the cell be architecture. In SC 2006
Conference, Proceedings of the ACM/IEEE, pages 5–5. IEEE, 2006.

[14] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
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