
Insieme

A Compiler Infrastructure
for Parallel Programs

PhD thesis in computer science

by

Herbert Jordan

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of doctor of philosophy

advisor : Prof. Dr. Thomas Fahringer, Institute of Computer Science

Innsbruck, August 24, 2014

Certificate of Authorship and Originality

I certify that the work in this thesis has not previously been
submitted for a degree nor has it been submitted as part of
requirements for a degree except as fully acknowledged within
the text.

I also certify that the thesis has been written by me. Any help
that I have received in my research work and the preparation of
the thesis itself has been acknowledged. In addition, I certify
that all information sources and literature used are indicated in
the thesis.

Herbert Jordan, Innsbruck, August 24, 2014

iii

Abstract

Developing programs efficiently utilizing contemporary parallel
architectures is complex and time consuming. This is partially
due to the inherent problem of revealing parallelism within algo-
rithms and partially due to the fact that programming languages
and associated compilation tool have not (yet) been adapted to
the fundamental paradigm shift towards parallel systems trig-
gered more than a decade ago.

Available APIs and language extensions for programming
parallel architectures are treated by compilers like ordinary li-
braries utilized by an otherwise sequential host language. Their
parallel control flow remains hidden within opaque runtime li-
brary calls embedded within a sequential intermediate represen-
tation lacking the concepts of parallelism. Consequently, the tun-
ing and coordination of parallelism is clearly beyond the scope
of conventional optimizing compilers and hence left to the pro-
grammer or the runtime system.

The main objective of the Insieme infrastructure is to pro-
vide a platform for researching techniques simplifying the task
of developing efficient, scalable and portable parallel programs
by gradually off-loading the tuning and coordination efforts to
the compiler and the associated runtime system. It is based on a
novel, concise, unified, explicitly parallel, high-level intermediate
representation making the parallel control flow accessible to the
compiler and the associated runtime system. Thus it lays the
foundation for the development of reusable, sophisticated, static
and dynamic utilities handling the workload and data manage-
ment, the utilization of heterogeneous hardware and tuning steps
for the developer – who, in the end, may only have to focus on
revealing a maximum of parallelism.

Within this thesis, the novel design of the Insieme infrastruc-
ture is covered. A particular focus is laid on its internal inter-
mediate representation. Additional chapters elaborate analysis
and transformation techniques built on top of it. Furthermore,
a set of example applications based on the Insieme infrastruc-
ture simplifying the development of scalable parallel programs
are outlined.

v

Acknowledgements

When looking back on the path leading to this milestone in
my academic and personal life, there are many people without
whose support this would have not been possible. Foremost, I’d
like to thank my adviser, Prof. Thomas Fahringer, for challeng-
ing me into taking up my PhD studies in the first place and
for setting up an unique environment granting me the opportu-
nity to develop and pursue a great vision encompassing many of
my own ideas and interests over all those years. I’d also like to
thank those who lead me to this path, in particular Prof. Aart
Middeldorp and his CL department for raising my interest on
the theoretical side of computer science as well as my former
teacher Mag. Josef Steidl for fostering my interest in computer
science almost 15 years ago by teaching me good practices and
the importance of a ’clean working style’.

Besides teachers and mentors, fellow students are among the
most influential persons in a PhD student’s (academic) life. I’m
deeply grateful to all the members of the Distributed and Paral-
lel Systems group, in particular to the Insieme team, for provid-
ing me with an amazing, fun and fruitful working environment.
In particular Peter Thoman, for an extraordinarily efficient and
productive cooperation and many interesting, challenging and, if
nothing else, entertaining discussions, Simone Pellegrini for his
stubbornness forcing me to rethink and attest many of my steps,
both of them for teaching me C++, and Luis Ayuso for being a
buddy over the last years. Furthermore I’d like to thank Philipp
Gschwandtner, Klaus Kofler, Ivan Grasso and the rest of the In-
sieme team for making work fun as well as for all their relentless
efforts contributed to the project.

Finally, I’m in great gratitude to all those people support-
ing me in my private life throughout those years. My mother
Regina for her constant support, my father Herbert for his en-
couragement and Philipp, Stefan, Lisa and the it-boyz for their
friendship. Without you this would have not been possible.

I would also like to thank the external reviewers for providing
an additional perspective on this work.

vii

Contents

Certificate of Authorship iii

Abstract v

Acknowledgements vii

Table of Contents ix

1 Introduction 1

1.1 Motivation . 3

1.2 The State of the Art . 5

1.2.1 Compilers . 6

1.2.2 Popular Parallel APIs and Language Extensions . . . 11

1.3 Open Problems . 13

1.4 Thesis Hypothesis . 16

1.5 Organization . 17

2 Insieme 19

2.1 Contributions . 19

2.2 The Insieme Project . 20

2.2.1 Mission Statement . 20

2.2.2 Architecture . 21

2.2.3 Applications . 23

2.3 The Insieme Compiler . 25

2.4 The Insieme Runtime System 26

2.4.1 The Program Model 27

2.4.2 The System Model . 33

2.4.3 Runtime System Components 34

2.5 Summary . 35

3 INSPIRE 37

3.1 Contributions . 37

3.2 Design Goals . 38

3.3 Overview . 40

ix

x CONTENTS

3.3.1 Basic Language Design 41
3.3.2 INSPIRE’s Unified Parallel Model 43

3.4 Syntax . 49
3.4.1 Core Language Constructs 49
3.4.2 Parallel Primitives . 59

3.5 The Type System . 62
3.5.1 Domains . 63
3.5.2 Type Relations . 69
3.5.3 Typing Rules . 72
3.5.4 Type Checking and Type Inference 73

3.6 Valid Code Fragments . 82
3.6.1 Auxiliary Definitions 83
3.6.2 Valid Expressions . 85
3.6.3 Valid Statements . 87
3.6.4 Valid Programs . 87

3.7 Semantic . 88
3.7.1 The Small-Step Transition Relation 88
3.7.2 The Core Language Constructs 98

3.8 Extensions . 119
3.8.1 Extension Mechanisms 119
3.8.2 Important Extensions 121

3.9 Modeling Input Codes . 141
3.9.1 Sequential Host Language Constructs 141
3.9.2 Common Parallel Constructs 148
3.9.3 Parallel APIs . 149

3.10 Implementation . 155
3.10.1 Overall Structure . 155
3.10.2 Addressing Substructures 157
3.10.3 Manipulating Substructures 158

3.11 C++ Support . 159
3.11.1 Challenges and Requirements 159
3.11.2 Language Modifications 162
3.11.3 Modeling C++ Constructs 168

3.12 Summary . 171

4 Analyses 173
4.1 Contributions . 174
4.2 Navigating the IR . 174
4.3 Flow-Insensitive Analyses . 177

4.3.1 Type Checks and Validity Constraints 177
4.3.2 Code Features . 177
4.3.3 Local Transformations 183

4.4 Flow-Sensitive Analyses . 184
4.4.1 Overview on Flow-Sensitive Program Analysis 185

CONTENTS xi

4.4.2 Overview on the Insieme CBA Framework 198

4.4.3 The Constraint Solver 216

4.4.4 The Property Space Framework 228

4.4.5 The Constraint Generator Framework 242

4.4.6 Example Value Analyses 259

4.4.7 Mutable State Extension 269

4.4.8 Summary of the Insieme CBA Framework 288

4.5 Polyhedral Analyses . 289

4.5.1 Overview on the Polyhedral Model 289

4.5.2 Integration of Polyhedral Analyses 296

4.6 Dynamic Analyses . 296

4.6.1 Overview on Dynamic Analyses 297

4.6.2 Integration of Dynamic Analyses 298

4.7 Summary . 299

5 Transformations 301

5.1 Contributions . 301

5.2 Transforming the IR . 302

5.2.1 Node Mappers . 302

5.2.2 Manipulation Toolbox 304

5.2.3 Handling Annotations 306

5.3 Pattern Based Transformations 308

5.3.1 Design Goals . 309

5.3.2 Patterns and Replacements 311

5.3.3 Implementation . 326

5.3.4 Examples . 327

5.4 Polyhedral Transformations 330

5.4.1 Overview on Polyhedral Transformations 330

5.4.2 Integration of Polyhedral Transformations 333

5.5 The Transformation Framework 333

5.5.1 Transformations and Connectors 334

5.5.2 Implementation of Transformation Scripts 337

5.6 Summary . 338

6 Applications 339

6.1 Contributions . 339

6.2 Multi-Objective Auto-Tuning 340

6.2.1 Motivation . 341

6.2.2 Method . 342

6.2.3 Results . 346

6.2.4 Conclusion . 355

6.3 Automated Loop Scheduling 355

6.3.1 Motivation . 356

6.3.2 Method . 359

xii CONTENTS

6.3.3 Results . 363
6.3.4 Conclusion . 367

6.4 Improved Task Scheduling . 368
6.4.1 Motivation . 369
6.4.2 Method . 370
6.4.3 Results . 377
6.4.4 Conclusion . 380

6.5 Additional Insieme Applications 381
6.6 Summary . 381

7 Conclusion 383
7.1 Contributions . 384
7.2 Future Work . 386

Appendices 389

A The Insieme Sources 391
A.1 The Directory Structure . 391
A.2 The Modules . 391

List of Symbols 395

List of Acronyms 399

List of Figures 401

List of Tables 403

List of Definitions 405

List of Examples 409

Bibliography 411

Chapter 1

Introduction

High-level programming languages have been among the most essential cor-
nerstones for the rapid development of computer technology witnessed over
the course of the second half of the last century. The separation of software
developers from actual machine architectures by utilizing abstract machines
specified by programming languages resulted in portable applications and
a vigorous growth in complexity by gradually increased levels of abstrac-
tion. On the other end, hardware could be advanced independently of the
notation utilized for expressing programs. The enabling transition between
high-level languages favored by software developers and the actual underly-
ing hardware architectures has ever since been provided by compilers.

Beside their main role of converting high-level language constructs into
low-level sequences of machine processable instructions, compilers have also
always been required to conduct optimization steps to produce efficient code.
Decades of research and development have been invested in mitigating the
abstraction penalty introduced by the utilization of idealized, abstract ma-
chine models instead of the actual, bare-metal machine specification. A
number of contributions regarding techniques for the allocation of registers
and the selection and scheduling of instructions have led to tools generating
codes exhibiting sufficient quality in terms of computational efficiency for
the vast majority of applications.

Nevertheless, over time, computer architectures have undergone signifi-
cant changes in their quest for achieving everlasting growth in available com-
putational power. Techniques including pipelining, branch predication, su-
perscalar architectures, out-of-order execution, very long instruction words
(VLIW), multi-level hierarchies of data and instruction caches, single in-
struction multiple data instructions (SIMD), simultaneous multithreading
(SMT), symmetric multiprocessing (SMP), non-uniform memory access sys-
tems (NUMA), and heterogeneous many-core architectures (GPGPUs, FP-
GAs, big.LITTLE architectures) are employed these days by hardware ven-
dors to provide a maximum of computational power. The proper utilization

1

2 CHAPTER 1. INTRODUCTION

of such resources for performance-critical programs is the main challenges
to be faced by the performance oriented computing community today.

Several of the enumerated techniques are well supported by contem-
porary compilers. The management of pipelines, branch predication, su-
perscalar architectures, out-of-order execution and VLIW architectures are
natural extensions of the responsibilities of an optimizing compiler and can
be conducted within the scope of their typical low-level three-address code
based intermediate representations (IRs). Consequently, none of those issues
require any manual participation of the end user, which, in the context of
compilers, corresponds to the software developer. On the other hand, when
aiming for performance improving techniques beyond the basic instruction
level, e.g. the efficient utilization of data caches and available SIMD in-
structions, user involvement is still (partially) required these days. While,
after almost two decades of research, contemporary compilers are capable
of restructuring program code to a certain extent to harness the benefits
of cache hierarchies and modern vector units, more complex cases require
manual code-restructuring operations and/or user provided annotations to
be identified and properly utilized. The improvement of the utilization of
even more coarse-grained hardware concepts, including SMT, SMP, NUMA,
heterogeneous architectures, and even full clusters of computation notes, is
clearly beyond the scope of conventional optimization compilers. The man-
agement of applications utilizing such resources is left to the developer. Ac-
cess is granted by libraries (e.g. Pthread, MPI, OpenCL) or minor language
extensions masking the utilization of internal libraries (e.g. OpenMP, Cilk).

Today’s hardware is far beyond the available architectures at the time
when the foundations for the construction of compilers have been estab-
lished. In particular, parallel architectures have become the de facto stan-
dard for any scale of device throughout the past decade. Yet most program-
ming languages and their associated compilers are still based on sequential
application and architecture models. The exposure, management and tun-
ing of parallelism – vital for achieving satisfying resource utilization on all
contemporary architectures – is left to the end user although many of the
associated tasks are mechanical and could be handled by a future generation
of advanced compiler based solutions [72, 82, 74, 97, 78].

The Insieme Compiler and Runtime infrastructure presented in this the-
sis aims for the establishment of a developer platform for tools supporting
end users in exposing, managing and tuning parallel programs, thereby uti-
lizing sophisticated compiler and runtime system based techniques. Those
are introducing capabilities which are beyond the scope of conventional, pure
library based approaches for managing parallel programs. Ultimately, this
provides a step toward successfully reducing the abstraction penalty for pro-
gramming complex, parallel, heterogeneous architectures using simple, ab-
stract, high-level programming models. Furthermore, the automated tuning

1.1. MOTIVATION 3

of performance critical aspects can significantly improve the performance
portability of programs and the productivity of software developers.

1.1 Motivation

The motivation for this present work is best illustrated from a developers
point of view. Consider the common case of some simulation frequently
encountered within scientific domains. Equipped with a basic idea of the
associated algorithm, a software developer is instructed to built a corre-
sponding application. To do so, he picks some sort of high-level language
of his choice and starts developing an implementation of the requested al-
gorithm and its associated data structures. Once completed, the resulting
program is applied on relevant input data and the job is done – at least one
might think so.

Following this standard procedure the resulting application is likely to
be a sequential application utilizing only a single core simply due to the fact
that most general purpose languages are sequential imperative languages.
Thus it only makes use of a small fraction of the available computational
power of state-of-the-art desktop and server architectures. Still, to a cer-
tain extent, compilers attempt to ensure that this single core is efficiently
utilized by applying a variety of low-level optimizations. However, no other
resources, in particular no other cores or heterogeneous computing devices
within the system, are contributing to the simulation. If the time required
for conducting the desired computation is exceeding acceptable boundaries,
the focus is quickly drawn onto improving the utilization of all available
resources.

Sequential Improvements Let us assume that algorithmic improvements
targeting the reduction of the computational complexity of the involved op-
erations have been applied and the resulting program is efficient from an
algorithmic point of view. Still, in most cases its sequential performance
can be significantly increased by tuning its implementation. For instance,
the utilization of the one CPU core that is used at the current state can be
further improved by restructuring computationally expensive code regions
to access data in a cache-friendly way or to use SIMD instructions. Already
these first steps require a fair amount of knowledge regarding the targeted
architectures as well as code transformations and their effects. In many
cases it also involves the fine-tuning of various transformation parameters
(e.g. loop-tiling factors). Furthermore, several of those properties have to
be adjusted according to the properties of a specific target system (e.g. its
cache geometry). Hence those steps are already influencing the performance
portability of the resulting application. Yet combined, they have the poten-
tial of increasing execution speed by an order of magnitude [49].

4 CHAPTER 1. INTRODUCTION

Parallelization After algorithmic and sequential code optimizations have
been exhausted, the next natural step is to engage additional computation
resources like extra CPU cores or GPUs available on the targeted system.
Depending on the type of provided resources, the developer has to learn how
to use corresponding APIs/language extensions granting access to those by
understanding the underlying programming models. He then has to decom-
pose his original implementation such that it can be mapped to the corre-
sponding models, handle communication, synchronization and load balanc-
ing issues, and tune parameters exposed by the involved primitives including
the number of involved threads, loop scheduling policies, cut-off parameters
for nested recursive parallelism, and global and local work group sizes for
kernels processed on GPUs. All those steps require a fair amount of knowl-
edge of the underlying concepts and are of course depending on specific
properties of the targeted system.

The problem gets even worse when, due to the structure of the targeted
system, multiple parallel APIs have to be utilize within the same program.
In particular when targeting a distributed memory system consisting of a
variety of nodes exhibiting multiple multi-core CPUs and potentially even
GPUs, the resulting program code is decomposing the original implementa-
tion among a mixture of e.g. MPI, OpenMP, Cilk, Pthread, OpenCL and
CUDA calls. Coordinating such a program in a flexible way – such that it
can be successfully migrated to another target system exhibiting a different
composition of computational resources – is an extremely challenging task
easily exceeding the complexity of the actual problem to be solved by the
original program. In particular a large portion of the resulting code will be
devoted to this task interspersing the program and resulting in hardly main-
tainable code. Also the reusability and composability of the resulting code
fragments is limited due to the required intrinsic management of resources.

Tuning Many of the techniques for improving the performance of applica-
tions involve the specification of parameters for the utilized primitives (e.g.
tile sizes, number of threads, load balancing policies). Most of those are
heavily depending on the context within the application itself, the phase of
the application execution, the targeted architecture, and potential external
load on the target system. Hence, several of the decisions made regarding
those parameters need to be reconsidered at least when moving to a different
architecture – ideally continuously in real time during every execution of the
program. The latter requires the capability to monitor the program progress
as well as its environment to steer its execution – a capability definitely not
provided out of the box by conventional general purpose languages nor their
associated compiler infrastructures.

1.2. THE STATE OF THE ART 5

API and Tool Support Within contemporary applications all those deci-
sions regarding the management of parallel executions are left to the end user
and will therefore be expressed implicitly or explicitly within the applica-
tion code. Even text books on this subject provide guidelines demonstrating
hard-coded decisions regarding the number of threads and the distribution
of work load [112]. Consequently, since most parallelism is orchestrated by
compiled code within parallel applications, tools influencing those essential
decisions are extremely difficult to realize. This is particularly true for codes
based on low level APIs such as Pthreads, MPI, OpenCL and CUDA. For
the latter two the host-part of an application is essentially the hard-coded
dependency graph and scheduling strategy of the involved GPU operations.
Altering those requires the program code to be modified – a task only to
be conducted by compiler based techniques. Tuning utilities are therefore
mostly focusing on properties of the implementations of the utilized APIs,
e.g. buffer sizes of message queues or message exchange protocols utilized
within MPI implementations [79, 77].

A much more flexible approach is demonstrated by higher-level solutions
such as OpenMP. By simply marking a given loop to be executed in paral-
lel, performance critical decisions, including the number of threads or the
scheduling policies, are left to the involved sub-systems. This way smart
and flexible mechanisms can be employed considering a variety of the static
and dynamic influences on those decisions – comfortably concealed from the
end user.

Ideally this division of labor between the developer and the compiler
could be adapted for other targeted architectures as well. The developer’s
obligation could be reduced to focus on the identification of potential paral-
lelism and tuning opportunities while the compiler is conducting the neces-
sary mechanical code-restructuring operations and – in cooperation with a
corresponding runtime system – the load management and tuning of the in-
volved parameters utilizing sophisticated, reusable techniques and solutions.
Such a system would have the potential to enable a broader range of soft-
ware developers to effectively built applications efficiently utilizing parallel,
heterogeneous architectures encountered within all contemporary computa-
tional devices. Furthermore, support for new parallel architectures could be
integrated by extending compiler and runtime tools – a custom successfully
employed for sequential codes and architectures since the dawn of compiler
technology – not by manually porting existing applications as it is common
practice these days.

1.2 The State of the Art

The ideal development environment outlined within the motivation sec-
tion comprises compiler and runtime system components capable of steering

6 CHAPTER 1. INTRODUCTION

performance-critical aspects of (parallel) applications over the coarse of their
execution. The Insieme research infrastructure, covered in detail within
Chapter 2, provides a platform for the development of such tools. One of its
central component is INSPIRE – the INsieme Parallel Intermediate REp-
resentation (see Chapter 3) – which unifies the representation of parallel
APIs and language extensions, thereby establishing a common foundation
for analysis, transformations and program optimizations. The Insieme in-
frastructure, and in particular INSPIRE and its associated analysis and
transformation utilities, is the main topic of this thesis, corroborating the
thesis’s hypothesis developed at the end of this introduction (see Section 1.4)

To provide a comparison to preexisting systems, the architecture of a few
state-of-the-art compiler and parallel library infrastructures utilized in the
context of performance oriented and high performance computing (HPC)
are outlined within this section.

1.2.1 Compilers

A typical compiler infrastructure consists of five major components. The
foundation is laid by an Intermediate Representation (IR) and its associated
analysis and transformation utilities. Input code is converted by Frontends
into the IR and Backends are utilized to synthesize target code. Advanced
abstract operations, e.g. resource management operations, and dynamic
interpretation and/or compilation support may be provided by an optional
Runtime System component. The fifth component, the Compiler Driver,
is orchestrating the compilation process. In particular, the driver governs
the application of compiler passes and hence the sequence of conducted
optimization steps. It also constitutes the interface offered to the end user.

The central element of every compiler infrastructure is the design of the
intermediate language/representation1. It determines the scope of applica-
ble analysis and transformations and hence the potential domains targeted
by optimization techniques implemented on top of those. Therefore a spe-
cial focus will be placed on the IRs utilized by the available infrastructures
discussed below. In general, compiler IRs can be associated with one of the
following three categories:

• low-level IRs - representations that are modeling programs on a
level close to machine code. Code is typically represented using three-
address code instructions, organized within simple lists or control flow
graphs (CFGs). IRs on this level provide the necessary foundation for

1Strictly speaking, one would have to distinguish the intermediate language (=the
formal language and its associated semantic internally utilized to represent programs)
and the intermediate representation (=the data structure utilized for its representation).
However, since one is the physical manifestation of the other, we use the terms intermediate
language and representation interchangeably within this thesis unless explicitly stated
otherwise. In particular we use the acronym IR to refer to both of them.

1.2. THE STATE OF THE ART 7

instruction level optimizations, yet are too low-level for a convenient
implementation of loop and array level analyses and transformations.

• high-level IRs - representations that are close or identical to the
structure of the handled high-level source language and implemented
based on an abstract syntax tree (AST). High-level IRs are the first
choice within source-to-source compilers and provide large high-level
optimization potential. Nevertheless, the rich semantic of high-level
languages significantly increases the complexity of analyzing this kind
of IRs, making complete analysis frameworks based on those de facto
unfeasible [114, 65].

• mixed-level IRs - this class of IRs is extending low-level IR instruc-
tions by a selected set of performance relevant high-level constructs
like loops, function calls or array accesses. The additional semantic
information can be utilized within analyses and transformations.

Examples for each of those categories will be encountered in the following
survey on available compiler infrastructures.

State of the Art Compiler Infrastructures

Among the available compiler infrastructures the GCC and LLVM projects
occupy a special position due to their high relevance in software develop-
ment.

• GCC – the GNU Compiler Collection – is the default compiler in-
frastructure for many Linux distributions and supports a large variety
of input languages and target architectures. Internally three levels of
IRs are utilized – GENERIC, GIMPLE and RTL [61]. GENERIC is
an AST like format utilized by a variety of frontends as a common
format for constructing full representations of functions before being
lowered to GIMPLE, a mix-level IR based on three-address code com-
bined with rudimentary control structures. Depending on the kind of
utilized structures high-, low- and SSA-GIMPLE are distinguished. In
the GCC backends GIMPLE is further lowered to RTL, the Register
Transfer Language. This very low-level IR consists of several hundred
instructions organized in roughly a dozen categories.

Optimizations including dead code elimination, partial redundancy
elimination, constant propagation, array based optimizations and vec-
torization are mostly operating on the target independent GIMPLE
level due to the availability of extra high-level control flow information.
Machine dependent optimizations focusing on instruction selection and
scheduling are applied on the RTL level.

8 CHAPTER 1. INTRODUCTION

GCC supports the OpenMP language extension for C, C++ and For-
tran. The corresponding pragmas are handled by the frontends dur-
ing the GENERIC to high-GIMPLE conversion by introducing cor-
responding library calls targeting GOMP library routines [69]. From
this stage on the parallel constructs are handled like ordinary func-
tion calls by analysis and transformation steps. Also for other parallel
libraries no special treatment is conducted.

• LLVM is a collection of modular and reusable compiler and tool chain
technologies. Unlike GCC the LLVM infrastructure is much closer
to a textbook three-phase design (multiple frontends, one IR, multi-
ple backends) by restricting itself to a single, complete intermediate
representation. The so called LLVM IR is a low-level assembly like
three-address code representation offering a total of 31 RISC like in-
structions. It is based on an infinite amount of virtual registers and
enforces static single assignment form (SSA). A rather surprising trait
of the LLVM IR is its strict typing system supporting a variety of
primitive types and type constructors as well as the abstraction of
calling conventions and the explicit handling of stack and heap mem-
ory on the IR level [57]. Nevertheless, loops and other control flow
constructs are resolved into corresponding jump instructions as usual
for low-level IRs.

The LLVM project comprises a variety of frontends, backends and
optimization passes. Furthermore, the LLVM IR has been designed
as a suitable input format for link-time optimizations and lightweight
just-in-time compilers.

As within GCC, parallel libraries are treated like any other library.
Hence, their side effects are not considered. Support for OpenMP
primitives is currently under development (state March 2014) and will
be integrated into the frontend, similar to the GCC approach. Since
the LLVM IR is a low-level RISC like representation, constructs for
threads and other OS-level objects are clearly beyond its scope.

Beside those two big open source projects a variety of proprietary com-
pilers including Intel’s icc [45] and the PGI compiler [39] are available. For
those a similar architecture than for the open source projects can be ex-
pected. For all of those the utilized internal IR is a rather low-level sequen-
tial representation of application code and parallel features are integrated
via opaque external library calls.

Nevertheless, within some research compilers, IRs designed for support-
ing parallel aspects have been realized. For instance, the Stanford University
Intermediate Format (SUIF) [113, 6] is a mixed-level IR based on conven-
tional low-level RISC-like operations extended by three high-level constructs
representing loops, conditional statements and array accesses. This extra

1.2. THE STATE OF THE ART 9

information is utilized for array-level optimizations and loop-level paral-
lelization. Furthermore SUIF supports the coverage of multiple translation
units within a single instance, thereby expanding the applicability of inter-
procedural analyses. The SCORE IR [110] is another mixed-level IR con-
necting higher-level constructs with low-level three-address code operations.
However, instead of a conventional control flow graph utilized by other low-
/mixed-level IRs the representation is based on a program dependency graph
explicitly revealing concurrency between code fragments.

All of these approaches remain on the level of three-address code based
representations losing structural information present within the original in-
put language [60]. As a result, many other (research) projects relay on the
concept of source-to-source compilers for tuning (parallel) input codes.

Source-to-Source Compiler Infrastructures

Unlike conventional compilers accepting high-level code and converting it
into a lower-level language, source-to-source compilers are preserving the
level of abstraction. In special cases the input language may even be equiv-
alent to the target language. For instance, an implementation of Cilk can
be realized by parsing input files and replacing the Cilk keywords by corre-
sponding C-based implementations. The result is pure C code to be compiled
by a third-party compiler.

Two of the benefits of source-to-source based compiler solutions are the
portability and the support for low-level compiler optimizations inherited
for free from third-party compilers utilized for compiling the generated tar-
get code. Another is the high-level structure of the internal intermediate
representation. The latter is particular useful for the implementation of lan-
guage features (OpenMP, Cilk) or advanced performance improving com-
piler transformations commonly expressed based on high-level imperative
language constructs including loops, data structures and message send/re-
ceive operations [8]. Also, by using a comparable or even the same level
of abstraction than the input code, analysis results, performance data or
identified problems can be reported back to the end user more naturally.

The development of robust source-to-source program analysis and trans-
formation tools is supported by several infrastructures, including the ROSE
compiler infrastructure [88] and Clang, the LLVM C/C++ frontend [3].
Both provide product-quality frontends for their respective input languages
(C,C++,Objective-C,Fortran,. . .) producing very detailed, AST-based rep-
resentations of processed input codes. Those ASTs, which form the IR
of derived source-to-source utilities, are designed to model all the details
present within the original input code – including comments and code for-
matting details – to be capable of accurately reproducing the input. They
may therefore be utilized as the foundation of refactoring utilities within
IDEs. However, as a result, the IR consists of hundreds of different node

10 CHAPTER 1. INTRODUCTION

types and their semantic is based on the corresponding language standards
for C/C++/Objective-C, making static analyses challenging, as observed by
the developers of Clang [114, 2, 1]:

“. . . Support in the frontend for C++ language features, how-
ever, does not automatically translate into support for those fea-
tures in the static analyzer. Language features need to be specif-
ically modeled in the static analyzer so their semantics can be
properly analyzed. Support for analyzing C++ and Objective-
C++ files is currently extremely limited, . . . ”

One way to reduce the complexity of implementing analyses is to utilize
abstractions. For instance, the high-level IR of the Cetus source-to-source
compiler [27, 47] introduces a layer of interface based abstractions between
their AST like model of translation units and procedures and the implemen-
tation of analyses and passes. Thus, more abstract views on the underlying
node structure may be utilized whenever applicable. Another approach to
facilitate the handling of high-level IRs is to reduce the number of involved
constructs, hence node types. The IPR representation [30], an alterna-
tive high-level intermediate representation, aims on reducing the number
of nodes involved in representing C++ codes within a AST by enforcing
regular structures – resulting in ∼ 200 node types, compared to the ∼ 700
productions of the ISO C++ grammar. The C intermediate language (CIL)
[65] goes one step further by eliminating syntactic sugar, semantically over-
loaded constructs and ambiguities from a conventional C AST resulting in
a total of ∼ 40 node types. CILpp [114] extends this effort to C++ appli-
cations. Clearly, a small, assessable, regular set of node types simplifies the
implementation of analyses and transformations. However, none of those
representations and their derived static analysis frameworks consider the
existence of parallel control flows.

Intermediate Representations for Parallel Codes

Early attempts to add concurrent concepts to SSA based IRs focused on
a restricted set of parallel codes based on cobegin/coend parallel sections
[59, 70]. Pop et al. [84] presented a mechanism enhancing the support for
full-blown, OpenMP like, parallel constructs within IRs designed for single-
threaded codes. It preserves the optimization potential of classical low-
level, sequential optimizations in the presence of parallel constructs. More
recently, the Sequential to Parallel Intermediate Representation Extension
(SPIRE) has been proposed to augment mid- to high-level IRs to cover paral-
lel constructs [53]. It suggests ten primitives to be introduced into sequential
IRs to cover parallel operations. However, SPIRE is lacking the concept of
thread groups and hence the possibility of collective work and data sharing
constructs. These constructs are required when encoding e.g. nontrivial

1.2. THE STATE OF THE ART 11

OpenMP parallel loops contained within larger parallel regions as well as
for structuring nested parallelism. Furthermore, extending conventional IRs
by parallel constructs is not resolving the various issues preventing coarse-
grained, high-level program restructuring operations, analyses and parallel
optimizations as outlined above. Also, none of those techniques are present
in available compiler infrastructures.

Finally, on a related area, intermediate representations like the Standard
Portable Intermediate Representation (SPIR) [38] have been developed to
aid the development of compiler supported accelerator technologies. SPIR
provides a standard for representing OpenCL kernels in an input language
independent format. The objective is to enable additional languages to be
utilized for implementing OpenCL kernels. However, while presenting an
IR in the context of parallel applications, SPIR is essentially a variation of
the LLVM IR merely modeling the sequential execution of a single OpenCL
work item. It does neither (explicitly) cover the parallelism among work
items nor the interaction with the host code.

Polyhedral Model based Compilers

A borderline case for an intermediate representation is provided by the poly-
hedral model (PM) [12]. It is based on a mathematical model consisting of
a set of linear equations describing the execution of Static Control Parts
(SCoPs). SCoPs are code regions consisting of arbitrarily nested loops and
conditional statements exclusively exhibiting data independent, linear con-
trol flow conditions. Hence, the PM can not be utilized as a universal com-
piler IR. Nevertheless, for code fragments satisfying the SCoP constraints
the mathematical formalism provides a powerful foundation for analyses and
the composition of transformations [22]. It is therefore increasingly utilized
for loop-level optimizations within compiler infrastructures, including GCC
[85] and LLVM [37].

Besides its usage as an auxiliary representation for analyses and trans-
formations the polyhedral model is also the foundation for high-level code
transformation tools targeting SCoP friendly application domains, e.g. lin-
ear algebra or stencil codes. Examples are PLUTO [5] and the CHiLL
framework [20]. In particular, within the PM, data dependencies between
loop iterations and individual statements can be accurately computed on
a per-instance basis. It therefore provides a convenient foundation for au-
tomatic parallelization utilities targeting shared and distributed memory
systems [26].

1.2.2 Popular Parallel APIs and Language Extensions

Since general purpose languages like C/C++ exhibit no native language
constructs for the parallel execution of instructions those features have to

12 CHAPTER 1. INTRODUCTION

be integrated via libraries and/or language extensions. The following enu-
meration outlines several of the most prominent of those:

• The POSIX Thread library (Pthread) [67] is a standardized interface
to the threading and synchronization capabilities offered by modern
operating systems. It provides a portable foundation for implement-
ing parallel libraries and runtime systems, yet may also be accessed
directly by the end users. However, as a bare-metal interface no sup-
port for scheduling or load management operations is provided, except
for the OS-level scheduler. Also, since it is based on OS kernel support,
its domain is restricted to CPU cores within a single node.

• OpenMP [25] is a mixture of language annotations (pragmas) and li-
brary routines providing a higher-level interface to shared memory
parallel resources. Concepts including thread groups processing paral-
lel regions, loops, and tasks as well as synchronization primitives like
barriers, exclusive access to critical regions, and atomic operations
can be utilized at a high level of abstraction, introducing the potential
for runtime system and compiler based tuning. Although originally
designed exclusively for multi-core shared memory systems, recent ex-
tensions introduced in Version 4.0 broadened its scope to accelerators.

• Cilk [17] extends C/C++ by a small set of additional keywords indi-
cating the potential of parallel processable function calls and, in recent
versions, loop iterations. In particular within nested recursive applica-
tions this simple model provides an elegant mean for expressing paral-
lelism. The Cilk compiler/runtime system influences the execution of
the resulting application by determining when to actually utilize the
indicated potential parallelism as well as by conducting load balancing
among the involved computational resources. Cilk is targeting shared
memory architectures.

• The Message Passing Interface (MPI) [92] is a standardized interface
for exchanging messages among processes running on different nodes of
a distributed memory system. However, it has also been successfully
applied to system-on-a-chip architectures providing numerous cores.
The offered primitives included low-level point-to-point send/receive
operations as well as more complex collective operations for distribut-
ing and aggregating data among the involved processes. Due to the
end user’s direct utilization of the offered communication primitives,
the tuning potential of those is, in general, restricted to their imple-
mentation. Also, the utilization of local resources within a node can be
improved by combining MPI with a shared-memory API. Furthermore,
unlike most other APIs, MPI parallelism is always covering the entire
application and not restrictable to individual regions. This excludes
MPI from being utilized effectively within libraries.

1.3. OPEN PROBLEMS 13

• OpenCL [94] is an API for utilizing heterogeneous computation de-
vices, in particular GPGPUs, in a vendor independent fashion. Simi-
lar to Pthreads and MPI it is a low-level API providing the end user
a large amount of control. Applications are divided into a host and
a kernel part. The host part is a standard application processed by
a CPU orchestrating the data movements between devices (in general
GPGPUs and CPUs do not share a common address space) and the
execution of kernels on those devices. To allow device vendors to flexi-
bly adjust the instruction set of their products, kernels are just-in-time
compiled for a particular target device by the host program. CUDA
[71] is a proprietary alternative following similar concepts, yet hiding
some of the necessary API calls within C/C++ language extensions.

• With the new C++11 language standard libraries supporting higher-
level parallel primitives have been introduced. The support comprises
platform independent classes representing threads, mutexes, locks and
conditional variables – all standardized C++ wrappers of concepts
offered by basic system libraries including Pthreads. However, in ad-
dition to those, futures and an async operator is offered. This operator
triggers a potential concurrent evaluation of an expression similar to
the approach taken by Cilk. The compiler and/or the runtime system
implementing this operator therefore gains access to similar points of
influence as within Cilk applications.

Utilizing parallel libraries for expressing concurrency within applications
has several advantages over language or compiler based approaches. For
once, new and experimental features can be developed without the require-
ment of customizing a compiler. Furthermore, library based parallel ele-
ments may be flexibly composed to form more abstract parallel constructs.
On the other hand the capabilities of libraries are limited in the sense that
no C/C++ library managing a user defined task will ever be capable of in-
specting the structure of the processed task to derive hints on how to handle
it. Nor will a library be capable of rewriting a C/C++ code fragment to
be processable on a GPU, as it is partially supported by the new OpenMP
4.0 standard. This kind of operations require the analytic capabilities and
influence of a compiler. However, as it has become obvious within the pre-
vious section, their IRs – their foundation for reasoning about programs –
are in general not aware of parallel control flows at all.

1.3 Open Problems

Within the motivation section several issues to be faced by developers aiming
for an efficient utilization of contemporary architectures have been outlined.
Ideally compiler infrastructures and associated parallel APIs would provide

14 CHAPTER 1. INTRODUCTION

solutions for those problems. However, as has been described in the state-
of-the-art section, their development is (naturally) lagging behind. Among
the biggest shortcomings are:

• Sequential IRs: Conventional compilers treat parallel APIs and lan-
guage extensions like ordinary library calls, manifested by invocations
of opaque runtime system routines embedded in an purely sequential
intermediate representation. Consequently, the tuning and coordina-
tion of coarse-grained parallelism is clearly beyond their scope. This
obligation is left to the API implementations and/or the end user.
Yet library implementations lack the analytic power and influence of
compilers, resulting in natural limitations of their capabilities.

• Unsuitable IR abstraction levels: Conventional compilers like
GCC or LLVM are based on low-level three-address code based rep-
resentations since those provide the highest flexibility for instruction
level optimizations and a convenient, uniform and compact basis for
program analysis. However, instruction level IRs are not an adequate
format to deal with coarse-grained thread-level parallelism and the
associated data management. Available high-level IRs including the
ROSE IR or the Clang AST, on the other end, are too close to their
input languages and their plethora of language constructs to be ef-
fectively statically analyzed. Research approaches like CIL providing
streamlined high-level representations of input codes are working to-
ward an adequate level of granularity, yet are still ignoring parallelism.

• Lack of global perspective: Most “global” compiler optimizations
on low-level IRs are referring to full-procedure optimizations. Inter-
procedural analyses and optimizations are less frequently encountered.
Furthermore, the translation unit (TU) oriented compilation of codes
is narrowing the focus of compilers onto individual TUs, yet the con-
trol flow within the final application may frequently cross translation
unit boundaries. In particular, this applies to parallel control flows im-
plemented utilizing library support. Link-time-optimizations as they
are offered by e.g. LLVM have the potential to overcome these limita-
tions. However, at this stage, the input code has already been lowered
to the level of instructions. Consequently, coarse-grained thread-level
manipulations and the reorganization of data structures is beyond the
scope of these approaches.

• Lack of hardware abstraction: Many of the available APIs and
language extensions are designed for a specific type of hardware archi-
tecture, e.g. OpenMP for shared memory, MPI for distributed mem-
ory systems and CUDA for accelerators. Consequently the utilized
programming models and the set of provided constructs result in ap-
plications fitting those targeted systems. However, parallelism within

1.3. OPEN PROBLEMS 15

the program code – which would actually be target system indepen-
dent – is in general not expressed in a generic way such that it may
be automatically ported to a different type of system.

• Hybrid applications: State-of-the-art parallel APIs and languages
have been designed for specific hardware concepts offering parallel
processing capabilities (distributed memory systems, shared memory
systems, GPUs,. . .). However, contemporary architectures frequently
provide a mixture of those elements resulting in the requirement of
composing multiple APIs within a single application to harness their
full potential. In particular on clusters, hybrid codes utilizing MPI
and OpenMP or OpenCL can be encountered [89]. Yet the implemen-
tations of the involved libraries are not interacting with each other to
perform coordination efforts. This obligation is left to the program-
mer.

• The parallel composition problem: Due to the necessary intrin-
sic implicit or explicit resource management of parallel codes based
on the available APIs, their composability is limited. MPI codes, for
instance, depend on single-program, multiple data parallelism effec-
tively excluding its utilization within flexibly composable libraries.
Also, combining libraries utilizing different parallel APIs (e.g. Cilk
vs. OpenMP vs. C++11 threads) results in an uncoordinated state
where different parts of the same application may sacrifice efficiency
or even disturb each other by competing for resources. Consequently
general purpose libraries are rarely parallelized. Parallelization is left
to the top-level client code utilizing them. However, in a world where
the performance of architectures is increasingly dependent on maxi-
mizing the expressed concurrency within applications, this approach
may no longer be sufficient.

• Lack of research infrastructures: While there are sophisticated
infrastructures for researching sequential program optimizations or
codes fitting the polyhedral model, parallel optimizations are restricted
to runtime systems, library approaches or ad-hoc implementations of
source-to-source transformations. A common, unified formalism for
representing and reasoning about parallel applications would provide
the foundation for reusable, sophisticated analysis and optimization
tools and provide a valuable platform for future research and develop-
ment in the area of parallel languages and associated compiler tech-
nologies.

Some of those problems, in particular the software-engineering issues
including the lack of hardware abstraction and parallel composition, are
targeted by a new generation of parallel languages, including X10 [19],

16 CHAPTER 1. INTRODUCTION

Habanero-Java [10], Habanero-C [28], Charm++ [52] and Chapel [18]. In
general those are based on source-to-source compilers translating their in-
put codes to conventional C++ or Java codes referencing required runtime
system functionality. The major issue regarding those approaches, however,
is the dependency on a new programming language and the associated cod-
ing and porting effort for existing libraries and applications. The Insieme
project follows a different approach based on C/C++ based mainstream
APIs and language extensions.

1.4 Thesis Hypothesis

This thesis is based on the following hypothesis which drove all the associ-
ated work:

A novel source-to-source compiler architecture based on unified,
concise, high-level, holistic and explicitly parallel program models
can open up a whole new level of influence of the compiler and
the runtime system on the performance of (parallel) programs.
This influence can provide the foundation for the development
of tools gradually off-loading the load management, tuning and
coordination efforts from the software developers to the compiler
and the associated runtime system resulting in increased produc-
tivity and performance portability.

The Insieme project corroborates this hypothesis by constituting such an
architectures. It aims on the establishment of an infrastructure for the
static and dynamic tuning of parallel applications processed by heteroge-
neous architectures. It is based on a unified, concise, high-level, language
and API independent, parallelism-aware compiler IR for static analyses and
code transformations as well as a unified, dynamic program model utilized
by an associated runtime system for managing the execution of parallel codes
within distributed, heterogeneous environments. In this infrastructure, sup-
ported parallel APIs are modeled by explicit parallel constructs within the
compiler IR reflecting their effects. Parallel APIs are hence no longer mere
external libraries. Furthermore, by unifying their representation, compat-
ibility among APIs is achieved. Also, since within the runtime system all
parallel operations are managed by a common runtime instance, the coordi-
nation among involved APIs is implicitly established. The full system can
be considered as a holistic implementation of a variety of state-of-the-art
parallel APIs and language extensions realized by utilizing compiler and
runtime system based techniques. Furthermore it serves as a research plat-
form providing the foundation for developing advanced parallel language
constructs, static or dynamic program analyses, optimizations and applica-
tion tuning strategies. In particular hybrid optimizations based on compiler
aided dynamic runtime optimizations may be realized.

1.5. ORGANIZATION 17

The overall system design of the Insieme infrastructure and in particular
the Insieme compiler IR (INSPIRE) and its associated tools is discussed in
detail within the following chapters.

1.5 Organization

This thesis is structured into five major chapters. Chapter 2 provides an
overview on the Insieme project with a particular focus on the runtime sys-
tem and its dynamic program model in Section 2.4. Furthermore, the role of
the Insieme Compiler and the Insieme Parallel Intermediate Representation
(INSPIRE) is covered. A detailed formal specification of the latter is the
focus of Chapter 3, encompassing syntactic and semantic aspects as well as
examples demonstrating its applicability for accurately modeling prominent
constructs encountered within a variety of parallel languages and APIs. It
is followed by Chapter 4, elaborating techniques devised for analyzing pro-
grams within the Insieme compiler and Chapter 5 introducing utilities de-
veloped for transforming INSPIRE codes. Together those utilities provide
an extendable tool set offered to developers to built Insieme based utilities
for managing and tuning the execution of performance-critical codes. Ex-
amples of such utilities are covered in Chapter 6 by discussing a verity of
Insieme based research work and tuning utilities established in the context
of this thesis. Those demonstrate the suitability of the Insieme architecture,
its high-level program models, and its associated tool sets for conducting re-
search related to the development and tuning of scalable, parallel programs.

Chapter 2

Insieme

The content presented in this thesis has been researched and developed to
provide the foundation of the Insieme project [29]. Consequently, the re-
quirements on the presented techniques and solutions have been heavily
influenced by the project’s mission statement and the targeted fields of ap-
plication. Hence, to establish context, a general introduction on the Insieme
project is provided within this chapter. It starts by outlining its mission
statement, its architectural orchestration of the involved software entities,
and a list of potential applications. It is followed by a high-level introduc-
tion to the two main components of the project, the Insieme Compiler and
the Insieme Runtime System.

The development of the Insieme project and the architecture of the in-
volved components are among the major contributions made during the
course of the research providing the foundation of this thesis.

2.1 Contributions

The major contributions of this chapter are:

• the development of a novel infrastructure comprising a compiler and
a runtime system component for analyzing, transforming and tuning
coarse grained parallel programs statically – during their compilation –
as well as dynamically – during their execution – utilizing information
obtained by compiler based analyses and the observation of the actual
program execution as well as the execution environment (Section 2.2.2)

• the establishment of an interface to forward information and tuning
options from the static context of the compiler to the dynamic deci-
sion making routines of the runtime system to extend the knowledge
and the influence of the latter on the structure and performance of a
program execution (Section 2.4)

19

20 CHAPTER 2. INSIEME

• the specification of a novel, universal runtime system model for hetero-
geneous, parallel programs targeting architectures comprising shared
and distributed memory spaces, general computational resources (e.g.
CPU cores) and specialized accelerators (e.g. GPUs); the model pro-
vides an abstract view on the actual architecture as well as the pro-
cessed program and its execution state (Section 2.4.1)

In the context of this thesis, this chapter introduces a novel source-to-source
compiler architecture following the criteria of the thesis’s hypothesis, which
is utilized as an example to corroborate the hypothesis’s validity.

2.2 The Insieme Project

The Insieme project has been established at the University of Innsbruck to
facilitate the research on static and dynamic code optimization and tun-
ing techniques for parallel codes running on homogenous and heterogeneous
systems. Since then it has evolved into a sophisticated compiler and run-
time system infrastructure serving as the basis for the implementation of
a variety of state-of-the-art parallel APIs and language extensions. Those
implementations provide the foundation for ongoing research in the area of
parallel languages and optimizing compilers.

2.2.1 Mission Statement

The goal of the Insieme project comprises two major elements:

1. the establishment and continuous development of a platform provid-
ing a unified implementation of state-of-the-art parallel language ex-
tensions and APIs based on compiler and runtime system components
facilitating the research of static and dynamic code optimizations for
parallel real-world applications

2. the utilization of the established infrastructure for researching and de-
veloping tuning techniques, language extensions, APIs and tools im-
proving the performance and the performance portability of parallel
applications as well as the productivity of software developers by sim-
plifying the efficient utilization of contemporary architectures and thus
the effective development of parallel programs

The first objective implies the establishment of a compiler and runtime
system infrastructure based on a unified formalism for representing parallel
codes based on a variety of different parallel APIs – in particular including
C/C++ based OpenMP, Cilk, OpenCL and MPI. This unified formalism
provides the foundation for the interoperability of the supported parallel
APIs. Furthermore, it serves as the basis for a common, API independent

2.2. THE INSIEME PROJECT 21

Input
Code

Insieme Compiler
Fr

on
te

nd

B
ac

ke
nd

INSPIRE

Static Optimizer

IR Toolbox

C / C++
OpenMP

Cilk
OpenCL

MPI
...

Dyn. Optimizer

Steering
IRSPM

Monitoring

Exec. Engine

Insieme Runtime System

Figure 2.1: Overview of the Insieme architecture.

set of static and dynamic analysis and manipulation utilities. To facilitate
research on top of the Insieme infrastructure, interfaces granting access to
static program analysis and transformations as well as on dynamic schedul-
ing decisions, load balancing policies, application steering facilities and real-
time monitoring data are provided. Furthermore, support for compiler-aided
dynamic application tuning is provided. In those scenarios compiler com-
ponents utilize their analytical capabilities and influence on the processed
application to provide additional information and/or tuning opportunities to
the dynamic decision making processes of the runtime system which there-
fore can conduct more informed decisions.

Based on the established compiler and runtime system infrastructure
which exposes interfaces to influence the compilation and execution of par-
allel applications, optimization strategies following a variety of approaches
are researched. In the context of the Insieme project analytical, search based
and machine learning based static and dynamic optimization strategies have
been successfully applied to a variety of tuning problems [97, 49, 99, 36, 78].
Furthermore, for some applications, the conventional focus of reducing the
overall execution time of an application has been extended to consider addi-
tional objectives, including the parallel efficiency or the energy consumption
of applications, by formalizing the overall tuning problem as a multi-objective
optimization problem. Finally, to provide end users access to those advanced
tuning capabilities, corresponding languages and API extensions are being
investigated.

2.2.2 Architecture

The foundation for the features and capabilities of the Insieme infrastructure
is laid by its architecture. An overview on the essential components is illus-
trated in Figure 2.1. The two main components are the Insieme Compiler
(the compiler) and the Insieme Runtime System (the runtime). Both com-
ponents are based on a unified formal representation of applications. Within
the compiler the INSieme Parallel Intermediate REpresentation (INSPIRE)
is utilized while the runtime is based on the Insieme Runtime System Pro-

22 CHAPTER 2. INSIEME

gram Model (IRSPM). Both provide the foundation for reasoning and han-
dling parallel applications within their respective contexts. Consequently,
INSPIRE, the static application model within the Insieme infrastructure, is
a unified, language and API independent, high-level, full program1 repre-
sentation focused on supporting analyses and code transformations within
the compiler while IRSPM, the dynamic application model, is a evolving
collection of annotated work and data items describing the state and tuning
opportunities of a parallel application while being processed by the runtime.

A typical work flow through the compiler proceeds as follows: A given
input code is passed to the compiler which will utilize its frontend to con-
vert it into the INSPIRE format. In the course of the conversion, parallel
constructs of supported APIs are translated into explicit parallel constructs
provided by INSPIRE. Currently C/C++ based OpenMP, Cilk, OpenCL
and MPI are (partially) supported. Once converted into the internal IR, a
series of analysis and transformation passes offered by the IR toolbox may
be applied on the processed program. The actual operations are determined
by a research or tool specific static optimizer component. After completion,
the program is forwarded to the backend which decomposes the program
into work and data items according to the IRSPM and synthesizes C/C++
code utilizing constructs offered by the runtime system to describe the de-
composed application. The obtained C/C++ target code is then compiled to
an executable binary utilizing some third-party compiler (not shown within
Figure 2.1). When running the resulting application on a target system, the
runtime system is in control of the execution – not the actual application.
The runtime – in particular the customizable dynamic optimizer within it
– decides when and on what available resource which work item of the de-
composed application will be processed by utilizing the application steering
facilities provided by the IRSPM. The runtime also manages the location of
data shared between work items in the form of data items, is aware of the
dependencies between work and data items and may decide to distribute
workload and data among distributed memory systems and/or accelerators.
To close the control loop required for effective application tuning, monitor-
ing facilities covering the processed application itself as well as the state of
the system environment (e.g. external load) are provided to the dynamic
optimizer.

When utilizing the Insieme infrastructure for researching optimization
techniques or building tuning utilities, developers may freely adjust the
static and dynamic optimizer components within the compiler and the run-
time system. An example setup is shown in Figure 2.2. The illustrated
setup has been utilized for tuning parallel codes considering multiple objec-
tives [49]. The left side sketches the operation of the static optimizer within
the compiler while the right side covers the internals of the dynamic opti-

1opposed to conventional translation unit focused representations

2.2. THE INSIEME PROJECT 23

Analyzer

Optimizer

Parallel Target Platform

Input
Code

Runtime System

Multi-
Versioned

Code

Code
Regions Best

Solutions

Search
Points

Measure-
ments

compile time runtime

1

2

3

4

5

6 Dynamic
Selection

Backend

Figure 2.2: Example utilization of the Insieme infrastructure.

mizer. After loading input codes (1) the static optimizer identifies tunable
code regions utilizing analysis form the IR toolbox (2) and forwarding it
to a research specific optimizer. In this particular case the optimizer is a
search based optimizer depending on the evaluation of individual versions of
the identified code regions. Therefore sets of code versions (search points)
are iteratively tested by applying the corresponding code transformations
on the input code, creating binaries and running them on the target system
to obtain performance data (3). Those steps are conducted utilizing the
compiler backend and the monitoring infrastructure of the runtime system.
Since in this scenario multiple tuning objectives have been considered, the
optimizer yields a set of Pareto efficient solutions instead of a single solution
obtained in a conventional case (4). Those, together with the input program
are forwarded to a code synthesizer creating a target code exhibiting multi-
ple implementations of the tuned regions – one for each element within the
solution set (5). Each of the versions is annotated with information regard-
ing the specific trade-off of the objectives it is manifesting. Finally, during
execution, the dynamic optimizer within the runtime may flexibly select the
version of the tuned code region fitting the current system state best (6).
The decisions is based on information regarding the system state obtained
via the available monitoring facilities. More details on this specific use case
of the Insieme infrastructure are covered in Section 6.2.

2.2.3 Applications

The Insieme infrastructure can be utilized for researching a variety of as-
pects associated to the development and tuning of parallel applications. In
particular those include:

• Conventional high-level compiler optimizations: By focusing
on the compiler component, the high-level compiler IR, its explicit
representation of parallel constructs and its full-program scope can be

24 CHAPTER 2. INSIEME

utilized for researching advanced static analysis, code transformations
and optimization strategies.

• Conventional runtime system tuning: Similarly, focusing on run-
time only aspects, the provided control over parallel applications en-
ables research on scheduling, load balancing and resource management
techniques for parallel applications – independently of the actual APIs
utilized within input codes.

• Compiler-aided dynamic application tuning: The full power of
the Insieme infrastructure can be harnessed when combining the an-
alytic power and code manipulation capabilities of the compiler with
the knowledge regarding the dynamic state of the application and the
target system visible to the runtime system in order to conduct a
mixture of static and dynamic application tuning operations. In those
approaches the compiler component prepares and annotates tuning op-
tions to be dynamically utilized upon demand by the runtime system.
An example configuration following this approach has been outlined
within the previous architecture section.

• Parallel language research: Furthermore, the Insieme infrastruc-
ture can serve as a platform for researching new parallel APIs and
language extensions simplifying the implementation and tuning of par-
allel applications. For instance, new OpenMP constructs may be sup-
ported by extending the corresponding frontend to conduct a proper
encoding of their effects into INSPIRE code fragments. Due to the uni-
fied internal representation the rest of the system, including analysis,
transformations, the backend and the runtime system, will be able to
process those extensions. Since INSPIRE is language independent one
might even implement frontends for domain specific languages (DSLs)
exhibiting parallel features. Once encoded utilizing INSPIRE, the rest
of the system’s capabilities are available for those DSLs.

• Compiler related technologies: Finally, the novel nature of the
explicitly parallel IR introduces new challenges in the area of static
program analysis that are not met by conventional control-flow graph
based program analysis. Advanced solutions for handling those ac-
curately may be researched on top of real-world applications based
on the available infrastructure. The results could be utilized e.g. for
static, API independent dead lock or race condition detection utilities.

Only a few of the mentioned research directions have been explored so
far in the context of the Insieme project. Some of those activities and the
resulting techniques are covered in Chapters 4 - 6.

2.3. THE INSIEME COMPILER 25

2.3 The Insieme Compiler

In the previous section a brief overview on the Insieme architecture has been
provided. In this and the following section more details regarding the two
main components – the compiler and the runtime – are presented.

The Insieme compiler is a modular toolkit of compiler related compo-
nents supporting the creation of source-to-source compiler technology based
utilities. As has been stated above, the central element of the compiler is
INSPIRE which is covered in great detail in Chapter 3. Based on this uni-
fied representation a variety of utilities organized within several modules
have been developed. Together they are constituting the Insieme compiler
infrastructure. The modules include:

• The Frontend: The standard Insieme compiler frontend is based on
Clang [3]. C/C++ input codes are parsed and checked for syntac-
tic errors before being converted into INSPIRE. The frontend may
thereby convert a large number of translation units, before merging
them into a full IR program. After this initial conversion, individual
API specific passes may be applied on the resulting program to replace
opaque API calls with corresponding explicit IR constructs. At its cur-
rent development state (March 2014) the available passes encompass
(partial) support for OpenMP, Cilk, OpenCL and MPI. The result is
a complete, high-level, unified representation of a full parallel program
exhibiting explicit parallel control flow constructs. As a module the
utilization of the frontend is optional and may hence be substituted
by an alternative source of an IR program, e.g. a parser for DSLs.

• The Core: The core essentially encompasses the data structures and
associated utilities of the INSPIRE implementation. Beside the IR
node data structures and definitions of IR primitives and extensions
(see Chapter 3) essential inspection and transformation utilities are in-
cluded. In addition, checks verifying the validity of IR code fragments,
in particular covering type checks and the scope of variables, are in-
cluded. These checks have proven to be vital aids when developing IR
based analysis and transformations. Also, utilities simplifying the con-
struction of IR language fragments, including an IR parser providing
the convenient option of constructing complex IR fragments utilizing a
simple, intuitive string representation, are offered. Finally, load/store
utilities for saving IR codes in files are included as well.

• The Backend: The backend is a modular kit for assembling code gen-
erating components. The current implementation covers three configu-
rations – one generating code suitable for the Insieme runtime system,
another for embedded OpenCL kernels and a third for stand-alone

26 CHAPTER 2. INSIEME

sequential applications without any dependencies to runtime compo-
nents. The latter is eliminating any parallelism from an application
before synthesizing pure C/C++ code. It is mainly utilized for devel-
opment purposes, the generation of sequential reference codes and as
a foundation for some compiler driven dynamic program analysis.

• The Analyses: This module comprises utilities for advanced IR based
static and dynamic code analyses. The support ranges from simple
static code feature extractors over a conventional data flow analysis
framework (DFA), a comprehensive constraint based analysis frame-
work covering data and (parallel) control flows (CBA) to polyhedral
model based analyses (PM) and dynamic analyses monitoring actual
program executions. Details are covered in Chapter 4.

• The Transformations: IR based transformations may be imple-
mented by manipulating the IR directly utilizing primitives offered by
the compiler core or by more abstract means covered by the transfor-
mation module. To that end, a system for describing code manipula-
tions based on patterns similar to regular expressions is offered as well
as an infrastructure for describing code manipulations based on the
polyhedral model. Finally, a framework for combining parametrized
transformations into code transformation scripts is included. Details
are covered in Chapter 5.

• The Driver Toolkit: Finally, a collection of utilities simplifying the
development of tool or research specific compiler drivers is offered by
the driver module. In particular utilities for parsing command line
parameters as well as implementations of various optimization strate-
gies contributed by research activities conducted on top of the Insieme
infrastructure are available.

Fundamentally, the Insieme compiler is – unlike GCC or other state-
of-the-art compilers – not an application that can be controlled by passing
command-line parameters. Instead it is a collection of programming libraries
and utilities providing a simple infrastructure for building these kind of tools.
Nevertheless, the driver module includes the insiemecc driver which can be
utilized as a drop-in replacement for gcc/g++ within e.g. make-file based
build environments to compile parallel codes to be managed by the Insieme
runtime system.

2.4 The Insieme Runtime System

Similarly to the compiler, the Insieme runtime system is based on a unified
model for parallel programs. However, unlike the compiler IR, the runtime
model is designed to facilitate the management of the parallel execution of

2.4. THE INSIEME RUNTIME SYSTEM 27

compiled program code fragments. In this section a formal description of
the corresponding models and a brief summary of the implementation of the
runtime system is provided.

Note: In this section, only a general overview on the the Insieme runtime
system and its associated components is covered. The focus is placed on the
involved formal models. More details regarding their implementation and
related research results can be found in Peter Thoman’s thesis covering the
Insieme runtime system [80].

2.4.1 The Program Model

The Insieme Runtime System Program Model (IRSPM) is the representation
utilized by the runtime system to manage program executions. It is centered
around two major constructs:

• data items: blocks of structured data distributed throughout the
system

• work items: chunks of parallel work units performing operations on
data items

Every application starts with a single work item encapsulating the processing
of the entry point of the original application (e.g. the main function). This
work item is assigned to one of the available hardware threads and started
to be processed. Over the course of its execution it may create, access,
update and destroy data items as well as spawn new work items conducting
concurrent operations on the shared set of data items. However, the runtime
system manages the distribution of data items and work items among the
available resources. For this purpose, information regarding the relation
between work and data items in addition to data on the available hardware
is required – and exposed by the following model covering those entities at
a suitable level of abstraction.

Data Items

In a first step we will establish a definition for data items.

Definition 2.1 (data items). A data item d is a n-dimensional array of
homogeneous elements and identified by the 3-tuple

d = [id, size, τ] ∈ N× N∗ × T = D

where id ∈ N is its id, |size| ∈ N is its number of dimensions, size ∈ N∗ is a
tuple defining the size of each dimension and τ ∈ T defines the type of the
elements stored within the data item where T is the set of all types. The
set of all data items is denoted by D.

28 CHAPTER 2. INSIEME

Example 2.1 (data item). For instance, a data item d1 = [4, [2, 3], int]
describes a 2-dimensional 2-by-3 array of integers with the id 4 while a
data item d2 = [7, [], double] references a data item containing a scalar (0-
dimensional) double value with the id 7. The element type may also be a
composed type. For instance, the data item [5, [3], struct p { int x; int y; }]
describes a 1-dimensional array of 3 pairs of integers.

The data item model fits the dominant data structure utilized by paral-
lel programs for distributing data – arrays. More complex data structures,
including lists, trees, DAGs, graphs or sets have to be modeled utilizing
sets of data items based on this model if they are required to be exchanged
between work items. Since in C/C++ every data structure is eventually
reduced to scalars, struts or arrays, this does not impose any limitation.
However, future work on the runtime model may focus on the integration of
improved support for additional kinds of data structures to reduce manage-
ment overhead as required.

Data items are utilized for addressing structured blocks of data within
the system. However, the actual value stored within those is modeled by
value assignment functions. Such a function maps data items to elements
of their respective value domains, which have to be defined first.

Definition 2.2 (value domain). Let dom(τ) be the domain of a type τ ∈ T.
Further, let dom(τ, size) defined by

dom(τ, size) =

{
dom(τ) if size = []

dom(τ, [s2, . . . , sn])s1 if size = [s1, . . . , sn]

be its extension for fixed-sized nested arrays. The set of all values is denoted
by V and defined by

V =
⋃
τ∈T

⋃
size∈N∗

dom(τ, size)

which corresponds to the union of all fixed-sized, nested arrays over any
potential type τ ∈ T.

Based on value domains, value assignment functions are defined as cov-
ered in the following definition.

Definition 2.3 (value assignment functions). A value assignment function
ν : D → V is a partial function mapping data items to values such that

∀d = [id, size, τ] ∈ ν−1(V) . ν(d) ∈ dom(τ, size)

where ν−1(V) denotes the preimage of the function ν. Hence, every data
item d in ν−1(V) is mapped by ν to a value of its corresponding |size|-
dimensional domain.

2.4. THE INSIEME RUNTIME SYSTEM 29

Example 2.2 (value domains). As an example, the domain of integer values
dom(int) may be defined by the range [−231, . . . , 231 − 1]. The domain of
1-dimensional integer arrays of size [4] is defined by

dom(int, [4]) = dom(int)4 = [−231, . . . , 231 − 1]4

and corresponds to all sequences of integers of length 4. Similar, the domain
of 2-dimensional arrays of size [10, 15] is defined by

dom(int, [10, 15]) = dom(int, [15])10 = ([−231, . . . , 231 − 1]10)15

corresponding to all sequences of length 15 consisting of sequences of integers
of length 10. The domain of integer scalars, hence size = [], is given by
dom(int, []) = dom(int) as expected.

Example 2.3 (value assignment function). The partial function ν1 : D → V
mapping [7, [2], int] 7→ [1, 2] is a valid value assignment function while ν2 :
D → V mapping [7, [2], int] 7→ [2] is not since the dimension of the assigned
value does not match the size of the data item.

Unlike the data item model, which can be directly utilized for an ac-
tual implementation, the value assignment function is merely an auxiliary
construct utilized by this formal description of the IRSPM. In the actual im-
plementation realized by the runtime system data items include C-pointers
to memory blocks containing the actual values. However, data items are not
necessarily stored within continuous blocks of memory. Sub-structures may
be distributed throughout the system to utilize e.g. distributed memory
systems, device memory on GPUs or to harness the performance benefits
of NUMA systems. The fragmentation of data items is thereby controlled
by its regular n-dimensional grid structure and explicit data requirements
stated by work items operating on those.

Definition 2.4 (data requirements). A data requirement is a triple

[d, r, a] ∈ D × N2∗ × {RO,RW,WO}

where d = [id, size, τ] ∈ D references a data item, r ∈ N2|size| ⊂ N2∗ a |size|-
dimensional sub-range of the full data item and a the requested access rights
(read-only, read/write, write-only).

Example 2.4 (data requirements). For instance, a data requirement

[[7, [10, 12, 14] , int] , [[0, 5], [2, 8], [4, 6]] , RO]

describes the requirement of read-only access to the block

[0, . . . , 5]× [2, . . . , 8]× [4, . . . , 6]

of the 3-dimensional data item with the id 7 referencing a 10×12×14 array
of integer values.

30 CHAPTER 2. INSIEME

If, for instance, a work item requires read-only access to a sub-section
of the data stored within a data item, it can specify the corresponding
dependency. The runtime system could then look up the current location
of the data item and if possible co-locate the work item and the requested
fraction of data on affiliated resources – e.g. on the corresponding node
within a distributed memory system. The necessary coordination of the
state of code fragments is managed similar to the MESI protocol [75, 43]
for realizing cache coherency – yet on a much more coarse grained level
of array-sub-sections. To ensure the absence of race conditions on a fine
grained, element wise level as well as the proper definition of requirements
is the obligation of the processed program code.

Work Items

Work items are the active part of the program model conducting operations
on data items. Each work item may thereby exhibit multiple, semantically
equivalent implementations customized for a specific kind of objective. For
instance, a work item may have three implementations assigned, one for
being sequentially processed on a single CPU core, another for a parallel
processing on multiple CPU cores and a third for running the same compu-
tation on a GPU. Additionally, as has been stated in the previous section,
every work item has to provide means for obtaining data dependencies as
they are required for the data item management. The necessary formalism
to incorporate all these requirements is covered in the following definitions.

Definition 2.5 (work item execution state). The set

WS = {init, ready, running, suspended, resumable, done}

denotes the set of work item execution states.

Definition 2.6 (work item). A work item (instance) is a 5-tuple

wi = [id, desc, state, range, param] ∈ N×WD ×WS × N2 ×D

where id ∈ N is its id, desc ∈WD the work item description summarizing its
implementation (see Definition 2.7), state ∈WS its execution state, range ∈
N2 the range of parallel operations covered by the work item and param ∈ D
a single data item attached as a parameter to the work item instance.

Definition 2.7 (work item description). Let M denote an arbitrary set of
meta-information. For a work item wi = [i, d, s, r, p] the work item descrip-
tion d ∈WD describes the implementation of the work item wi and is given
by a triple

d = [rd, impls,mw] ∈ RD × 2I×RH ×M

2.4. THE INSIEME RUNTIME SYSTEM 31

where rd is a data requirement function of the set

RD = (N2 × V)→ 2D×N
2∗×{RO,RW,WO}

mapping the range r ∈ N2 of the work item wi and the value ν(p) ∈ V of
its parameter p ∈ D to a set of data requirements rd(r, ν(p)). The set of
implementations

impls ∈ 2I×2H×M

consists of triples [i, rh,mi] ∈ I× 2H×M where i is an implementation of a
procedure accepting the work item range r ∈ N2 and the value ν(p) ∈ V of
the work item parameter p ∈ D for processing the operations represented by
the work item instance wi and the hardware requirements rh ⊆ H summa-
rize the resource requirements demanded by the associated implementation
whereH is an abstract set of system resources. Finally, the meta-information
elements mw ∈ M and mi ∈ M contain additional, generic information as-
sociated to the enclosing work item description or implementations respec-
tively.

Essentially, while work items are dynamic elements representing units
of work, work item descriptions are summarizing their parametrized static
properties, including their implementations and dependencies – much like
the relation between objects and classes in object oriented programming
languages.

The integration of the generic meta-information has been covered for
completeness, yet it does not effect the runtime system’s program model.
Meta-information is utilized for forwarding statically obtained information
regarding work items and their implementations from the compiler to the
runtime and may be extended and/or customized for specific use cases. Ex-
amples include details regarding the tuning trade-offs embodied by specific
work item implementations, data enabling the estimation of computational
costs or details regarding the nested parallel structure of the associated work
item. Those particular examples and their utilization are covered in detail
in Chapter 6.

Example 2.5 (work items). Let i1 and i2 be two semantically equivalent
implementations of the same procedure (work item) where i1 is running on
a CPU while i2 is utilizing a CPU and GPU for its operations. Let the
corresponding hardware requirements be denoted by

rh1 = {CPU} ⊂ H

and
rh2 = {CPU,GPU} ⊂ H

Further, let m,m1,m2 ∈ M be three arbitrary meta-information entities,
d = [7, [10], int] be a data item referencing an 1-dimensional array of 10

32 CHAPTER 2. INSIEME

integer values and p = [4, [],DataItem] be a data item addressing a scalar
storing a reference to the data item d (hence ν(p) = d). A work item with
id 5 instantiated by argument p based on the two implementations i1, i2 ∈ I
consisting of 10 concurrent operations ready to be processed is represented
by

w = [5, [rd, {[i1, rh1,m1], [i2, rh2,m2]},m], ready, [0, 9], p]

where rd ∈ RD is the data requirement function. In case every operation j
of the covered range of concurrent operations 0 . . . 9 depends on read/write
access on the j-th element of the data item referenced by parameter p and
read access to the full range, the function rd : N2 × V is defined by

rd((l, u), d) = rd((l, u), [idd, [sd], τd])

= {[d, [[l, u]], RW], [d, [[0, sd]], RO]}

Upon processing, the runtime system inspects the work item w, computes its
data dependencies, checks the location of the requested data, picks one of the
available implementations ix ∈ {i1, i2}, e.g. depending on the requested and
available resources, and assigns the work item to a corresponding computa-
tional unit by running the procedure call ix([0, 9], ν(p)) on it. Alternatively,
the work item w might, for instance, be split into two work items

w1 = [4, [rd, {[i1, rh1], [i2, rh2]}], ready, [0, 3], p]

and
w2 = [4, [rd, {[i1, rh1], [i2, rh2]}], ready, [4, 9], p]

by partitioning the work item range [0 . . . 9] into [0 . . . 3] and [4 . . . 9] and
assigned the pieces to distinct computational units if multiple resources are
available. Note that the resource requirements of the resulting work items
are, by design, implicitly reduced accordingly. The fragments w1 and w2

may even be processed by selecting distinct implementation, resulting in
the partial processing of the original work item w on a CPU and GPU.

Beside the resource requirements, annotated meta-information can be
utilized by the decision making processes within the runtime system for
gaining extra information on the available options.

The Program Model

A program processed by the Insieme runtime system is constituted by a set
of work and data items according to the definitions provided above. Due to
this simple global structure multiple applications may even be managed by
a single runtime system instance simultaneously since no application specific
considerations have to be made. This feature could, for instance, be used
for increasing the system utilization if multiple, simultaneously executed
parallel programs exhibiting phases of varying concurrency are managed by
a single runtime instance [101].

2.4. THE INSIEME RUNTIME SYSTEM 33

C C

C C

$

M

G

M

C C

C C

$

M

G

M

C C

C C

$

M

G

M

C C

C C

$

M

G

M

MB MB
MB MB

MB MB
MB MB MB

Worker

Memory Block

C

G

M

$

CPU

GPU Cache

Memory

Node in Cluster

Hardware Architecture Runtime Abstraction

Figure 2.3: Abstraction of resources in the Insieme Runtime System.

2.4.2 The System Model

Besides the program model an abstraction of the available computational
resources is required to standardize the interface offered to the dynamic
optimizer. The corresponding abstract concepts are

• Worker: entities capable of processing work items

• Memory blocks: entities capable of storing (fractions) of data items

as illustrated in Figure 2.3. Essentially, for each computational unit (CPU
core/hardware thread, GPU, . . .) in the system, a worker thread is created.
Each of those has an associated queue of work items which are consecutively
processed. Newly spawn work items are first enqueued locally but may get
stolen by other workers under certain conditions related to their execution
state. For instance, work items in their initial state may get stolen to re-
mote worker running on another node of a distributed memory system while
suspended work items may only be moved between workers of a single run-
time instance due to potential local dependencies (e.g. work-item local data
allocated on the heap).

Memory blocks, on the other hand, are the data-equivalent of workers. A
block is created for each address space within the system exhibiting distinct
access characteristics. Hence, the various levels of device memory on GPUs
may form different memory blocks, as well as the different nodes of a NUMA
architecture or the various address spaces of a distributed memory system.

While the worker and work item infrastructure is fully implemented in
the current development state of the Insieme runtime system, the data items,
memory blocks and data requirement functions have so far only been demon-
strated within a prototype implementation. Their integration into the In-
sieme infrastructure is still pending (state March 2014).

34 CHAPTER 2. INSIEME

MB-1 MB-2 MB-3

Workers 1-4 (CPU) Workers 5 and 6 (CPU)
Worker 7 (GPU)

D
D D

W
W

W

W

Dynamic Optimizer

P
ro

gr
am

M
od

el
S

ys
te

m
M

od
el

Figure 2.4: Abstract environment as seen by the dynamic optimizer.

Dynamic Optimizers

The role of a dynamic optimizer is illustrated in Figure 2.4 based on the
entities defined by the program and system models. Its obligation is to
utilize the information provided by a program to map its work and data
items dynamically, within the constraints imposed by associated data re-
quirement functions, to the available resources abstracted by workers and
memory blocks in order to achieve desired objectives – e.g. the minimiza-
tion of execution time, energy consumption and/or power dissipation. This
component is research specific and may utilize all the work and data item
capabilities as required.

2.4.3 Runtime System Components

The implementation of the runtime system comprises a variety of utilities
assisting the work of the dynamic optimizer. To complete the coverage of
the runtime system a few of those shall be mentioned:

• Model Entities: The core functionality of the runtime is formed by
the implementation of the entities covered by the program and system
models, including work and data items, workers and memory blocks.
APIs for interacting with those are offered.

• Event System: The runtime system is equipped with a generic event
propagation system enabling components to subscribe for events ac-
cording to the general observer pattern. This infrastructure enables
operations to be implemented based on push notifications instead of
potentially wasteful pull operations polling for arbitrary events. It also
abstracts from required inter-process communications when being uti-
lized within a distributed memory system setup.

• Monitoring System: To effectively control non-functional aspects of an
application, e.g. its execution time or energy consumption, means for

2.5. SUMMARY 35

measuring those metrics are required and provided by the monitoring
sub-system. Additionally, hardware and event counters characterizing
the execution of applications are offered.

• Hardware Model: Finally, for many decisions to be made by the dy-
namic optimizer, information regarding the infrastructure the applica-
tion is processed on is required. For instance, information describing
the connection between CPU cores and memory blocks or the organi-
zation of cache hierarchies may be utilized for distributing data and
work items. The corresponding information is provided by this module
of the runtime system.

In addition to supporting the implementation of dynamic optimizers,
several of the provided utilities may also be utilized for implementing cus-
tomized higher-level synchronization and communication operations for spe-
cific use cases. These higher-level constructs may then be utilized by the
backend within synthesized code to improve the performance of those oper-
ations.

2.5 Summary

In this chapter the novel architecture of the Insieme system has been pre-
sented. Unlike conventional compilers including GCC or LLVM, the Insieme
compiler retains a high-level intermediate representation of the processed
programs explicitly exposing parallelism – a novel design in the area of gen-
eral purpose compilers processing parallel program codes [48]. The aware-
ness regarding high-level structures, in particular parallel constructs, opens
up a whole new level of influence on the tuning of (parallel) program codes
during its compilation and – in combination with the runtime system model
– during its execution. The utilization of a sophisticated, unified, program
and system model in the runtime system provides the foundation for program
steering and tuning opportunities to be exploited by an adaptable dynamic
program optimization component. Dynamic optimizer implementations may
additionally be aided by compiler derived analysis data to conduct more in-
formed decisions. This novel, close integration of compiler and runtime
system components establishes the foundation for innovative, automated,
and compiler-aided dynamic program tuning solutions (see Chapter 6).

Chapter 3

The Insieme Parallel
Intermediate Representation

As has been outlined by the previous section, the foundation for the Insieme
compiler component is laid by its unified, high-level compiler IR [48]. The
design of this formal language is covered within this chapter.

3.1 Contributions

The major contributions of this chapter are:

• the formal specification of a novel, unified, high-level compiler inter-
mediate representation that is concise in the number of involved con-
structs, language, API and programming model independent, and ex-
plicitly in the representation of coarse grained, thread or process level
parallelism; the specification covers the syntax and semantic of all the
involved constructs (Sections 3.4 to 3.7)

• the integration of a flexible extension mechanism into the basic inter-
mediate representation design and its semantic interpretation based
on abstract data types (ADTs) as well as its utilization for modeling
a variety of common language and API constructs (Section 3.8)

• the demonstration if the intermediate representation’s capability of
encoding language constructs and primitives offered by (parallel) pro-
gramming languages, parallel language extensions and (parallel) APIs
(Section 3.9 and Section 3.11)

In the context of this thesis and its hypothesis, this chapter provides a de-
tailed example of a compiler IR satisfying the hypothesis’s criteria, thereby
demonstrating that such an IR can be designed and implemented in the con-
text of a general purpose compiler processing real world parallel programs.

37

38 CHAPTER 3. INSPIRE

3.2 Design Goals

The basic requirements on the Insieme IR design have been summarized
within the previous chapter. It has to provide the foundation for an in-
frastructure capable of effectively tuning heterogeneous parallel application
code. Furthermore, general requirements for compiler IRs have to be con-
sidered. Every suitable compiler IR should be

• Expressive – the IR must be capable of expressing all relevant features
of the input language as well as all aspects the optimizing compiler is
intended to tune within the processed codes

• Analyzable – the IR should be structured in a way such that analyzes
required for the optimization process can be (efficiently) conducted

• Transformable – the IR design has to reflect the requirements of an op-
timizing compiler to efficiently manipulate the IR as well as to convert
input codes into the IR and the IR into target code

• Extensible – since compiler projects are running for several years, re-
quirements on their IRs are likely to evolve over time. An IR should
be adaptable to new requirements with a limited impact on the IR’s
implementation and related utilities

Several of those criteria are conflicting with each other. For instance,
a very expressive, detailed IR like a complete C/C++ AST is harder to
analyze than a more restricted IR [65]. Also, realizing an extensible IR
infrastructure capable of dealing with evolving requirements requires anal-
ysis and transformation utilities to be more flexible and generic than for
an environment not offering corresponding facilities. To resolve some of the
conflicts, we derived the following principles for the design of INSPIRE:

• Complete – any input program shall be representable by a comprehen-
sive, self-contained IR structure covering all the information required
to reproduce semantically equivalent target code; in particular, the IR
shall not be restricted to a subset of the input codes nor depend on
references to external data not covered by the IR

• Explicit – all important concepts are covered explicitly at an adjustable
level of abstraction to simplify analysis and allow transformations to
affect those aspects; e.g. explicit parallelism and memory management

• Unified – constructs constituting the same meaning shall be expressed
using identical means to foster the re-usability of analyzes and trans-
formations; e.g. barriers or reductions originating from different input
languages shall be represented using the same primitives

3.2. DESIGN GOALS 39

• Simple – IR constructs shall have a precise, non-overloaded interpre-
tation to avoid dealing with special cases; e.g. for-loops should be
restricted to their count-controlled interpretation

• Modular – the IR shall be separated into a fixed core component pro-
viding the means to easily define and manipulate extensions and a set
of modular extensions modeling relevant concepts; extensions shall be
handled within the intermediate language, not its implementation

• Compact – there shall be as few constructs as necessary

Based on those principles we developed and implemented INSPIRE as
it is described in the following sections.

Concrete Design Objectives

For the use case of our IR those rather abstract high level design principles
are refined to the following concrete design objectives:

• A Unified Parallel Model – to provide a complete, explicit and
unified representation covering the effects of parallel APIs, a unified
parallel model has to be developed and incorporated into the IR. For
instance, the various entities processing concurrent control flows, in-
cluding MPI processes, OpenMP threads, Cilk tasks and OpenCL
work-items, need to be modeled utilizing unified constructs since at
the level of the Insieme compiler they are all instances of the same fun-
damental concept. Similarly a concise, coherent formalism for model-
ing synchronization and communication primitives including barriers,
locks and critical regions has to be developed as part of the INSPIRE
design.

• A Concise High-Level IR – as has been covered earlier, for the given
task a high-level, AST like IR is most suitable. However, as has also
been pointed out in the introduction, ASTs of actual programming
languages cover a huge amount of details and corresponding syntactic
subtleties. Many of those features are present for the convenience of
human users, including names, nominal type systems, type and ac-
cess modifiers, function overloading, name resolution procedures, the
implicit conversion between R- and L-values, C’s interaction between
arrays and pointers or C++ references. However, for a compiler IR
those extra features are widely dispensable and may therefore be omit-
ted to simplify the development of analysis and transformation tools.
Getting rid of as many omissible details as possible to form a compact,
simple an explicit, high-level intermediate language has therefore been
among the major design objectives.

40 CHAPTER 3. INSPIRE

• An Open System – all real-world programs depend on libraries.
Those comprise third-party as well as system libraries. To provide
complete support for general applications our IR should be capable of
interfacing with those libraries, especially if they are only available in
their binary form such that they can not be processed by the Insieme
compiler directly to be incorporated into the program. The IR there-
fore has to be capable of modeling interfaces of external components.
In particular, external functions in C as well as class and template
based libraries in C++ have to be accessible. This requirement op-
poses, and hence constraints, the goal of establishing a concise IR as
requested above.

• Performance – all these goals have to be achieved by preserving per-
formance critical aspects of the original code. The conversion of an
input code into our IR and back must not result in a inherent perfor-
mance degradation. For instance, a restriction to single assignments1,
typical for purely functional languages, could significantly simplify the
language design, the implementation of analyzes and the automated
parallelization of codes, since expressions no longer have side effects.
However, in particular for C codes operating on arrays, an automated
conversion into such a restricted format is a complex task and likely
to degrade the performance of the original code. Similarly, the uti-
lization of a unified parallel model must not have a negative effect on
the performance and scalability of parallel applications. Consequently,
the set of features supported by our intermediate language have to be
designed such that the performance of input codes is not inherently
negatively affected.

The major part of this chapter covers the syntax, semantic and utiliza-
tion of INSPIRE for C based parallel applications. For brevity the focus is
put on C. The few extensions to our IR required to effectively handle C++
and its interfaces are outlined in Section 3.11.

3.3 Overview

Before we dive into the syntactic and semantic aspects of INSPIRE this
small section provides an informal overview on the underlying language and
its unified parallel model. It also describes how some of the requirements
stated in previous section have been approached.

1The value of a variable is defined at its initialization and can not be altered afterwards.

3.3. OVERVIEW 41

3.3.1 Basic Language Design

The design of our IR is subdivided into two components: the language core
and an extendable set of language extensions. Their relation is similar to
conventional language definitions consisting of a set of language constructs
(core) and definitions of standard libraries (extensions). Hence, the core
covers the available set of constructs while extensions are mere utilizations
and combinations of those constructs. However, like programming libraries,
extensions are utilized to introduce new types and operators without the
need to modify the implementation of the core language nor its associated
utilities. The separation of those two components therefore provides the
foundation for the desired modular and extendable IR design.

The Language Core

The language core covers a fixed set of primitives, including type, expres-
sion and statement constructs. It has been strongly inspired by functional
programming languages and their powerful means for building flexible and
reusable functionality. This property is based on supporting functions as
first-class citizens, the resulting power of functional composition and a type
system including variables enabling the definition of generic implementations
of functions. Those concepts have been adapted and integrated into our in-
termediate language. Additionally, typical type and statement constructs
encountered within C-like languages are included to simplify the conversion
from and to those languages and to support the interfacing with external
libraries.

Another source of inspiration have been formal specification languages.
Within those languages, algebraic structures consisting of a set of abstract
values (a type) and several operators defined on those can be used to specify
the behavior of a program or system on a very high level. Within INSPIRE
the same principle is used to abstract from implementation details where
those may be omitted. To that end, the language core offers means, in
particular constructs for abstract types and operators, to define algebraic
structures to be processed by our IR. In fact, all primitive types, several
basic data structures and external library interfaces are modeled using this
language feature.

Additionally, the language core specifies rules for the deduction of types,
the composition and the evaluation order of expressions, the processing of
statements and the scope of variables. The core has been designed to be
minimal and simple.

Language Extensions

Based on the core’s abilities, extensions may be defined. Extensions in-
troduce new types and operators by either using abstract constructs or –

42 CHAPTER 3. INSPIRE

whenever possible – by composing previously defined elements to obtain
derived constructs. Neither requires the implementation of the IR to be al-
tered. When using abstract constructs, they have to be interpreted correctly
by IR utilities including analysis and the backend while derived components
may be substituted by their definitions. Consequently, in order to keep the
number of cases to be interpreted by utilities low, new abstract constructs
should only be introduced if the desired behavior can not be expressed oth-
erwise. In case constructs have to be added, the support for generic types
and functions inherited from the functional roots facilitates the coverage of
entire families of operators and types using a single construct.

The distinction on whether a certain construct is added to the language
core or realized as an extension is based on its semantic. In general, every-
thing that is necessary to describe the (parallel) data and control flow within
a program and cannot be described by composing existing constructs is part
of the core, while abstract or derived types and operators are to be realized
as extensions. However, this definition does not result in a clear bound-
ary between core constructs and extensions. For instance, the while loop
statement, definitely influencing the control flow of a program and hence
being part of the core languages, is depending on a boolean condition. How-
ever, boolean values are abstract values integrated into INSPIRE utilizing
an extension. On the other hand, as will be covered in the following syntax
section, parallel primitives offered by the core language are realized utilizing
the same means as extensions. Still, those constructs belong to the core
since they are essential for modeling the parallel control flow of programs.

As will be illustrated in Section 3.7 this distinction provides the founda-
tion for specifying the semantic of the core constructs such that the semantic
of extensions can be added in a desired, modular fashion.

Structure

Another significant difference of the Insieme IR when compared to other,
conventional IRs is its focus on modeling the program execution, not the
structure of the code describing it. Inspired by the simplicity of the self-
contained structure of the expressions representing full programs within the
lambda calculus, we extended this concept to our entire IR. An IR pro-
gram is just a single expression to be evaluated upon execution. Within
this expression functions are incorporated via lambda expressions similar to
the way lambda abstractions are utilized within the lambda calculus. Con-
sequently no top-level definitions binding names to functions or types are
required. Furthermore, semantically irrelevant constructs like translation
units, the distinction between declarations and definitions and the resulting
dependencies are effectively eliminated.

Another consequence of this design is that arbitrary sub-expressions of an
IR program represent programs on their own. This allows utilities including

3.3. OVERVIEW 43

static code analysis, transformations or the backend to be applied on sub-
structures of complete applications without the need of explicitly isolating
them from the rest of the program.

3.3.2 INSPIRE’s Unified Parallel Model

Among the most essential contributions in the design of INSPIRE is its
unified parallel model. The objective for this component is to provide a
common, concise formalism for modeling the effects of parallel APIs as dis-
tinct as OpenMP, Cilk, MPI and OpenCL. The resulting model consists five
main components:

• Threads – basic units of a sequential control flows, processed concur-
rently with other threads and organized in hierarchical thread groups

• Thread Groups – basic units capable of computing parallel control
flows, constituting the organizational units for processing jobs

• Jobs – parallel units of work being cooperatively processed by thread
groups consisting of concurrently running threads

• Collective Operations – to distribute workload and data among the
members of a thread group

• Point-to-Point Communication – to exchange data and to realize syn-
chronization points between individual threads

Based on these primitives and the compositional power of the IR language
core, the effects of a variety of constructs offered by parallel APIs can be
modeled accurately within the Insieme IR.

Threads, Thread Groups and Jobs

An IR thread is an arbitrary entity capable of processing a sequential control
flow. This definition covers standard OS-level threads as well as OpenMP
threads, Cilk tasks, OpenCL work items and MPI processes. INSPIRE’s
parallel model does not define any specific relation between its IR threads,
OS-level threads, processes, HW-threads or other processing entities. This
flexibility is exploited by the backend and runtime system, allowing them to
implement IR threads using light-weight tasks which are flexibly scheduled
on the available computational resources.

Threads can only be created as part of an entire thread group. Further-
more, each thread is a member of the one thread group it has been created
as a part of. This membership can not be altered afterwards. Thread groups
are thus disjoint. A full thread group is the basic unit capable of processing
a parallel unit of work within INSPIRE’s parallel model. Such a work unit

44 CHAPTER 3. INSPIRE

Inner
Thread
Group

thread

control dep.Outer
Thread
Group

time
3 Nested
Thread
Groups

spawn

merge

0-0

0-1

0-0.1-0

0-0.1-1

0-0.1-2

0-1.2-0

0-1.2-0.3-0
0-1.2-0.3-1

0-1.2-0.4-0 <…>.x-y
thread index

group id

parent thread id

thread id

Figure 3.1: Example thread group nesting.

is referred to as a job. A job specifies a function call to be executed by
each thread of the the processing thread group as well as lower and upper
boundaries on the number of involved threads.

The creation of a thread group is realized by a spawn operation accepting
a job as an argument. It is nondeterministically determining the number of
threads to be utilized for processing the given job within the stated bound-
aries and triggers their execution. The result of the spawn operation is a
value referencing the created thread group which later on can be utilized to
wait for its completion by invoking a corresponding merge operation.

Every thread belongs to exactly one thread group and memberships are
static. Furthermore, every thread may spawn nested thread groups which
may arbitrary overlap in their execution. Also, the main thread, hence
the entry point of an application is considered to be within a thread group
consisting of a single thread.

Within a thread group every thread has a unique ID corresponding to
its index within the group. Job implementations may query this ID as well
as the ID of an arbitrary parent thread (the thread creating the local thread
group and its parents) to realize diverging control flows.

Figure 3.1 illustrates an example thread group nesting according to our
model. The outermost group consists of two threads (0-0 and 0-1) where the
first is spawning a nested group of 3 threads (0-0.1-0, 0-0.1-1 and 0-0.1-2)
while the second spawns two additional, overlapping thread groups. Each
thread has a numerical identifier including the ID of the parent thread, a
unique thread group ID and its index within its group. Threads are not
required to merge their child-thread groups on their own, they may forward
the group reference to some other thread such that this thread can conduct
a merge operation (not shown in Figure 3.1).

This model is sufficient to cover the parallel constructs in our four pri-
mary parallel target APIs:

• OpenMP: to model a OpenMP parallel region the corresponding code
block is outlined into a function call f(. . .) and a job job[1,∞]f(. . .)
processing f with an arbitrary number of threads is created. Based

3.3. OVERVIEW 45

on this, the call

merge(spawn(job[1,∞]f(. . .)))

creates a thread group processing the region and waiting for its com-
pletion.

• Cilk: a Cilk task is just as an OpenMP parallel region outlined into
a function call f(. . .) and encapsulated into a job j = job[1, 1]f(. . .)
restricted to be processed by a thread group consisting of a single
thread. The spawn operation is triggered by g = spawn(j) and may
be later on merged by processing merge(g).

• MPI: the full-program, process level parallelism of MPI can be mod-
eled by replacing the original entry point function main by a new
implementation wrapping an invocation of the original main function
into a job being processed by an arbitrary number of IR threads sim-
ilar to the example provided for OpenMP. Hence, MPI processes are
modeled utilizing IR threads – just as any other concurrent control
flow.

• OpenCL: the processing of work items within work item groups can
be modeled by creating jobs demanding a corresponding number of
threads. For instance, let f(. . .) be the call describing the process-
ing of a OpenCL work-item. The job[32, 32]f(. . .) would correspond
to a OpenCL work-group consisting of 32 work items which may be
processed by a corresponding call to the spawn and merge operators.

The primitives introduced so far provide means for creating and merging
thread groups to conduct concurrent operations. However, every non-trivial
job being cooperatively processed by a thread group requires the involved
thread to coordinate their joined efforts. To do so, communication and
synchronization primitives are required.

Inter-Thread Communication

For a thread group to work cooperatively on a parallel job, means for com-
munication are required. Three primitives are offered for this purpose –
one enabling the distribution of work (pfor), one for distributing and re-
distributing data throughout a group (redistribute) and a third one for
point-to-point communication (channels). The first two primitives are col-
lective operators, hence in order for them to complete, all threads of a group
must participate.

46 CHAPTER 3. INSPIRE

<done>

pfor(0,10,1,f) f(0,3,1)

pfor(0,10,1,g) g(5,7,1)

pfor(0,10,1,h) h(7,10,1) h(3,5,1)

<done>

<done>

Thread
Group

system managed
work distribution

time

Figure 3.2: Example application of the pfor operator.

The Work Distribution Operator Work is distributed using the ab-
stract operator pfor which is named after its most prominent use case –
the parallel for. An example application is depicted in Figure 3.2. The
operator accepts four parameters. The first three define the range of an
iterator – start, end and step size. In the illustrated case it is the range
(0, 10, 1) = [0 . . . 9]. Note that for simplifying splitting operations, the up-
per boundary is implicitly excluded. All threads within a group have to
invoke this operator using the same iterator range. The specified range will
be distributed among the available threads using an undefined schema de-
termined by the runtime system. In case a specific scheduling policy should
be enforced, it can be encoded directly within the IR. For instance, a pfor
can be replaced by a for-loop processing a share of the total range if a static
scheduling should be realized. For dynamic loop scheduling approaches hints
supporting the scheduling in the runtime system can be annotated [97].

As its last parameter the pfor primitive accepts a function capable of
processing sub-ranges of the given range. Each participating thread may
pass a different function or closure binding local context information as the
fourth parameter. In Figure 3.2 this is indicated by the function symbols f, g
and h. The function provided by the local thread is utilized for processing
the assigned share of the overall range (0, 10, 1) = [0 . . . 9] within the context
of the local IR thread, illustrated by the processing of the calls f(0, 3, 1),
g(5, 7, 1), h(7, 10, 1) and h(3, 5, 1) by the corresponding threads. Note that
individual threads may get multiple sub-ranges assigned and their processing
might be out of order.

After finishing its shares, each thread will continue processing the follow-
ing statement. There is no implicit barrier at the end. The only guarantee
given is that after the last thread has completed the pfor call, the entire
range has been processed.

The Data Distribution Operator Several parallel models provide prim-
itives to scatter and gather data to and from all participating threads. These
kind of operations are particularly prominent in message passing solutions.
As for the work-sharing, we aimed to identify a single primitive capable of

3.3. OVERVIEW 47

time

(λx.x[0])[{1,2},∅,∅] = {1,2}

(λx.x[0])[{1,2},∅,∅] = {1,2}

(λx.x[0])[{1,2},∅,∅] = {1,2}redistribute(∅,λx.x[0])

redistribute({1,2},λx.x[0])

redistribute(∅,λx.x[0])

f([x,y,z])

g([x,y,z])

h([x,y,z])redistribute(z,h)

redistribute(x,f)

redistribute(y,g)

a) general operation b) broadcast example

Figure 3.3: Example applications of the redistribute operator.

covering all these functionalities. The result is the redistribute operation
as illustrated in Figure 3.3. The name is based on its capability of taking
data computed by individual threads of a group and re-distribute it among
those. It accepts two parameters – a value contributed by the local thread
and a function describing the extraction of the value to be returned to the
local thread from an array aggregating the contributions of all the threads
within the thread group.

Note that, despite its name, the redistribute operator is a universal
operator for collective data exchanges among the members of a group which
might as well be utilized for establishing initial data distributions. In such
a case one thread would contribute all the data while the remaining threads
contribute a token representing no data. The utilized extraction function
would then model the desired, initial data distribution.

Part a) of Figure 3.3 illustrates a generic example. Three threads are
contributing the data elements x, y and z to the redistribute operator which
is blocking until the last contribution is delivered. Once available, the con-
tributions are aggregated to the array [x, y, z] and forwarded as an argument
to the individual extraction functions passed by the involved threads. The
extractions are conducted locally within the contexts of the correspond-
ing threads, as indicated by the calls f([x, y, z]), g([x, y, z]) and h([x, y, z]).
Thus, the redistribute operator simply collects all the contributions and al-
lows a generic function to select the piece of information to be made available
to the local thread.

As an example, part b) of Figure 3.3 illustrates the utilization of the
redistribute operator for broadcasting the set {1, 2} from the first thread
to all members of the enclosing thread group. While the first thread is con-
tributing the corresponding set, the others are simply passing an empty set.
The function extracting the value for the local thread, however, is identical
for all involved threads and it is simply obtaining the value contributed by
the first thread2.

2The function λx.x[0] is represented utilizing the syntax of the lambda calculus and
extracts the first element of an array passed as an argument.

48 CHAPTER 3. INSPIRE

1

1

2

2

thread x thread ystate of c

send(c,2)

recv(c) = 1

time

2

thread x thread ystate of c

recv(c) = 2

time

a) non-blocking data exchange b) data exchange with blocking receiver

send(c,2)

Figure 3.4: Utilization of a channel for inter-thread communication.

Similar to pfor, the redistribute primitive is a collective operation and
needs to be invoked by all threads within a group. However, unlike pfor it
is a blocking operation.

Implementing collective operations based on an actual realization of the
redistribute primitive would result in slow program executions. This inter-
nal representation is intended to unify collective operations for analyzes, not
to define their implementation. That is why derived constructs have been
defined using this central primitive to encapsulate more specialized opera-
tions, including barriers (in MPI, OpenMP and OpenCL), reductions or
broadcasts. As for most derived operations, their encoding is intercepted in
the backend to generate specialized code.

Point-to-Point Communication Finally, a mechanism to send infor-
mation and synchronization events between individual threads is required.
To solve this issue we borrowed the concept of channels encountered within
model checking utilities [44]. We introduce abstract channel types represent-
ing bound blocking queues that can be utilized for forwarding information
between threads. Synchronized send and recv operators can be utilized to
transfer data through a channel as illustrated in Figure 3.4. The depicted
channel state describes the state of the buffer queue associated to the chan-
nel instance c utilized for the exchange of information. Both operations, the
send and the recv, may block the execution of the calling thread in case the
buffer is full (send) or empty (recv).

Besides transferring data, channels are also used to model locks and
bounded semaphores. For instance, a channel with a queue length of 1 is
equivalent to a binary semaphore when using the send operator as the V
and recv as the P operator.

Although basic channel operations are always blocking, in combination
with jobs, spawn and merge expressions non-blocking send and recv op-
erations can be realized by wrapping a corresponding basic operation invo-
cation in a job for a single thread which will be spawned and synchronized
accordingly. This way the desired asynchronous execution can be achieve.

3.4. SYNTAX 49

Communication using Shared Memory INSPIRE does not prohibit
the exchange of information using references to shared memory locations.
However, as usual, the content of memory locations updated by other threads
remains undefined until a synchronization between the source and target
thread occurs via a common call to redistribute or the forwarding of infor-
mation using a channel.

In general, any memory location may be access by any thread within
our representation. There is no concept of ownership or thread private and
shared memory. Only the restraint of a thread not to forward a reference
to a locally allocated memory location to other threads or the absence of
none-thread-local accesses to shared memory locations enables the compiler
to map data and control flows to hardware exhibiting limitations on access
capabilities, including distributed memory systems, on-device memory of
GPUs or scratchpad memory if available.

Note that this behavior models the actual nature of the underlying hard-
ware instead of the semantical constructs offered to the end user simplifying
the way to think about and implement parallel programs. For instance,
thread private variables in OpenMP are just syntactic sugar covering up
for the actual creation of new variables while shared variables are cover-ups
of data to be accessed via references or pointers. Consequently, their ’vir-
tual’ access restrictions can and may easily be circumvented. Essentially,
asserting all data as potentially shared data corresponds to the necessarily
conservative point of few to be embodied by a general purpose compiler IR.

Furthermore, the decision of modeling parallel programs as a set of con-
current control flows operating on a pool of shared memory locations iso-
lates INSPIRE from any particular hardware or API dependency, enabling
the support of arbitrary language or API constructs and primitives as well
as future hardware architectural developments.

3.4 Syntax

In this section the abstract syntax of INSPIRE is covered. Its purpose is to
formalize the set of constructs and primitives offered to build representations
of parallel programs. Further, since in many cases an explicit description of
program fragments using the given set of fundamental primitives is overly
extensive, abbreviations (syntactic sugar) and conventions are introduced.
The result is a concrete syntax to be used throughout this thesis that is more
intuitive for human readers without losing the concise, formal characteristics
of the underlying core primitives.

3.4.1 Core Language Constructs

The language core is constituted by a fixed set of primitives sufficient for
modeling all sequential and parallel data and control flows within an appli-

50 CHAPTER 3. INSPIRE

cation. It further provides means for integrating extensions. The utilization
of those means and several essential extensions are covered in Section 3.8.

For the following definitions let N be the set of natural numbers including
0 and I be a set of identifiers, e.g. the set of strings over a given alphabet.
The abstract syntax of INSPIRE is defined by the following inductive defi-
nitions of the sets of types T, expressions E and statements S.

Types

Definition 3.1 (types). Let i, i1, . . . , ik ∈ I be identifiers, t, t1, . . . , tk ∈ T
be types and n1, . . . , nk ∈ I be identifiers utilized as field names for k ∈ N.
Then, for all x ∈ N : 1 ≤ x ≤ k,

i 〈t1, . . . , tk〉 (abstract)

struct {n1 : t1, . . . , nk : tk} (struct)

union {n1 : t1, . . . , nk : tk} (union)

(t1, . . . , tk)→ t (func)

(t1, . . . , tk)⇒ t (closure)
′i (var)

rec ′ix.
{′i1 = t1, . . . ,

′ ik = tk
}

(rec)

rec ′i (rec var)

are types as well. The set T is the smallest set closed under does constructs.

Note that (abstract), (struct), (union) and (var) constitute base cases
for this recursive definition whenever k = 0.

The (abstract) rule supports the introduction of parametrized abstract
types. Primitive types including the boolean type bool3, the signed 4-byte
integer int 〈4〉 4 or the double type real 〈8〉 are represented using this con-
struct. Also basic data structures including dynamically sized arrays of
Boolean values (array 〈bool〉) or statically sized vectors of eight integer val-
ues (vector 〈int 〈4〉 , 8〉) are based on this type construct and will be covered
in more detail in Section 3.8.

The remaining constructs support the construction of struct (struct),
union (union), function (func) and closure types (closure). Type variables
of the form (var) can be used to define generic types like (α)→ α which is
the type of e.g. the identity function. For an easier distinction to other iden-
tifiers Greek letters like α and β are used instead of ′a and ′b. The last two
constructs, (rec) and (rec var), provide means for defining recursive types
like lists or tree structures. The former binds the recursive type variables
rec ′i1, . . . , rec

′ik to the types t1, . . . , tk to be used within the definition

3If k = 0 we omit the trailing 〈〉.
4In this context 4 is a abstract type with the identifier i = 4 and no parameters.

3.4. SYNTAX 51

of the types t1, . . . , tk for establishing recursive relations. The variable ′ix
selects the recursive type to be represented by the full construct. The sup-
port of multiple bound identifiers extends the expressiveness to mutually
recursive types.

Example 3.1 (composed types). To illustrate the utilization of the type
system a few C types and their IR equivalents shall be demonstrated. Prim-
itive types like integral or floating point types are covered utilizing the ab-
stract type construct, as has been covered above. So are arrays and vectors.
Pointer types may be represented utilizing a parametrized abstract type ref
as will be covered in detail in Section 3.9.1. A pointer

int∗

in C will be converted to the type

re f<in t<4>>

within the Insieme IR. Furthermore, a struct type

struct {
int a ;
f loat b ;

}

in C is converted to the type

struct { a : in t <4>, b : r ea l<4> }

within the IR, a recursive struct definition like

struct l i s t {
int a ; struct l i s t ∗ n ;

}

is converted to the recursive type

rec ’ l i s t . {
’ l i s t = struct { a : in t <4>, n : r e f<rec ’ l i s t > }

}

and struct A in the mutual recursive definition

struct A { struct B∗ b ; } ;
struct B { struct A∗ a ; } ;

is converted to

rec ’A . {
’A = struct { b : r e f<rec ’B> } ,
’B = struct { a : re f<rec ’A> }

}

and type B in the same definition into

52 CHAPTER 3. INSPIRE

rec ’B . {
’A = struct { b : r e f<rec ’B> } ,
’B = struct { a : re f<rec ’A> }

}

Finally, the C function type

int (f loat , bool)

is encoded utilizing the IR type

(r ea l <4>, b oo l)→ in t<4>

There is no C equivalent to closure types as they are supported by our IR.
Yet those are required for functional core constructs of our IR. Naturally,
type constructs may be arbitrarily nested. However, since no type-definition
is offered for naming types, the full structure has to be explicitly nested.
Hence, for instance, the function type definition

struct A { struct B∗ b ; } ;
struct B { struct A∗ a ; } ;
int (f loat , struct A)

will result into

(
r ea l <4>,
rec ’A . {

’A = struct { b : r e f<rec ’B> } ,
’B = struct { a : re f<rec ’A> }

}
)→ in t<4>

within INSPIRE, demonstrating its structural nature compared to the nom-
inal approach utilized by the C language.

Expressions

Definition 3.2 (variables). Let

V = {var(i : t)|i ∈ I ∧ t ∈ T}

be the set of variables where var(i : t) denotes a variable i ∈ I of type t ∈ T.

For conveniences we write i instead of var(i : t) whenever its interpreta-
tion is clear from the context.

Definition 3.3 (recursive variables). Let

T→ = {(t1, . . . , tn)→ t | t1, . . . , tn, t ∈ T}

3.4. SYNTAX 53

be the set of all function types. Let

Vrec = {rec(i : t)|i ∈ I ∧ t ∈ T→}

be the set of recursive variables where rec(i : t) denotes a recursive variable
i ∈ I of type t ∈ T→.

As for variables we write i instead of rec(i : t) whenever its interpretation
is clear from the context.

Definition 3.4 (expressions). Let i ∈ I be an identifier, t∗ ∈ T be types5,
n∗ ∈ I be names, e∗, b ∈ E be expressions, v∗ ∈ V be variables, f∗ ∈ Vrec
be recursive variables and s∗ ∈ S be statements for k, l∗ ∈ N. Then, for all
x ∈ N : 1 ≤ x ≤ k,

v (var)

lit(i : t) (lit)

e(e1, . . . , ek) (call)

struct {n1 = e1, . . . , nk = ek} (struct)

union {n = e} (union)

e.n (access)

rec fx.{
f1 = (v11, . . . , v1l1)→ t1 s1,

. . .

fk = (vk1, . . . , vklk)→ tk sk

} (func)

f (rec)

(v1, . . . , vk)⇒ e(e1, . . . , el) (bind)

job [el, eu] b (job)

are expressions as well. The set E is the smallest set closed under those
constructs.

Note that (var), (lit), (struct), and (rec) constitute base cases for this
recursive definition whenever k = 0.

Variables (var), recursive variables (rec), literals (lit) and call expres-
sions (call) are required to model the data and control flow, the (access)
construct obtains field values from structs or unions and the remaining five
enable the construction of struct (struct), union (union), function (func),
closure (bind), and job (job) values.

5For brevity we use the notation x∗ to denote the list of elements x with any or no
subscript encountered within the following definition.

54 CHAPTER 3. INSPIRE

Literals provide the means for the introduction of typed constants within
the IR. Also, to introduce an abstract function/operator, a constant ex-
hibiting a function type is used. As for variables, we will write i : t or just
i instead of the explicit lit(i : t) in cases where the interpretation is clear
from the context. Within call expressions (call), arguments are eagerly eval-
uated in an arbitrary order and passed by value. Lambda expressions (func)
support the definition of (mutual) recursive functions by binding function
definitions to recursive variables (f1, . . . , fk). In case of a non-recursive func-
tion rec f{f = (v1, . . . , vk) → t s}, where f does not appear free in s, we
omit the definition of f to obtain the equivalent, yet more concise notation
(v1, . . . , vk)→ t s or even (v1, . . . , vk) s if the return type is also clear from
the context. The bodies s1, . . . , sk of the function definitions must not ex-
hibit free variables other than the associated parameters and the variables
f1, . . . , fk. Bind expressions (bind) construct a closure value processing a
call expression e(e1, . . . , el) upon invocation. Arguments e1, . . . , el which are
not parameters of the resulting closure (v1, . . . , vk) are captured from the
surrounding context. Finally, job expressions (job) create jobs which are
the parallel equivalent of closures. As introduced in Section 3.3.2, jobs are
processed asynchronously by groups of threads which form the basic orga-
nization unit for collective operations. The full semantic of those constructs
is covered in detail in Section 3.7.

Operators and Infix Notation The abstract syntax does not cover rules
for resolving the precedence order of operators nor support for infix nota-
tions. Since the evaluation order of sub-expressions is defined by the recur-
sive composition of expressions in the abstract syntax and infix notations
are equivalent to call expressions, corresponding constructs would be redun-
dant. However, for the concrete syntax we utilize infix notation, parenthesis
and common operator precedence rules of the C language family to fix the
evaluation order. For instance the term

a+ b ∗ c

is equivalent to

int.add(a, int.mul(b, c))

where a, b, c ∈ V are variables, int.add is the literal representing the integer
addition operator and int.mul the multiplication while

(a+ b) ∗ c

is equivalent to

int.mul(int.add(a, b), c)

since parenthesis have been utilized to overrule the default evaluation order.

3.4. SYNTAX 55

Extended Bind Expression Syntax In the abstract syntax the body of
a bind expression is strictly limited to a single call expression to simplify
the tracing of variable bindings by limiting their scopes. However, as for
some other constructs, this restriction results in an overly extensive textual
description for the human reader. For the concrete syntax we therefore
support the utilization of arbitrary expressions and statements as the body.
Hence for an arbitrary expression e ∈ E the concrete syntax expression

(v1, . . . , vk)⇒ e

is equivalent to the abstract syntax expression

(v1, . . . , vk)⇒ e′ (v1, . . . , vk, c1, . . . , cl)

where e′ is the function

(v1, . . . , vk, c1, . . . , cl)→ t {
return e;

}

and c1, . . . , cl ∈ V is the list of captured variables, hence the list of free
variables of expression e excluding the parameters v1, . . . , vk of the bind
expression. Also t ∈ T is the type of expression e. Similarly, for an arbitrary
statement s ∈ S, the concrete syntax expression

(v1, . . . , vk)⇒ s

is equivalent to the abstract syntax expression

(v1, . . . , vk)⇒ e′ (v1, . . . , vk, c1, . . . , cl)

where e′ is the function

(v1, . . . , vk, c1, . . . , cl)→ unit s

and c1, . . . , cl ∈ V is the list of captured variables. The abstract generic
type unit is utilized as the return type of functions that do not produce
results but cause desirable side effects and hence, essentially, the type of
statements.

Example 3.2 (expressions). As has already been outlined above, most C
expressions can be directly converted into IR. For instance, the expression

a + a ∗ b

is represented e.g. by the IR expression

var (a : in t <4>) + var (a : in t <4>) ∗ var (b : in t <4>)

56 CHAPTER 3. INSPIRE

which a syntactic sugar based version of

i n t . add (
var (a : in t <4>) ,
i n t . mul (var (a : in t <4>) , var (b : in t <4>))

)

where in this example var(a: int<4>) corresponds to the C variable a and
var(b: int<4>) to the variable b. A more complex case is the C function

int sum(int a , int b) { return a + b ; }

which is converted to the expression

rec rec (sum : (in t <4>, in t <4>)→ in t <4>) . {
rec (sum : (in t <4>, in t <4>)→ in t <4>) =
(var (a : in t <4>) , var (b : in t <4>))→ in t<4> {

return var (a : in t <4>) + var (b : in t <4>) ;
}

}

where rec(sum:(int<4>,int<4>)→int<4>) is the recursive variable closing the
function definition and the return statement is a statement to be introduced
in the next sub-section. By abbreviating variables by their identifiers the
given code fragment is equivalent to

rec sum . {
sum = (a , b)→ in t<4> {

return a + b ;
}

}

and since the given function is not recursive we can write

(a , b)→ in t<4> { return a + b ; }

instead. In constrast, the recursive C function

int f a c (int n) { return (n==0) ? 1 : f a c (n−1)∗n ; }

is encoded using the IR lambda expression

rec f a c . {
f a c = (n)→ in t<4> {

return (n==0) ? 1 : f a c (n−1)∗n ;
}

}

where fac is the recursive variable rec(fac :(int<4>)→int<4>). In this case no
contraction to a version not exhibiting the rec construct is allowed. Finally,
the mutual recursive function even in

bool even (int n) {
return (n==0) ? true : odd (n−1) ;

}

3.4. SYNTAX 57

bool odd (int n) {
return (n==0) ? fa l se : even (n−1) ;

}

is represented by the lambda expression

rec even . {
even = (n)→ boo l {

return (n==0) ? t ru e : odd (n−1) ;
} ,
odd = (n)→ boo l {

return (n==0) ? f a l s e : even (n−1) ;
}

}

and the function odd by the lambda expression

rec odd . {
even = (n)→ boo l {

return (n==0) ? t ru e : odd (n−1) ;
} ,
odd = (n)→ boo l {

return (n==0) ? f a l s e : even (n−1) ;
}

}

As for recursive types, the constructs for representing recursive functions
are of a structural nature eliminating the necessity of lookup tables. In
particular, all the information required to describe the operation of the
function even is encoded within its representation.

All expressions have an associated type which can be automatically de-
duced and checked using inductive type deduction rules (see Section 3.5).

Definition 3.5 (typing statement). The formulation e : t denotes the state-
ment that an expression e ∈ E is of type t ∈ T.

The typing statement e : t does not demand that an expression e actually
is of type t. The claim may be valid or not. At this point we merely introduce
the formalism to denote typing constraints. The associated techniques for
checking the validity of typing statements is covered in Section 3.5.

58 CHAPTER 3. INSPIRE

Statements

Definition 3.6 (statements). Let e∗ ∈ E be expressions, v ∈ V be a variable
and s∗ ∈ S be statements. Then, for all n ∈ N

e (expr)

decl v = e (decl)

{s1; . . . ; sn} (comp)

if (e) then s1 else s2 (if)

while (e) do s (while)

for (v = es . . . ee : ei) do s (for)

return e (return)

break (break)

continue (continue)

are statements as well. The set S is the smallest set closed under those
constructs.

The set of statement constructs reflects typical elements found within
imperative languages. The rule (expr) ensures that every expression is a
statement. A variable declaration (decl) introduces a new variable whose
scope is bound statically by the enclosing compound statement (comp).
Constructs of the form (if) support the definition of conditionally processed
statements. For convenience, within textual notation, the then keyword or
empty branches may be omitted. For instance, the statement “if (ec) s” is
considered equivalent to “if (ec) then s else {}”. Also, the core language
offers two distinct loop constructs – the condition-controlled while loop and
the count-controlled for loop. In the latter the step size may be omitted if
it is equivalent to 1.

Let Bindings

In many cases it might be necessary to repeat complex IR sub-structures sev-
eral times within code fragments. To avoid redundant formulations within
concrete syntax let bindings are introduced.

Definition 3.7 (substitution). Let c, c1, c2 ∈ T ∪ E ∪ S be IR fragments.
Then

c [c1/c2] ∈ T ∪ E ∪ S

denotes the IR fragment obtained by substitution every occurrence of c2

within c by c1.

Definition 3.8 (let bindings). Let i ∈ I be an identifier an t1, t2 ∈ T be
types. Then

let i = t1 in t2

3.4. SYNTAX 59

is equivalent to t2 [t1/i] ∈ T, hence the type obtained by substituting every
occurrence of i (abstract type) within t2 by t1. Similar, let e1, e2 ∈ E be
expressions and t ∈ T be e1’s type (hence e1 : t is valid). Then

let i = e1 in e2

is equivalent to e2 [e1/lit(i : t)] ∈ E.

Definition 3.9 (let statements). Let L = {let i = x|i ∈ I ∧ x ∈ T ∪ E} be
the set of let-statements, t ∈ T be a type, e ∈ E be an expression of type
te ∈ E (hence e : te), a1, . . . , al ∈ S ∪ L be statements or let-statements and
b1, . . . , bk ∈ S be statements. Then for all l, k ∈ N, the code fragment

{a1; . . . , al; let i = t; b1; . . . ; bk}

is equivalent to
{a1; . . . , al; b1[t/i]; . . . ; bk[t/i]}

and the code fragment

{a1; . . . , al; let i = e; b1; . . . ; bk}

is equivalent to

{a1; . . . , al; b1[e/lit(i : te)]; . . . ; bk[e/lit(i : te)]}

Note that let bindings and let statements are merely syntactic sugar to
improve the readability of the IR for the human user. They do not extend
the expressiveness of INSPIRE. In particular, let bindings and statements
are not type, expression or statement constructs. By definition both, let
bindings and statements, are evaluated from the innermost to the outermost
level, from the right to the left. Also, let statements are limited to the scope
defined by the surrounding compound statement.

3.4.2 Parallel Primitives

In addition to the type, expression and statement constructs introduced
so far, the core language comprises a set of primitives orchestrating the
parallel execution of applications. All of them, with the exception of the
job expression (Definition 3.4), are defined using abstract types and literals
(Definitions 3.1 and 3.4) since they neither influence the type system nor the
syntactical composition of INSPIRE codes. Nevertheless, they are essential
for modeling the parallel control and data flow within applications and hence
they are an integral part of the core language.

Definition 3.10 (jobs). Let el, eu ∈ E be expressions of type uint 〈4〉 and
b ∈ E be a function of type ()⇒ unit. The job expression

job [el, eu] b

produces a value of the abstract type job.

60 CHAPTER 3. INSPIRE

The function b specifies the operations to be conducted by each of the
threads of a thread group when processing the resulting job. The expressions
el and eu define lower and upper boundaries for the number of threads
required for processing the job. The full details of the semantic are covered
by Section 3.7.2.

All threads within a group evaluate the call b(), hence they are pro-
cessing the same sequential code. Furthermore, all threads in a group are
indexed. Index dependent control flow can be used to cause execution traces
to diverge.

Definition 3.11 (thread identification). The abstract functions

getThreadID : (uint 〈4〉)→ uint 〈4〉
getNumThreads : (uint 〈4〉)→ uint 〈4〉

retrieve the thread index and the thread group size from within a thread.

The accepted parameter of type uint 〈4〉 (4-byte unsigned integer) de-
termines the nesting level. Passing 0 returns the index and size of the local
group, passing 1 the corresponding values of the parent group and so forth.

Definition 3.12 (thread group management). Every thread is allowed to
create nested thread groups using the function

spawn : (job)→ thread group

The resulting value of type thread group references the newly started group.
The function

merge : (thread group)→ unit

blocks until the referenced group has completed its job. In case several
thread groups have been spawned, a call to

merge : ()→ unit

can be used to wait for the completion of all groups directly spawned by the
processing thread.

The Work Distribution Operator

For a thread group to work cooperatively on a parallel job, means for com-
munication are required. Three primitives are offered for this purpose – one
enabling the distribution of work (pfor), one for redistributing data through-
out a group (redistribute) and a third one for point-to-point communication
(channels). The first two primitives are collective operators, hence in order
for them to complete, all threads of a group must participate.

3.4. SYNTAX 61

Definition 3.13 (work distribution operator). Let int = int 〈4〉. The ab-
stract operator

pfor : (int, int, int, (int, int, int)⇒ unit)→ unit

is distributing work among the members of the local thread group.

The operator is named after its most prominent use case – the parallel
for. The first three parameters define the range of an iterator (start, end and
step size) while the last parameter accepts a function capable of processing
sub-ranges of the given range. All threads within a group have to invoke this
operator using identical values for the first three arguments. The specified
range will be distributed among the available threads using a schema that
remains undefined within the static program representation. Only during
the actual execution a work load distribution will be determined by the
dynamic optimizer of the runtime system. In case a specific scheduling
policy should be enforced, it can be encoded directly within the IR. For
instance, a pfor can be replaced by a for-loop processing a share of the
total range if a static scheduling should be modeled.

After finished its shares, each thread will continue processing the follow-
ing statement. There is no implicit barrier at the end. The only guarantee
given is that after the last thread has completed the pfor call, the entire
range has been processed (see Section 3.7.2).

The Data Distribution Operator

Several parallel models provide primitives to scatter and gather data to and
from all participating threads. These kind of operations are particularly
prominent in message passing solutions. As for the work-sharing, we aimed
to identify a single primitive capable of covering all these functionality.

Definition 3.14 (data distribution operator). The abstract generic opera-
tor

redistribute : (α, (array 〈α〉)⇒ β)→ β

is (re-)distributing data among the members of the local thread group.

Similarly to pfor, this primitive is a collective operation and needs to
be invoked by all threads within a group. However, unlike pfor the redis-
tribute primitive is a blocking operation. Every thread contributes a piece
of information via the first parameter of type α. The data of all threads is
aggregated to an array and passed as an argument to the function specified
by the second parameter6. The result of the evaluation of this function is
returned as the result of the call to the redistribute primitive. Thus, the
operator simply collects all the contributions and allows a generic function
to select the piece of information to be made available to the local thread.

6The parametrized abstract type family array 〈. . .〉 is used within INSPIRE to model
arrays – see Section 3.8.2.

62 CHAPTER 3. INSPIRE

Point-to-Point Communication

Finally, a mechanism to send information between individual threads is re-
quired. To solve this issue we borrowed the concept of channels as used by
model checking utilities [44].

Definition 3.15 (channels and channel operators). Let t ∈ T be a type and
a ∈ {x ∈ T | x =′ i ∨ (x = i 〈〉 ∧ i ∈ N)} be a numerical type parameter.
A value of the parametrized abstract type channel 〈t, a〉 ∈ T is referencing
a channel transferring values of type t in-order between threads utilizing
a buffer queue of size a. Channels are created using the generic abstract
operator

channel.create : (type 〈α〉 , param 〈β〉)→ channel 〈α, β〉

and released using

channel.release : (channel 〈α, β〉)→ unit

where type 〈α〉 is a meta-type representing arbitrary types and param 〈β〉 a
meta type for types representing integer constants, e.g. the abstract generic
type 4 = 4 〈〉 ∈ T (see Section 3.8.2). Furthermore, the operator

channel.send : (channel 〈α, β〉 , α)→ unit

inserts a new value into the buffer queue while

channel.recv : (channel 〈α, β〉)→ α

takes values out of the buffer. Both operations may block the execution of
the calling thread in case the buffer is full (send) or empty (recv). The
non-blocking operators

channel.empty : (channel 〈α, β〉)→ bool

channel.full : (channel 〈α, β〉)→ bool

can be utilized to probe the current state of a channel.

For a firm description of the semantic of channel operations interested
readers are referred to Section 3.7.2 covering a detailed specification of the
channel operators’ semantic.

3.5 The Type System

An essential part of the INSPIRE language specification is contributed by
its type system. As within most high-level programming languages the type
system is utilized to verify the proper composition of language constructs.

3.5. THE TYPE SYSTEM 63

By providing support for explicit recursive types, type variables, sub-typing
relations and parametrized types, the type system of our IR incorporates
several features exceeding those of comparable systems encountered within
other high-level languages, including those of C/C++ or Java.

The set of types T and the structure of its elements has been given within
Definition 3.1. The following definitions are based on those and have been
inspire by Benjamin Pierce’s “Types and Programming Languages” [83].

3.5.1 Domains

The type of an expression is a restriction on the value the expression is
evaluated to during execution. The set of allowed values covered by a type
is its domain. By defining the domain of a type its semantic interpretation
is specified.

Our IR’s type system is based on abstract base types and a variety of
type constructors. The effect of those constructs is defined by the domains
they are creating based on the domains of their arguments. However, not
every type t ∈ T has an associated domain. For instance, the type variable
α ∈ T is an IR type without an associated domain. A domain for a type
variable can only be determined by considering the context it is utilized in.
The subset of types a domain can be assigned to is the set of closed types.
To define this set we first have to provide a definition for free type variables.

Definition 3.16 (free type variables). Let Trvar = {t ∈ T | t = rec ′i} ⊂ T
be the set of recursive type variables. The set F (t) ⊂ T of free type variables
of a type t ∈ T is defined by

F (t) :=

⋃k
i=1 F (ti) if t = i 〈t1, . . . , tk〉⋃k
i=1 F (ti) if t = struct {n1 : t1, . . . , nk : tk}⋃k
i=1 F (ti) if t = union {n1 : t1, . . . , nk : tk}⋃k
j=0 F (tj) ∩ Trvar if t = (t1, . . . , tk)→ t0⋃k
j=0 F (tj) ∩ Trvar if t = (t1, . . . , tk)⇒ t0
{′i} if t =′ i⋃k
i=1 F (ti) \

⋃k
j=1 {rec ′ij} if t = rec ′ix. {′i1 = t1, . . . ,

′ ik = tk}
{rec ′i} if t = rec ′i

Within the INSPIRE type system, two kinds of type variables are present
– variables forming placeholders for arbitrary types and recursive type vari-
ables utilized for constructing recursive types. Recursive type variables are
bound by the most closely nested recursive type construct providing a defini-
tion for it while ordinary type variables are bound by the outermost function
or closure type construct.

64 CHAPTER 3. INSPIRE

Definition 3.17 (closed types). A type t ∈ T is a closed type iff F (t) = ∅.
The set of all closed types is denoted by Tc ⊂ T.

Definition 3.18 (generic types). A type t ∈ T is a generic type iff F (t) 6= ∅
and F (t) ∩ Trvar = ∅. The set of all generic types is denoted by Tg ⊂ T.

Definition 3.19 (valid types). The set Tv = Tc ∪ Tg is the set of all valid
types.

Only valid types may occur within INSPIRE code. The main restriction
of valid types compared to the general set of types is the limitation to types
that do not exhibit free recursive type variables.

Definition 3.20 (generic type variables). Let Tgvar = {x ∈ T | x =′ i} be
the set of all generic type variables. The set G(t) ⊂ Tgvar of generic type
variables of a type t ∈ T is defined by

G(t) :=

⋃k
i=1G(ti) if t = i 〈t1, . . . , tk〉⋃k
i=1G(ti) if t = struct {n1 : t1, . . . , nk : tk}⋃k
i=1G(ti) if t = union {n1 : t1, . . . , nk : tk}⋃k
j=0G(tj) if t = (t1, . . . , tk)→ t0⋃k
j=0G(tj) if t = (t1, . . . , tk)⇒ t0
{′i} if t =′ i⋃k
i=1G(ti) if t = rec ′ix. {′i1 = t1, . . . ,

′ ik = tk}
∅ if t = rec ′i

Note that, unlike within the definition of free type variables, recursive
type variables are not included within the sets of generic type variables.

In the following steps we provide definitions for the instantiations of
generic and recursive type variables. Both of them are based on partial
mappings to be defined first.

Definition 3.21 (partial mapping). A partial mapping (or just mapping)
between a key set K and a value set V is a term of the grammar

m ::= ε | m[k 7→ v]

where ε is the empty mapping, k ∈ K is an arbitrary key element and v ∈ V
is the value k is bound to. The set of all mappings from a set K to a set V
is denoted by K ⇀ V . Further, let m ∈ (K ⇀ V) be a mapping and x ∈ K
be an arbitrary key element. The lookup operation m[x] is defined by

m[x] =

v if m = m1[x 7→ v]
m1[x] if m = m1[y 7→ v] and y 6= x
undefined if m = ε

3.5. THE TYPE SYSTEM 65

Also, the domain dom(m) ⊆ K of a mapping m ∈ (K ⇀ V) is defined by

dom(m) =

{
∅ if m = ε
{x} ∪ dom(m1) if m = m1[x 7→ v]

and the concatenation of two mappings a and b denoted by ab is given by

ab =

{
a if b = ε
ab1[x 7→ v] if b = b1[x 7→ v]

Further let L ⊆ K be a set of keys. The operation m\L removes all bindings
of keys present in L from m and is defined by

m \ L =

ε if m = ε
(m1 \ L)[x 7→ v] if m = m1[x 7→ v] and x /∈ L
m1 \ L if m = m1[x 7→ v] and x ∈ L

Finally the removal of a single binding for key x ∈ K from a mapping m is
denoted by m \ x and equivalent to m \ {x}.

If the interpretation is clear from the context we write [a 7→ b][c 7→ d] or
even [a 7→ b, c 7→ d] as an abbreviation of the mapping ε[a 7→ b][c 7→ d].

Definition 3.22 (generic type variable instantiation). Let Tgvar = {x ∈ T |
x =′ i} be the set of all generic type variables. A (generic) type variable
instantiation σ is a partial mapping Tgvar ⇀ T that maps generic type
variables to types. Let t ∈ T be a type. The instantiated type σ(t) ∈ T
obtained by applying the variable instantiation σ on t is defined by

σ(t) :=

i 〈σ(t1), . . . , σ(tk)〉 if t = i 〈t1, . . . , tk〉
struct {n1 : σ(t1), . . . , nk : σ(tk)} if t = struct {n1 : t1, . . . , nk : tk}
union {n1 : σ(t1), . . . , nk : σ(tk)} if t = union {n1 : t1, . . . , nk : tk}
(σ(t1), . . . , σ(tk))→ σ(t0) if t = (t1, . . . , tk)→ t0
(σ(t1), . . . , σ(tk))⇒ σ(t0) if t = (t1, . . . , tk)⇒ t0
′i if t =′ i and ′i /∈ dom(σ)
σ[′i] if t =′ i and ′i ∈ dom(σ)
rec ′i. {′i1 = σ(t1) . . .′ ik = σ(tk)} if t = rec ′i. {′i1 = t1 . . .

′ ik = tk}
rec ′i if t = rec ′i

Let σ, τ ∈ Tgvar ⇀ T be two type variable instantiations. The application
of σ on τ , denoted by σ(τ), is defined by

σ(τ) =

{
ε if τ = ε
σ(τ1)[v 7→ σ(t)] if τ = τ1[v 7→ t]

Furthermore, the composition of σ and τ , denoted by σ ◦ τ , is given by

σ ◦ τ = (σ(τ))(σ \ (dom(σ) ∩ dom(τ)))

66 CHAPTER 3. INSPIRE

hence, the concatenation of σ(τ) and (σ \ (dom(σ) ∩ dom(τ))) where the
latter covers those variables which are bound by σ but not referenced by τ .
The composition σ ◦ τ describes the effective variable instantiation applied
when consecutively applying σ after τ on a given type. Hence, for any type
t ∈ T we have (σ ◦ τ)(t) = σ(τ(t)).

Example 3.3 (variable instantiations). Let

σ = ε[α 7→ t1][β 7→ t2]

and

τ = ε[α 7→ t3][γ 7→ A 〈α〉]

be two variable instantiations. Their domains are dom(σ) = {α, β} and
dom(τ) = {α, γ} respectively. Being applied on a type B 〈α, β, γ〉 we obtain

σ(B 〈α, β, γ〉) = B 〈t1, t2, γ〉

and

τ(B 〈α, β, γ〉) = B 〈t3, β, A 〈α〉〉

Further the composition σ ◦ τ is given by

σ ◦ τ = σ(τ)(σ \ dom(σ) ∩ dom(τ))

= (ε[α 7→ σ(t3)][γ 7→ σ(A 〈α〉)])(σ \ {α, β} ∩ {α, γ})
= (ε[α 7→ t3][γ 7→ A 〈t1〉])(ε[α 7→ t1][β 7→ t2] \ {α})
= (ε[α 7→ t3][γ 7→ A 〈t1〉])(ε[β 7→ t2])

= ε[α 7→ t3][γ 7→ A 〈t1〉][β 7→ t2]

Being applied to B 〈α, β, γ〉 we obtain

(σ ◦ τ)(B 〈α, β, γ〉) = B 〈t3, t2, A 〈t1〉〉

which is equivalent to

σ(τ(B 〈α, β, γ〉)) = B 〈t3, β, A 〈α〉〉 = B 〈t3, t2, A 〈t1〉〉

as desired.

Definition 3.23 (concrete type instantiation). The set I(t) ⊂ Tc of concrete
type instantiations is defined by

I(t) = {x ∈ T | G(x) = ∅ ∧ ∃σ.σ(t) = x}

Definition 3.24 (recursive type unfolding and folding). Let Trvar = {t ∈
T | t = rec ′i} ⊂ T be the set of recursive type variables and σr be a partial

3.5. THE TYPE SYSTEM 67

mapping Trvar ⇀ T. Let t ∈ T be a type. The type σr(t) ∈ T obtained by
applying the recursive variable instantiation σr on t is defined by

σr(t) :=

i 〈σr(t1), . . . , σr(tk)〉 if t = i 〈t1, . . . , tk〉

struct {n1 : σr(t1), . . . , nk : σr(tk)}
if t = struct {n1 : t1, . . . , nk : tk}

union {n1 : σr(t1), . . . , nk : σr(tk)}
if t = union {n1 : t1, . . . , nk : tk}

(σr(t1), . . . , σr(tk))→ σr(t0)
if t = (t1, . . . , tk)→ t0

(σr(t1), . . . , σr(tk))⇒ σr(t0)
if t = (t1, . . . , tk)⇒ t0

′i if t =′ i

rec ′ix. {′i1 = σ′r(t1), . . . ,′ ik = σ′r(tk)}
if t = rec ′ix. {′i1 = t1, . . . ,

′ ik = tk}∧
σ′r = σr \ {rec ′i1, . . . , rec ′ik}

rec ′i if t = rec ′i ∧ t /∈ dom(σr)

σr[rec
′i] if t = rec ′i ∧ t ∈ dom(σr)

The partial function unfold : T→ T is unfolding recursive types and defined
by

unfold(rec ′ix.
{′i1 = t1, . . . ,

′ ik = tk
}

) :=

ε[rec ′i1 7→ rec ′i1.
{′i1 = t1, . . . ,

′ ik = tk
}

]

[rec ′i2 7→ rec ′i2.
{′i1 = t1, . . . ,

′ ik = tk
}

]

. . .

[rec ′ik 7→ rec ′ik.
{′i1 = t1, . . . ,

′ ik = tk
}

](tx)

and the partial function fold : T → T is defined as the inverse operation of
unfold.

Note that neither unfold nor fold are total. While unfold is only defined
on recursive types, fold is restricted to types which are the result of an unfold
operation being applied to a recursive type.

The following definition is fixing the domains of types and hence the
interpretation of the type constructors constituting the INSPIRE type sys-
tem.

68 CHAPTER 3. INSPIRE

Definition 3.25 (type domains). Let Da be the domain of any closed ab-
stract type a ∈ Tc fixed by the language extension introducing the abstract
type a. Further, for two sets A and B let A → B denote the set of all op-
erations7 that accept an element of A as an argument and compute a value
of set B.

The domain D(t) of a closed type t ∈ Tc is defined by the solution of
the set of equations generated by D(t) which is defined by

D(t) :=

{D(t) = Di〈t1,...,tk〉} if t = i 〈t1, . . . , tk〉

{D(t) = D(t1)× . . .×D(tk)} ∪
⋃k
i=1D(ti)

if t = struct {n1 : t1, . . . , nk : tk}

{D(t) =
⋃k
i=1D(ti)} ∪

⋃k
i=1D(ti)

if t = union {n1 : t1, . . . , nk : tk}

{D(t) = (D(t1)× . . .×D(tk))→ D(t0)} ∪
⋃k
i=0D(ti)

if t = (t1, . . . , tk)→ t0 ∧G(t) = ∅

{D(t) =
⋃
i∈I(t)D(i)} ∪

⋃
i∈I(t)D(i)

if t = (t1, . . . , tk)→ t0 ∧G(t) 6= ∅

{D(t) = D((t1, . . . , tk)→ t0)} ∪ D((t1, . . . , tk)→ t0)
if t = (t1, . . . , tk)⇒ t0

{D(t) = D(unfold(t))} ∪ D(unfold(t))
if t = rec ′ix. {′i1 = t1, . . . ,

′ ik = tk}

Note that the cases of type variables and recursive type variables can be
omitted since types of this shape are neither closed nor reached by the given
recursive definition.

It can also be observed that the domains of a function type (a)→ b and a
closure type (a)⇒ b for some types a, b ∈ T are equivalent. This is based on
the fact that those values are only distinguished by their origin within an ap-
plication. While values of the function type are introduced by the definition
of function expressions closure types are created by bind expressions. The
origin is not required to be distinguished when handling functions within
INSPIRE, yet when interfacing with external C/C++ APIs only values of
the function type (a) → b can be forwarded since those languages do not
support closures.

7We use the term operation to avoid confusion with (mathematical) functions which
are equivalent to pure functions within programming languages – operations may have
side effects.

3.5. THE TYPE SYSTEM 69

Example 3.4 (domains). Let int be an integer type such that Dint = Z
and the generic type ref 〈α〉 be a reference type such that for all t ∈ Tc we
have Dref〈t〉 = R where R is a arbitrary set of references. Further, let tr be
the recursive type

tr = rec α. {α = struct {a : int, b : ref 〈rec α〉}}

and

ts = unfold(tr)

= struct {a : int, b : ref 〈tr〉}
= struct {a : int, b : ref 〈rec α. {α = struct {a : int, b : ref 〈rec α〉}}〉}

Note that all those types are closed types. To compute the domain D(tr) the
set of equations D(tr) has to be obtained and solved. We therefore compute
the set of constraints

D(tr) = {D(tr) = D(unfold(tr))} ∪ D(unfold(tr))

= {D(tr) = D(ts)} ∪ D(ts)

= {D(tr) = D(ts)} ∪ {D(ts) = D(int)×D(ref 〈tr〉)}
∪ D(int) ∪ D(ref 〈tr〉)

= {D(tr) = D(ts)} ∪ {D(ts) = D(int)×D(ref 〈tr〉)}
∪ {D(int) = Dint} ∪ {D(ref 〈tr〉) = Dref〈tr〉}

= {D(tr) = D(ts)} ∪ {D(ts) = D(int)×D(ref 〈tr〉)}
∪ {D(int) = Z} ∪ {D(ref 〈tr〉) = R}

= {D(tr) = D(ts), D(ts) = D(int)×D(ref 〈tr〉),
D(int) = Z, D(ref 〈tr〉) = R}

and solve it for D(tr) such that we obtain

D(tr) = D(ts) = D(int)×D(ref 〈tr〉) = Z×R

which is the domain of tr.

3.5.2 Type Relations

Before defining rules for deducing types for expressions two auxiliary rela-
tions between types have to be defined.

Definitionally Equal

Whenever two types t1, t2 ∈ T are (structurally) equal (t1 = t2) the repre-
sented type and its associated domain is identical. However the reverse does
not hold since two structurally different types can describe the same domain

70 CHAPTER 3. INSPIRE

of values. For instance, the two function types (α) → α and (β) → β de-
scribe the same set of operators – operators accepting an argument of some
type and returning a value of the same type – yet the types are obviously not
structurally equal. A similar observation can be made regarding recursive
types. The domains of the types

rec α. {α = struct {next : α}}

and
struct {next : rec α. {α = struct {next : α}}}

are equivalent since the latter is the unfolded version of the first type. The
following definition of definitionally equality (≡) is capturing this relations.

Definition 3.26 (definitionally equal). Two types t1, t2 ∈ T are definition-
ally equal (t1 ≡ t2) iff

• the types are structurally equivalent (t1 = t2) or

• there is a bijective mapping σ between the sets G(t1) and G(t2) such
that σ(t1) = t2 or

• one type is the unfolded version of the other, hence unfold(t1) ≡ t2 ∨
t1 ≡ unfold(t2) or

• t1 is
rec ′ix.

{′i1 = t1, . . . ,
′ ik = tk

}
and t2 is

rec ′jx.
{′j1 = s1, . . . ,

′ jl = sl
}

and there is a recursive variable instantiation σr ∈ Trvar ⇀ Trvar
such that for every n ∈ {1, . . . , k} there is a m ∈ {1, . . . , l} such that
σr(in) = σr(jm) and σr(tn) ≡ σr(sm) or

• there is a type t′ such that t1 ≡ t′ and t′ ≡ t2

The second condition of the definition above ensures that type variables
can be consistently renamed without altering the represented value domain.
The third identifies recursive types and their unfolded versions. The fourth
condition states that the names utilized for recursive type variables are not
affecting the represented types – nor is the order in which the nested type
bindings are listed. Finally, the last condition ensures transitivity of the
definitionally equality relation.

Example 3.5 (definitionally equal). Two generic function types (α, α)→ α
and (β, β)→ β are definitionally equal since σ = [α 7→ β] is bijective and

σ((α, α)→ α) = (β, β)→ β

3.5. THE TYPE SYSTEM 71

However, neither is definitionally equal to (α, β) → β since there is no
bijective mapping between the set G((α, β) → β) = {α, β} and the sets
G((α, α) → α) = {α} or G((β, β) → β) = {β} respectively. Also, the
mutual recursive type

rec α. {α = struct {a : β} , β = struct {b : α}}

is definitionally equivalent to

rec γ. {β = struct {b : γ} , γ = struct {a : β}}

which both are definitionally equivalent to the first types unfolded version

struct {a : rec β. {α = struct {a : β} , β = struct {b : α}}}

due to the rule regarding the relation between recursive types and their
unfolded form and the transitivity of the definitionally equality relation.

Subtype Relation

Subtype relations represent relations between types a, b ∈ Tc where one
type is a more restricted version of the other – hence we have D(a) ⊆ D(b).
Since the computation of domains is hardly applicable for determining the
relation between types the subtype-relation <: is fixed by a set of structural
inference rules.

Definition 3.27 (subtypes). The subtype relation is a binary order relation
(reflexive and antisymmetric) on the set of types T seeded by the following
set of inference rules and may be extended by language extensions regarding
their introduced types. The basic set of inference rules include

s ≡ t
(ref)

s <: t

s <: r r <: t
(trans)

s <: t

∀i . ∃j . ni = mj ∧ si ≡ tj
(union)

union {n1 : s1, . . . , nk : sk} <: union {m1 : t1, . . . ,ml : tl}

∀i . ti <: si s <: t
(fun)

(s1, . . . , sk)→ s <: (t1, . . . , tk)→ t

∀i . ti <: si s <: t
(closure)

(s1, . . . , sk)⇒ s <: (t1, . . . , tk)⇒ t

(f2c)
(t1, . . . , tk)→ t <: (t1, . . . , tk)⇒ t

72 CHAPTER 3. INSPIRE

Whenever two types are difinitionally equivalent they are sub-types of
each other. In particular t <: t for every t ∈ T. Further, the sub-type rela-
tion is transitive, as it is ensured by the (trans) inference rule. The remaining
rules fix the implicit sub-type relation between union, function and closure
types. In particular every function type (t1, . . . , tk)→ t is a sub-type of the
closure type (t1, . . . , tk)⇒ t as covered by (f2c).

3.5.3 Typing Rules

So far this section was merely handling properties of the type system itself.
However, types are assigned to expressions to constrain the set of values they
might evaluate to during their evaluation. In the following we will establish
an inference system and an algorithm capable of automatically deducing a
type for a given IR expression.

Definition 3.28 (typing rules). The typing of expressions is defined by the
following set of type inference rules:

e : t t <: s
(sub)e : s

(var)
var(i : t) : t

(rec)
rec(i : t) : t

(lit)
lit(i : t) : t

e : (t1, . . . , tk)⇒ t0 ∀i . ei : σ(ti) σ(t0) ≡ t
(call)

e(e1, . . . , ek) : t

∀i . ei : ti
(struct)

struct {n1 = e1, . . . , nk = ek} : struct {n1 : t1, . . . , nk : tk}

e : t
(union)

union {n = e} : union {n : t}

e : struct {. . . , nx : t, . . .}
(access struct)

e.nx : t

e : union {. . . , nx : t, . . .}
(access union)

e.nx : t

∀i . vi : ti f : (t1, . . . , tk)→ t
(fun)

rec f {. . . , f = (v1, . . . , vk)→ t s, . . .} : (t1, . . . , tk)→ t

3.5. THE TYPE SYSTEM 73

∀i . vi : ti e(e1, . . . , el) : t
(bind)

(v1, . . . , vk)⇒ e(e1, . . . , el) : (t1, . . . , tk)⇒ t

(job)
job [el, eu] b : job

The first rule (sub) ensures that every expression e ∈ E of type t ∈ T is
also of type s ∈ T if s is a super type of t. The remaining inference rules are
defined over the structure of IR expressions. For variables and literals the
type is already included within the expression. The type of a call expression
is inferred from the type of the targeted function, the parameters and a
variable instantiation σ integrating the support for generic functions. The
types of the five value constructors are inferred recursively from their sub-
structures. Finally, the type of an access construct is determined by the
type of the addressed field.

3.5.4 Type Checking and Type Inference

The process of verifying whether a typing statement e : t is valid for some
expression e ∈ E and type t ∈ T is known as type checking. The typing
rules of Definition 3.28 provide the foundation for this procedure. If based
on the structure of the typing statement e : t a proof tree can be success-
fully constructed and all the involved subtype relations are valid, the typing
statement is valid.

While the application of most of the inference rules of Definition 3.28
is a mere exercise on matching patterns (var, lit, struct, union, fun, bind,
access and job) the rule (call) requires the proper instantiation of the vari-
able substitutions σ. Although this demand does not invalidate its proper
definition, indeterministic guessing is something that can hardly be autom-
atized within type verification utilities. We therefore define the process of
type inference which can be utilized for inferring the required intermediate
results.

Type Inference

Every expression may have several associates types. For instance, an expres-
sion of type t is also of type s whenever t <: s. In general we are interested
in determining the most specialized type according to the sub-type rela-
tion while selecting the most general generic type in terms of the generality
provided by the type variables. We refer to this type as most general type
(MGT) of an expression. The task of inferring the MGT of an expression is
known as type inference.

Definition 3.29 (most general type). Let a, b ∈ T be types. Type b is more
general than type a (denoted by a � b) iff

74 CHAPTER 3. INSPIRE

• b <: a or

• ∃σ . a = σ(b) or

• ∃t ∈ T . a � t ∧ t � b

Furthermore, we will use a ≺ b to denote that a � b and a 6= b. The most
general type of an expression e ∈ E denoted by MGT(e) is a type t ∈ T
satisfying

e : t ∧ ∀s ∈ T . (e : s⇒ s � t)

Hence, any other type that can be validly assigned to expression e is less
general than the MGT(e).

Example 3.6 (most general types – generic types). Let f be a generic
function of type (α, β)⇒ p 〈α, β〉, a be an expression of type γ and b be an
expression of type δ. Then the expression f(a, b) has the types p 〈γ, δ〉 as
well as p 〈γ, γ〉 since for σ = [α 7→ γ, β 7→ δ] we can prove

f : (α, β)⇒ p 〈α, β〉 a : σ(α) b : σ(β) σ(p 〈α, β〉) ≡ p 〈γ, δ〉
(call)

f(a, b) : p 〈γ, δ〉

since σ(α) = γ, σ(β) = δ and σ(p 〈α, β〉) = p 〈γ, δ〉. Yet utilizing the variable
instantiation σ = [α 7→ γ, β 7→ γ, δ 7→ γ] we can prove

f : (α, β)⇒ p 〈α, β〉 a : σ(α) b : σ(β) σ(p 〈α, β〉) ≡ p 〈γ, γ〉
(call)

f(a, b) : p 〈γ, γ〉

where σ(α) = γ, σ(β) = γ, σ(p 〈α, β〉) = p 〈γ, γ〉 and b : γ is proven by

b : δ

δ ≡ γ
(ref)

δ <: γ
(sub)

b : γ

However, p 〈γ, δ〉 6≡ p 〈γ, γ〉 since there is a σ such that σ(p 〈γ, δ〉) = p 〈γ, γ〉
but no σ such that p 〈γ, δ〉 = σ(p 〈γ, γ〉). However, due to the same reason
we have p 〈γ, γ〉 ≺ p 〈γ, δ〉. For the type inference we prefer to assign the
more general type p 〈γ, δ〉 to the expression f(a, b) and in fact we have
MGT(f(a, b)) = p 〈γ, δ〉.

Example 3.7 (most general types – sub-types). Let t, s ∈ T be types such
that s is a sub-type of t (s <: t). A literal lit(i : s) would then be of type s
as well as t since

(lit)
lit(i : s) : s

as well as

3.5. THE TYPE SYSTEM 75

(lit)
lit(i : s) : s s <: t

(sub)
lit(i : s) : t

can be proven. However, s is “more general” – although being more special-
ized in the sub-type hierarchy – according to Definition 3.29 since s <: t.
Hence, the MGT(lit(i : s)) = s.

Note that for most expression constructs the MGT can be directly de-
rived from its sub-structures or its sub-structures’ MGTs. For instance, the
most general type of a variable var(i : t) is t and the MGT of a union ex-
pression union {n = e} is union {n : t} where t is the MGT of the expression
e. The only exception is formed by the call expression which is depending
on a type-variable instantiation σ. Consequently computing σ is the main
challenge when constructing an automated type inference utility.

Definition 3.30 (type inference). Let s1, . . . , sk ∈ T be the list of types
of the arguments passed to a function call e(e1, . . . , ek) and w.l.o.g.8 let
(t1, . . . , tl)→ t be the type of the targeted function e. If k 6= l the call is not
valid and no type can be determined. Otherwise the following procedure
computes the most general variable substitution

σcall = MGS([s1, . . . , sk], [t1, . . . , tk])

such that ∀1≤i≤k . si <: σcall(t1) if such a solution exists. The MGS is
required for computing the most general type

MGT(e(e1, . . . , ek)) = σcall(t)

of the processed call expression.

Step 1: Renaming
To avoid invalid type-variable capturing we have to make sure that all
type variables within the argument and parameter lists are distinct.
Let σs, σt ∈ Tgvar ⇀ Tgvar be two injective9 variable substitutions
mapping type variables to type variables such that⋃

1≤i≤k
G(σs(si)) ∩

⋃
1≤i≤k

G(σt(ti)) = ∅

Furthermore let σ−1
t ∈ Tgvar ⇀ Tgvar be the inverse mapping of σt

such that ∀v ∈ T . σ−1
t (σt(v)) = v.

Step 2: Subtype-Dependency Graph Construction
Let g′ ∈ G = (T,T× T) be the directed graph constructed by

g′ :=
⋃

1≤i≤k
G�(σs(si), σt(ti))

8Whether the call-target is a function or closure does not effect the inference procedure.
9This ensures ∀i.si ≡ σs(si) and ∀i.ti ≡ σt(ti).

76 CHAPTER 3. INSPIRE

where

G�(s, t) :=

(∅, ∅) if s = t or s <: t

({s, t}, {(t, s)}) if s =′ i ∨ t =′ i⋃
1≤i≤kG=(si, ti) if s = i 〈s1, . . . , sk〉 and t = i 〈t1, . . . , tk〉

G�(unfold(s), t) if s is rec-type and t is not

G�(s, unfold(t)) if t is rec-type and s is not

G�(sx, ty) if s = rec ′ix. {. . . ,′ ix = sx, . . .}∧
t = rec ′jy. {. . . ,′ jy = ty, . . .}⋃

1≤i≤kG=(si, ti) if s = struct {n1 : s1, . . . , nk : sk}∧
t = struct {n1 : t1, . . . , nk : tk}⋃

1≤i≤lG=(si, ti) if s = union {n1 : s1, . . . , nl : sl}∧
t = union {n1 : t1, . . . , nk : tk}∧
l ≤ k

G�(s0, t0) ∪
⋃

1≤i≤kG�(ti, si)

if s = (s1, . . . , sk)→ s0∧
t = (t1, . . . , tk)→ t0

G�(s0, t0) ∪
⋃

1≤i≤kG�(ti, si)

if (s = (s1, . . . , sk)⇒ s0∨
s = (s1, . . . , sk)→ s0)∧

t = (t1, . . . , tk)⇒ t0

fail otherwise

3.5. THE TYPE SYSTEM 77

and

G=(s, t) :=

(∅, ∅) if s = t or s <: t

({s, t}, {(s, t), (t, s)}) if s =′ i ∨ t =′ i⋃
1≤i≤kG=(si, ti) if s = i 〈s1, . . . , sk〉 and t = i 〈t1, . . . , tk〉

G=(unfold(s), t) if s is rec-type and t is not

G=(s, unfold(t)) if t is rec-type and s is not

G=(sx, ty) if s = rec ′ix. {. . . ,′ ix = sx, . . .}∧
t = rec ′jy. {. . . ,′ jy = ty, . . .}⋃

1≤i≤kG=(si, ti) if s = struct {n1 : s1, . . . , nk : sk}∧
t = struct {n1 : t1, . . . , nk : tk}⋃

1≤i≤kG=(si, ti) if s = union {n1 : s1, . . . , nk : sk}∧
t = union {n1 : t1, . . . , nk : tk}⋃

0≤i≤kG=(si, ti)

if s = (s1, . . . , sk)→ s0∧
t = (t1, . . . , tk)→ t0⋃

0≤i≤kG=(si, ti)

if (s = (s1, . . . , sk)⇒ s0∨
s = (s1, . . . , sk)→ s0)∧

t = (t1, . . . , tk)⇒ t0

fail otherwise

and ∪ : G×G is defined by (N1, E1)∪ (N2, E2) = (N1 ∪N2, E1 ∪E2).
Let g′ = (N ′, E′) and g ∈ G be the graph obtained by

g := (N,E)

where N is the closure of N ′ under the subset relation <: and

E := E′ ∪ {(t1, t2) ∈ N | t1 <: t2}

.

Step 3: Compute Strongly Connected Components
Let c = (Nc, Ec) ∈ (2T, 2T × 2T) be the graph obtained by computing

78 CHAPTER 3. INSPIRE

the graph of strongly connected components (SCCs) of graph g. This
operation can be conducted using Tarjan’s algorithm [96].

Step 4: Unify Strongly Connected Components
All types within the strongly connected components Nc have to be
equivalent. We therefore construct a set of unification constraints a ≈
b where a, b ∈ T by computing

u :=
⋃
c∈Nc

{t1 ≈ t2 | t1, t2 ∈ c ∧ t1 6= t2}

and obtain a variable instantiation σu by solving those constraints us-
ing unification. In case such a solution exists, substitute all mappings
a 7→ b where a ∈ dom(σs) and b ∈ dom(σt) in σu by b 7→ a. If
there is no solution to the unification problem u the arguments of the
processed call are invalid and the type inference process fails.

Step 5: Resolve Constraints
Let u = (Nu, Eu) ∈ (T,T×T) be the graph obtained from c by replac-
ing each component c ∈ Nc by a unified represent σu(t) where t ∈ c.
Let [n1, . . . , nk] ∈ Tk be a reverse-topological ordering of u’s nodes.
The final variable instantiation σ is computed by

σ := σu
for i← 1 . . . k do

p := {σ(x) ∈ T | (x, ni) ∈ Eu}
if p 6= ∅ then

t := least common super type(p)
if t = ⊥ or 6 ∃τ . τ(σ(ni)) = t then

return fail
end if
σt := find τ such that τ(σ(ni)) = t
σ := σt ◦ σ

end if
end for

where the value least common super type(T) is computing a type r ∈
T ∪ {⊥} such that

r =

{
s if (∀t ∈ T . t <: s) ∧ ¬(∃v∀t ∈ T . t <: v ∧ v <: s)
⊥ if ¬∃s . ∀t ∈ T . t <: s

and σt ◦ σ computes the effective variable instantiation obtained by
applying σt after σ.

Step 6: Obtain Results
Finally let σcall be σ−1

t ◦σ◦σt and the most general type of the processed
call expression be σcall(t).

3.5. THE TYPE SYSTEM 79

Example 3.8 (type inference). Let A,B,C ∈ T be three abstract types
such that B and C are sub-types of A, hence B <: A and C <: A. Further,
let f be an expression of the generic type

(p 〈α, β〉 , (α, β)→ γ)→ γ

a be an expression of type

p 〈B,C〉

and b be an expression of type

(α, α)→ α

For instance, f may be a function applying an arbitrary function on the
elements of a pair, a may be a pair and b a binary function accepting two
arguments of the same type and randomly selecting one of the two. For this
example we would like to determine the MGT(f(a, b)) which should be A.

For the type inference procedure of Definition 3.30 we have s1 = p 〈B,C〉
and s2 = (α, α) → α as the argument types and t1 = p 〈α, β〉 and t2 =
(α, β)→ γ as the parameter types.

Step 1: Renaming
To avoid variable name collisions we utilize the two injective variable
mappings

σs = [α 7→ α1]

and

σt = [α 7→ α2, β 7→ β2, γ 7→ γ2]

and obtain

σ−1
t = [α2 7→ α, β2 7→ β, γ2 7→ γ]

Step 2: Subtype-Dependency Graph Construction
In a first step we construct g′ by

g′ = G�(σs(s1), σt(t1)) ∪G�(σs(s2), σt(t2))

= G�(p 〈B,C〉 , p 〈α2, β2〉) ∪G�((α1, α1)→ α1, (α2, β2)→ γ2)

where

G�(p 〈B,C〉 , p 〈α2, β2〉) =

= G=(B,α2) ∪G=(C, β2)

= ({B,α2}, {(B,α2), (α2, B)}) ∪ ({C, β2}, {(C, β2), (β2, C)})
= ({B,α2, C, β2}, {(B,α2), (α2, B), (C, β2), (β2, C)})

80 CHAPTER 3. INSPIRE

and

G�((α1, α1)→ α1, (α2, β2)→ γ2) =

= G�(α1, γ2) ∪G�(α2, α1) ∪G�(β2, α1)

= ({α1, α2, β2, γ2}, {(γ2, α1), (α1, α2), (α1, β2)})

so that we obtain

g′ = (

{B,α2, C, β2, α1, γ2},
{(B,α2), (α2, B), (C, β2), (β2, C), (γ2, α1), (α1, α2), (α1, β2)}

)

which is illustrated by

γ2 α1

α2

β2

B

C

To obtain the full subtype-dependency graph g we adding all the super-
types of the present types and corresponding edges. In our case we
have to add the type A and edges from B and C to A so that we obtain
the graph g:

γ2 α1

α2

β2

B

C

A

Step 3: Computing Strongly Connected Components
For this step the graph c of SCCs of graph g is computed. The result
corresponds to:

{γ2} {α1}

{α2, B}

{β2, C}

{A}

3.5. THE TYPE SYSTEM 81

Step 4: Unify Strongly Connected Components
From graph c we obtain the unification constraints

u = {α2 ≈ B, β2 ≈ C}

from which we obtain the variable instantiation

σu = ε[α2 7→ B][β2 7→ C]

Step 5: Resolve Constraints
Based on σu we obtain graph u by replacing the nodes of c by their
unified represent:

γ2 α1

B

C

A

A reverse-topological order of u’s nodes is given by

[n1, . . . , n5] = [A,B,C, α1, γ2]

In the next step we obtain σ by processing the algorithm of Step 5 of
Definition 3.30 as follows:

iteration σ before ni p t σt σ after
〈init〉 σu – – – – σu

1 σu A ∅ – – σu
2 σu B ∅ – – σu
3 σu C ∅ – – σu
4 σu α1 {B,C} A ε[α1 7→ A] σu[α1 7→ A]
5 σu[α1 7→ A] γ2 {A} A ε[γ2 7→ A] σu[α1 7→ A][γ2 7→ A]

Resulting in

σ = [α2 7→ B, β2 7→ C,α1 7→ A, γ2 7→ A]

Step 6: Obtain Results
Finally we obtain

σcall = σ−1
t ◦ σ ◦ σt

= [α 7→ B, β 7→ C, γ 7→ A,α2 7→ B, β2 7→ C,α1 7→ A, γ2 7→ A]

When applied to the result type γ of the input function f we obtain

σcall(γ) = A

and hence MGT(f(a, b)) = A

The procedure of Definition 3.30 therefore correctly obtains A ∈ T as the
most general type of the call expression f(a, b).

82 CHAPTER 3. INSPIRE

Type Checking Procedure

Based on the type inference procedure for call expressions presented above
an automated type checking utility can be realized based on the recursive,
bottom-up computation of the most general types of expressions.

Definition 3.31 (type checking procedure). Let e ∈ E be an expression
and MGT (e) ∈ T be its most general type computed by

MGT(e) :=

t if e = var(i : t)

t if e = lit(i : t)

σcall(t) if e = e0(e1, . . . , en) and σcall from Definition 3.30

struct {n1 : MGT(e1), . . . , nk : MGT(ek)}
if e = struct {n1 = e1, . . . , nk = ek}

union {n : MGT(em)}
if e = union {n = em}

t if e = e0.n and MGT(e0) = struct {. . . , n : t, . . .} or
MGT(e0) = union {. . . , n : t, . . .}

(MGT(v1), . . . ,MGT(vk))→ t
if e = rec fx.{. . . , fx = (v1, . . . , vk)→ t s . . . , . . .}

t if e = rec(i : t)

(MGT(v1), . . . ,MGT(vk))⇒ MGT(e(e1, . . . , el))
if e = (v1, . . . , vk)⇒ e(e1, . . . , el)

job if e = job [el, eu] b

A typing statement e : t is valid iff MGT(e) <: t.

3.6 Valid Code Fragments

Unfortunately not every expression in E and statement in S is a valid repre-
sentation of a program or code fragment. For instance, functions might be
called by passing an invalid number of arguments, variables might be used
without being defined before or return statements might return values of a
type not matching the result type of the enclosing function. Constructing

3.6. VALID CODE FRAGMENTS 83

an abstract language syntax enforcing this kind of constraints would result
in overly complex constructs. Therefore, for the design of our IR, we have
followed the common approach of specifying a simple syntax (see Section
3.4) followed by a set of restrictions which have to be satisfied to form a
valid code fragment. Within this section those restrictions are covered.

The restrictions are sub-divided into two categories – those imposed
on expressions and those imposed on statements. Both categories, valid
expressions (Ev) and valid statements (Sv) are covered within the following
sub-sections. To simplify the definition of the constraints we require some
auxiliary definitions.

3.6.1 Auxiliary Definitions

In a first step we extend the definition of free type variables F (t) (see Defi-
nition 3.16) to cover expressions and statements.

Definition 3.32 (free type variables for statements). Let s ∈ S be a state-
ment. The set F (s) ⊂ Tgvar of free type variables is defined by

F (s) :=

F (MGT (e)) if s = e ∈ E⋃
1≤i≤n F (si) if s = {s1; . . . ; sn}

F (e) ∪ F (s1) ∪ F (s2) if s = if (e) then s1 else s2

F (e) ∪ F (b) if s = while (e) do b

F (v) ∪
⋃3
i=1 F (ei) ∪ F (b) if s = for (v = e1 . . . e2 : e3) do b

F (e) if s = return e
∅ otherwise

Also, we define a function Fvar : S → 2V computing the set of free
variables within expressions and statements.

Definition 3.33 (free variables). Let e ∈ E be an expression. The set
F ′var(e) ⊂ V of free variables within expression e is defined by

F ′var(e) :=

{e} if e = var(i : t)
∅ if e = lit(i : t)⋃k
i=0 Fvar(ei) if e = e0(e1, . . . , ek)⋃k
i=1 Fvar(ei) if e = struct {n1 = e1, . . . , nk = ek}

Fvar(e1) if e = union {n = e1}
Fvar(e1) if e = e1.n
∅ if e = rec fx.{. . .}
∅ if e = rec(i : t)⋃l
i=0 Fvar(ei) \ {v1, . . . , vk}

if e = (v1, . . . , vk)⇒ e0(e1, . . . , el)
Fvar(el) ∪ Fvar(eu) ∪ Fvar(b)

if e = job [el, eu] b

84 CHAPTER 3. INSPIRE

Let s ∈ S be a statement. The set Fvar(s) ⊂ V of free variables within
statement s is defined by

Fvar(s) :=

F ′var(s) if s ∈ E
∅ if s = {}
Fvar(s1) ∪ Fvar({s2, . . . , sn})

if s = {s1, . . . , sn} ∧ n > 0 ∧ s1 6= decl v = e
Fvar(e) ∪ (Fvar({s2, . . . , sn}) \ {v})

if s = {s1, . . . , sn} ∧ n > 0 ∧ s1 = decl v = e
Fvar(e) ∪ Fvar(s1) ∪ Fvar(s2)

if s = if (e) then s1 else s2

Fvar(e) ∪ Fvar(b)
if s = while (e) do b⋃3

i=1 Fvar(ei) ∪ (Fvar(b) \ {v})
if s = for (v = e1 . . . e2 : e3) do b

Fvar(e) if s = return e
∅ if s = break
∅ if s = continue

Similar we define a function Frec : S → 2Vrec computing the set of free
recursive variables within expressions and statements.

Definition 3.34 (free recursive variables). Let e ∈ E be an expression. The
set F ′rec(e) ⊂ Vrec of free recursive variables within expression e is defined
by

F ′rec(e) :=

∅ if e = v
∅ if e = lit(i : t)⋃k
i=0 Frec(ei) if e = e0(e1, . . . , ek)⋃k
i=1 Frec(ei) if e = struct {n1 = e1, . . . , nk = ek}

Frec(e1) if e = union {n = e1}
Frec(e1) if e = e1.n⋃k
i=1 Frec(si) \ {f1, . . . , fk}

if e = rec fx.{
f1 = (v11, . . . , v1l1)→ t1 s1,
. . . ,
fk = (vk1, . . . , vklk)→ tk sk

}
{e} if e = rec(i : t)⋃l
i=0 Frec(ei) if e = (v1, . . . , vk)⇒ e0(e1, . . . , el)

Frec(el) ∪ Frec(eu) ∪ Frec(b)
if e = job [el, eu] b

Let s ∈ S be a statement. The set Frec(s) ⊂ Vrec of free recursive variables

3.6. VALID CODE FRAGMENTS 85

within statement s is defined by

Frec(s) :=

F ′rec(s) if s ∈ E⋃n
i=1 Frec(si) if s = {s1, . . . , sn}

Frec(e) ∪ Frec(s1) ∪ Frec(s2)
if s = if (e) then s1 else s2

Frec(e) ∪ Frec(b)
if s = while (e) do b⋃3

i=1 Frec(ei) ∪ Frec(b)
if s = for (v = e1 . . . e2 : e3) do b

Frec(e) if s = return e
∅ if s = break
∅ if s = continue

Furthermore, the scope of break and return statements has to be fixed.
As for other constructs we do so by providing a definition for free break and
return statements.

Definition 3.35 (free break and return statements). Let s ∈ S be a state-
ment. The set Fbrk(s) of free break statements is defined by

Fbrk(s) :=

⋃n
i=1 Fbrk(si) if s = {s1; . . . ; sn}

Fbrk(s1) ∪ Fbrk(s2) if s = if (e) then s1 else s2

{break} if s = break
∅ otherwise

and the set Fret(s) of free return statements is defined by

Fret(s) :=

⋃n
i=1 Fret(si) if s = {s1; . . . ; sn}

Fret(s1) ∪ Fret(s2) if s = if (e) then s1 else s2

Fret(b) if s = while (e) do b
Fret(b) if s = for (v = es . . . ee : ei) do b
{s} if s = return e
∅ otherwise

Note that Fbrk(s) ∈ {∅, {break}} for any statement s while Fret(s) is col-
lecting all return statements including the expressions computing the value
to be returned. Also, the scopes of break statements are bound by func-
tion bodies and loops while return statements are only bound by function
bodies.

3.6.2 Valid Expressions

Many of the restrictions of valid expressions are imposed on the function
construct. We therefore provide a separated definition for valid functions.

86 CHAPTER 3. INSPIRE

Definition 3.36 (valid functions). A function expression

e = rec fx.{
f1 = (var(i11 : t11), . . . , var(i1l1 : t1l1))→ t1 s1,

. . . ,

fk = (var(ik1 : tk1), . . . , var(iklk : tklk))→ tk sk

}

of type te = MGT (e) is a valid function iff the following constraints are
satisfied:

• for all 1 ≤ i ≤ k the type of fi is (ti1, . . . , tili)→ ti

• for all 1 ≤ i ≤ k the statement si is a valid statement (si ∈ Sv)

• for all 1 ≤ j ≤ k we have

Fvar(sj) ⊆ {var(ij1 : tj1), . . . , var(ijlj : tjlj)}

Hence the function body sj has no free variables except for the asso-
ciated parameters.

• for all 1 ≤ i ≤ k we have (Fret(si) = ∅)⇒ (ti = unit) and ∀return e ∈
Fret(si) . e : ti – hence, if there are no free returns, the return type of
the function is unit; otherwise the returned values have to be consistent
with the return type

• for all 1 ≤ i ≤ k we have F (si) ⊆ G(MGT (fi)) – hence all free type
variables within the bodies are generic type variables of the associated
function type

Furthermore, e is said to be a valid generic function if G(te) 6= ∅.

Based on the definition of valid functions we can extend the definition
of validity to all expressions as follows:

Definition 3.37 (valid expressions). An expression e ∈ E is valid iff

• it can be typed, hence its most general type t = MGT (e) can be
computed and t ∈ Tv is a valid type

• if e is a literal representing a constant or an abstract operator it has to
be one of the built-in literals of the language core or defined by some
known extension (see Section 3.8)

• if e is a function expression, it is a valid function expression

• if e is a bind expression (v1, . . . , vk) ⇒ e0(e1, . . . , el) then for all 0 ≤
i ≤ l we have ei ∈ {v1, . . . , vk} or Fvar(ei) ∩ {v1, . . . , vk} is empty.

3.6. VALID CODE FRAGMENTS 87

• if e is a job expression job [el, eu] b then MGT (el) = MGT (eu) ≺
uint 〈α〉10 and b : ()⇒ unit has to be valid

• all sub-expressions of e are valid expressions too

The set of all valid expressions satisfying these constraints is denoted by
Ev ⊂ E.

3.6.3 Valid Statements

Also the construction of statements is constraint by the composition and
types of its sub-components.

Definition 3.38 (valid statements). A statement s ∈ S is valid iff all sub-
expressions and statements are valid statements and one of the following
conditions is satisfied:

• if s is an expression it is a valid expression (s ∈ Ev)

• if s is a declaration statement of the shape decl var(i : t) = e then e : t
has to be valid

• if s is a conditional statement of the shape if (e) then s1 else s2 then
e : bool has to be valid11.

• if s is a while statement of the shape while (e) do b then e : bool has
to be valid

• if s is a for statement of the shape for (v = es . . . ee : ei) do b then
there has to be a type t ∈ Tc such that t = MGT (v), es : t, ee : t, and
ei : t hold and t ≺ int 〈α〉 or t ≺ uint 〈α〉. Furthermore, b must not
contain any free break or return statements (Fbrk(b) = Fret(b) = ∅).

Analogous to the expressions, the set of all valid statements is denoted by
Sv ⊂ S.

3.6.4 Valid Programs

In a final step we are able to provide a definition for a valid IR program.

Definition 3.39 (valid program). The set P of valid INSPIRE programs is
defined by

P = {e ∈ Ev | F (e) = Fvar(e) = Frec(e) = ∅}

Hence, every valid expression e not exhibiting any free type variables, free
variables or free recursive variables is a valid INSPIRE program.

10The abstract parametrized types int 〈α〉 and uint 〈α〉 model signed and unsigned
integral numbers – see Section 3.8.2.

11The abstract type bool models the truth values true and false – see Section 3.8.2.

88 CHAPTER 3. INSPIRE

By definition, a valid program must not exhibit any free type variables.
Nevertheless, it may contain properly nested generic functions and non-
closed sub-expressions and statements.

3.7 Semantic

After INSPIRE’s syntax has been introduced within Section 3.4 and validity
restrictions have been covered within Section 3.6 this section is formalizing
the language’s semantic.

3.7.1 The Small-Step Transition Relation

To formalize the semantic of INSPIRE’s language constructs, its operational
semantic will be elaborated within this section. The general idea is to define
a relation restricting valid transitions between global program states. Based
on an initial state constructed from a valid INSPIRE program, the set of po-
tential program traces is fixed by the transitive closure of the global program
state transition relation to be covered in this section.

INSPIRE supports the incorporation of abstract functions and symbols.
Consequently, to provide a semantic interpretation of an INSPIRE code frag-
ment, interpretations of those abstract elements have to be provided. This
section will start by specifying how those interpretations are integrated. It
is followed by the specification of the program states which are then utilized
for formalizing the desired state transitions.

Abstract Symbol Interpretations

In INSPIRE, abstract constants and functions can be incorporated within
code fragments utilizing literal expressions. To determine the semantic of
code fragments including abstract elements, interpretations for those are
required. Those interpretations have to be provided by the corresponding
language extensions introducing the abstract constructs. Formally, an in-
terpretation is a mapping from literals to values of a universal value set.

Definition 3.40 (universal value set). The set of all concrete values pro-
cessed by an INSPIRE program is denoted by V.

We leave the exact definition of V open such that it can be extended
by extensions as required. Any extension may add additional objects to be
included within V. For instance, the arithmetic extension introduces Z as a
subset of V since integer literals are representing corresponding values. Also
the interpretation of arithmetic operations like addition (+) and multipli-
cation (∗) are included in V since literals representing these operations are
covered by the corresponding extensions.

3.7. SEMANTIC 89

The interpretation of abstract literals is a mapping from IR literals to
the universal value set V.

Definition 3.41 (interpretation). The set of all interpretations I is defined
by the set of partial mappings

I = ({lit(i : t) ∈ Ev}⇀ V)

where {lit(i : t) ∈ Ev} is the set of all valid literals in INSPIRE and V the
universal value set.

To define the semantic of a program code, the interpretation of all its
abstract symbols is required. The complete interpretation is obtained by
concatenating the interpretations provided by the individual language ex-
tensions referenced by an IR code fragment. For the remainder of this section
we assume that I ∈ I is the aggregation of all those interpretations.

Program States

The state of a system is modeled by a pair of elements. The first element
covers the state of the system the program is manipulating while the second
component models the progress of the processed program. To model the
former we utilize the following environment definition.

Definition 3.42 (environment). An environment is a mapping between an
arbitrary key set K and the value set V. The set of all environments E is
given by

E = (K⇀ V)

Note that we have left the set of keys K undefined within the definition
of environments the same way as we kept the set of values V open for exten-
sions. On the one hand, a restriction of those two sets is not required for the
following definitions and on the other hand this leaves the environment open
to be utilized for modeling the effect of operations introduced by language
extensions.

Frequently the content to be maintained within environments are (partial)
functions. This can be quite cumbersome. For instance, to realize an event
counter for a set of events E within an environment e we would have to
define a grammar for keys, e.g. k ::= counter(i) where i ∈ E is an event
identifier, which is later on utilized for read and update operations. In this
example, e[counter(i)] is obtaining the current counter value of event i and
the term

e[counter(i) 7→ e[counter(i)] + 1]

is an example of an environment where the value of the counter has been
increased by 1.

90 CHAPTER 3. INSPIRE

To mitigate the need of extra grammars and excessive terms regarding
update operations of functions we introduce an abbreviated notation for
functions stored within environments.

Definition 3.43 (environment function notation). Let f be the name of a
(partial) n-ary function (A1 × . . . × An) → B to be maintained within an
environment e ∈ E for arbitrary sets A1, . . . , An, and B. Let f⊥ ∈ B be the
default value to be assigned to values not within the domain of f (f⊥ may
be left undefined). Then the value fe(a1, . . . , an) is defined by

fe(a1, . . . , an) :=

{
e[’f’(a1, . . . , an)] if ’f’(a1, . . . , an) ∈ dom(e)

f⊥ otherwise

where ’f’(a1, . . . , an) is an element of the induced key-grammar

k ::= ’f’(e1, . . . , en)

where ei ∈ Ai for all 1 ≤ i ≤ n. Furthermore, the expression

fe(a1, . . . , an)← b

is abbreviating

e[’f’(a1, . . . , an) 7→ b]

hence the update of the function value f(a1, . . . , an) to match b within en-
vironment e. Finally, let g : (C1 × . . . × Ci × B × Ci+1 × . . . Ck) → B be
a function over the co-domain of function f and some extra parameters of
some arbitrary sets C1, . . . , Ck. Then the term

g(c1, . . . , ci, fe(a1, . . . , an), ci+1, . . . , ck)

is considered equivalent to

fe(a1, . . . , an)← g(c1, . . . , ci, fe(a1, . . . , an), ci+1, . . . , ck)

when utilized in a context demanding an environment.

Example 3.9 (counter). Based on the environment function notation the
counter from the motivating example above can be realizes as follows: Let
counter : E → N be a (partial) function for a set of events E with the
default value counter⊥ = 0. To read the current value of the counter within
environment e ∈ E for an event i ∈ E we can use countere(i). Note that if
there is no corresponding value covered by e the result will be 0. To obtain an
environment where the value of the counter of event i has been incremented
by 1 we can use the term countere(i)++ by utilizing the familiar post-fix
notation of the increment operation ++ : N→ N defined by x = x+ 1.

3.7. SEMANTIC 91

Intermediate Statements The second component of the program state
is modeling the program progress itself. The progress is given by the re-
maining code fragment to be processed. However, for formalizing the effects
of various language constructs the static IR syntax has to be extended by
some additional intermediate elements. The following definition introduces
the sets of intermediate variables IV, intermediate expressions IE and in-
termediate statements IS.

Definition 3.44 (intermediate expressions and statements). The set inter-
mediate variables IV is defined by

IV = {v : t | v ∈ V}

Let ν∗ ∈ V be values, i ∈ I be an identifier, t∗ ∈ T be types, n∗ ∈ I be
identifiers utilized as names, e∗, b ∈ IE be intermediate expressions, v∗ ∈ IV
be intermediate variables, f∗ ∈ Vrec be recursive variables and s∗ ∈ IS be
intermediate statements. Then, for all x > 0 ∈ N,

v (var)

lit(i : t) : t (lit)

e(e1, . . . , ek) : t (call)

struct {n1 = e1, . . . , nk = ek} : t (struct)

union {n = e} : t (union)

e.n : t (access)

rec fx.{
f1 = (v11, . . . , v1l1)→ t1 s1,

. . . ,

fk = (vk1, . . . , vklk)→ tk sk

} : t (func)

f : t (rec)

(v1, . . . , vk)⇒ e(e1, . . . , el) : t (bind)

job [el, eu] b : t (job)

ν : t (value)

(v1, . . . , vk)→ s : t (callable)

eval(s) : t (eval)

[νl, νu]→ b : t (spawnable)

are intermediate expressions as well. The set IE is the smallest set being
closed under those constructs.

Let e∗ ∈ IE be intermediate expressions, v ∈ IV be an intermediate
variable, t ∈ T be a type and s∗ ∈ IS be intermediate statements. Then, for

92 CHAPTER 3. INSPIRE

all n ∈ N

e (expr)

decl v = e (decl)

{s1; . . . ; sn} (comp)

if (e) then s1 else s2 (if)

while (e) do s (while)

for (v = es . . . ee : ei) do s (for)

return e (return)

break (break)

continue (continue)

loop (s) (loop)

are intermediate statements as well. The set IS is the smallest set being
closed under those constructs.

Note that the definition of intermediate expressions is analogous to the
definition of ordinary IR expressions with the distinction that every con-
struct is annotated by a type and a few extra constructs have been intro-
duced. The additional constructs ((value), (callable), (eval), (spawnable),
and (loop)) are required for formalizing the effects of the remaining con-
structs.

We apply the same syntactic sugar conventions to intermediate expres-
sions and statements as we do for ordinary IR constructs. Additionally we
may omit the trailing type : t if its presence is clear from the context. In
particular, a term ν : t ∈ IS and its value counterpart ν ∈ V are considered
interchangeable if their relation is clear from the context.

Intermediate statements are utilized to represent programs within the
state transitions developed within this section. Consequently, since the ob-
jective is to specify the semantic of INSPIRE constructs a conversion be-
tween ordinary IR statements and intermediate IR statements is required.

Definition 3.45 (type annotations). The function conv : S → IS replaces
every expression e ∈ E by e : MGT (e) ∈ IS within a given IR statement.
Further, the function type : IE → T is defined by : t 7→ t where is a
wild-card for any of the intermediate expression constructors.

Essentially the function conv is annotating every expression within an IR
code fragment with its most general type and the type function is extracting
this annotated type from an intermediate expression.

3.7. SEMANTIC 93

Irreducible Expressions The basic idea of the following transition rela-
tion is to model the gradual reduction of a program (=expression) from an
initial state to a resulting value. Thus a definition of a value distinguishing it
from something that can be further processed is required. For this purpose
the set of irreducible expressions is introduced.

Definition 3.46 (irreducible expression). An expression e ∈ IE is irre-
ducible if one of the following constraints is satisfied:

• e = ν : t and ν ∈ V – hence e is a value or

• e = lit(i : t) : t and e /∈ dom(I) or

• e = (v1, . . . , vk)→ s : t where v1, . . . , vk ∈ IV and s ∈ IS or

• e = [νl, νu]→ b : t where νl, νu ∈ V and b ∈ IS

The set of irreducible expressions is denoted by IEi ⊂ IE.

For the remainder of this section placeholders of the shape ν∗ are con-
sidered to be restricted to irreducible expressions unless explicitly stated
otherwise.

Synchronizing Expressions For the specification of the IR language
constructs we have to further distinguish between operations whose effects
are isolated to a single thread and operations with global synchronizing side
effects. The latter group is defined by the set of global synchronizing expres-
sions.

Definition 3.47 (global synchronizing expressions). An intermediate ex-
pression e ∈ IE is a global synchronizing expression iff e equals

• spawn(ν) : t for some ν ∈ IEi and t ∈ T or

• merge(ν) : t for some ν ∈ IEi and t ∈ T or

• merge() : t for some t ∈ T or

• redistribute(ν1, ν2) : t for some ν1, ν2 ∈ IEi and t ∈ T

where spawn, merge, and redistribute are the literals introduced within
section 3.4.2 converted into intermediate expressions. The set of global syn-
chronizing expressions is denoted by IEgsync

94 CHAPTER 3. INSPIRE

Thread Addresses Another required component for modeling program
states is a way to address threads. Threads are organized in a hierarchy of
thread groups. To identify a thread, its address is used.

Definition 3.48 (thread address). A thread address is given by a term of
the grammar

a ::= ε | a.g(i/s)

where ε is the empty address and g, i, s ∈ N0 are natural numbers. The set
of all thread addresses is denoted by T . Further, let a ∈ T be an address
and x ∈ N0 be a natural number. The address a[x] of the x-th parent is
defined by

a[x] =

a if x = 0

a1[x− 1] if a = a1.g(i/s) and x > 0

undefined otherwise

Also the id of a thread within its group is defined by

a.id =

{
undefined if a = ε

i if a = a1.g(i/s)

the group size is given by

a.size =

{
undefined if a = ε

s if a = a1.g(i/s)

and the group id by

a.group =

{
undefined if a = ε

g if a = a1.g(i/s)

Example 3.10 (thread address). The address of a thread may be ε.0(1/2)
where the group ID is 0, the thread’s id is 1 and there are a total of 2
threads in its associated thread group. If this thread spawns a thread
group 1 consisting of two threads the addresses of the new threads are
ε.0(1/2).1(0/2) and ε.0(1/2).1(1/2). If the original thread ε.0(1/2) spawns
a second thread group 2 consisting of three threads their addresses are
ε.0(1/2).2(0/3), ε.0(1/2).2(1/3), and ε.0(1/2).2(2/3).

Definition 3.49 (program state). The state of a program is defined by a
pair

(e, s) ∈ (E × 2T ×IS) = S

where e is the current environment state of the execution and s a set of
threads represented by their address and their current evaluation state for-
malized by an intermediate statement.

3.7. SEMANTIC 95

Program State Transitions

The operational semantic of INSPIRE is defined by the binary relation

→⊂ S × S

and its transitive closure →∗ as it is defined within the following sections.
However, most transitions occur within individual threads without effecting
others. Therefore an auxiliary relation

→s⊂ (E × T × IS)× (IS× IS)× (E × IS)

is defined for modeling sequential transitions. As usual an infix notation is
utilized for both relations.

Example 3.11 (sequential transition). The utility of the relation→s is best
described by an example. The statement

(e, a, s)
x→x′−−−→s (e′, s′)

states that in environment e a thread with address a can conduct an opera-
tion x→ x′ replacing x ∈ IS by x′ ∈ IS to transition from state s into state
s′. By doing so, the environment is updated to e′.

Global State Transitions On a global level any thread may progress
independently with the exception of synchronization operations. This is
covered by the inference rule

(e, ak, sk)
x→x′−−−→s (e′, s′k) x /∈ ISgsync

(step)
(e, {t1, . . . , (ak, sk), . . . , tn})→ (e′, {t1, . . . , (ak, s′k), . . . , tn})

The effect of synchronizing operations are covered in the following sub-
sections. By repeatedly following the binary relation defined by those infer-
ence rules the threads covered in the program state are gradually resolved
(=processed) until they reach an irreducible state. At this point they ter-
minate their execution and are removed from the program state. This step
is covered by

(drain)
(e, {. . . , tk−1, (ak, ν), tk+1, . . .})→ (e, {. . . , tk−1, tk+1, . . .})

where ν ∈ IEi is the value the completed thread ak has been reduced to12.

12For the semantic formalization everything is an expression and every expression is
reduced to a value.

96 CHAPTER 3. INSPIRE

Note that the (step) rule ensures sequential consistency. Hence, any
environment obtained by applying a parallel program on some initial state
can also be obtained by sequentially applying a sequence of the individ-
ual operations constraint by their partial order imposed by the processing
threads and involved synchronization events. Other consistency models may
be introduced by allowing multiple threads to progress concurrently – which
requires their effects on the environment to be aggregated accordingly. For
instance, let ⊥ ∈ V represent an undefined value and ∪ : E × E → E be
defined by

ε1 ∪ ε2 =

ε1 if ε2 = ε

(ε1 ∪ ε′2)[x 7→ y] if ε2 = ε′2[x 7→ y] ∧ x /∈ dom(ε1)

(ε1 ∪ ε′2)[x 7→ y] if ε2 = ε′2[x 7→ y] ∧ x ∈ dom(ε1) ∧ ε1[x] = y

(ε1 ∪ ε′2)[x 7→ ⊥] if ε2 = ε′2[x 7→ y] ∧ x ∈ dom(ε1) ∧ ε1[x] 6= y

such that it is merging two environments by extending one by the key bind-
ings of the other except for cases in which identical keys are bound to dif-
fering values. In such cases the corresponding keys will be bound to an
undefined value in the resulting environment. Based on those, an inference
rule like

∅ 6= I ⊆ {1, . . . , n} ∀i∈I .(e, ai, si)
xi→x′i−−−−→s (e′i, s

′
i) ∀i∈I .xi /∈ ISgsync

(e, {(a1, s1), . . . , (an, sn)})→ (
⋃
i∈I e

′
i,
⋃
i/∈I{(ai, si)} ∪

⋃
i∈I{(ai, s′i)})

where I determines an arbitrary subset of threads to progress concurrently,
models a system where concurrent, inconsistent environment modifications
are supported, yet lead to undefined behavior. In particular, in the presence
of race conditions the results of related operations are always undefined.

However, since the techniques and solutions presented in this and the fol-
lowing chapters are hardly effected by the details of the utilized consistency
model, we will base our specification on the sequential consistency model
constituted by the (step) rule for simplicity.

Definition 3.50 (traces). The semantic of a program is defined by the set of
traces it may follow during its execution. A trace is a sequence [s1, . . . , sn] ∈
S∗ such that si → si+1 for all 1 ≤ i < n. The set of traces T (p) of a valid
INSPIRE program p ∈ P is given by

T (p) = {[s1, . . . , sn] ∈ S∗ | s1 = (ε, {(ε.0(0/1), conv(p))}) ∧ ∀n−1
i=1 si → si+1}

where (ε, {(ε.0(0/1), conv(p))}) ∈ S is the initial state of p.

A program execution terminates if a final state (e, ∅) ∈ S for some envi-
ronment e is reached.

With those inference rules the formalization of the overall IR semantic
has been mostly reduced to the definition of the→s relation which is covered
in the following by distinguishing the individual expressions and statements.

3.7. SEMANTIC 97

Auxiliary Relations In many of the following cases several of the com-
ponents of the modeled relations are just passed through from one side to
the other or derived from the other components. To avoid overly excessive
inference rule descriptions we define some auxiliary relations to reduce the
complexity of the following inference rule specifications.

For transitions neither effected by the environment nor the address of
the thread conducting it we introduce the auxiliary relation

→r⊂ IS× IS

which represents an isolated single reduction step from one intermediate
statement to another. The bridge between this relation and the→s relation
is established by

s→r s
′

(r)

(e, a, s)
s→s′−−−→s (e, s′)

Other transitions may depend on the current thread state and the threads
address. For those cases we define the slightly extended relation

→a⊂ (T × IS)× (IS)

which is linked to the →s relation by

(a, s)→a (s′)
(a)

(e, a, s)
s→s′−−−→s (e, s′)

Finally, some transition may effect the environment without depending on
the thread address. For those we define the relation

→e⊂ (E × IS)× (E × IS)

being connected to the →s relation by

(e, s)→e (e′, s′)
(e)

(e, a, s)
s→s′−−−→s (e′, s′)

Based on those definitions the semantic of individual IR language constructs
is specified in the following sections.

Example 3.12 (auxiliary relations). Let s1, s2 ∈ IS be two intermediate
statements such that

s1 →r s2

can be proven by one of the following inference rules. Based on this we can
prove for a given environment e and thread address a the validity of the
transition

(e, a, s1)
s1→s2−−−−→s (e, s2)

98 CHAPTER 3. INSPIRE

and consequently the validity of e.g. the global step

(e, {(a, s1)})→ (e, {(a, s2)})

by

s1 →r s2
(r)

(e, a, s1)
s1→s2−−−−→s (e, s2) s1 /∈ ISgsync

(step)
(e, {(a, s1)})→ (e, {(a, s2)})

Provable steps of the→a and→e relations lead to corresponding global state
transitions accordingly.

3.7.2 The Core Language Constructs

Expressions

We start by defining the semantic of expressions as they occur within inter-
mediate expressions utilized for modeling the state of threads participating
in the processing of an IR code fragment. We do so by elaborating the
individual expression constructors – one after another.

Variables The first kind of expression is already a special case. Variables
will never be reached by the execution since they get substituted right af-
ter their definition by their corresponding value. Hence, when entering a
function all parameters (=variables) within the body are replaced by the
argument values and whenever a variable is declared using a declaration
statement the uses of the variable are substituted by the value the variable
is bound to. Both situations will be covered in the context of the corre-
sponding language constructs.

Literals The second kind of expression is the construct representing ab-
stract values to be defined by the interpretation I ∈ I. The single associated
inference rule is given by

lit(i : t) ∈ dom(I)
(lit)

lit(i : t) : t→r I[lit(i : t)] : t

simply stating that any literal can be reduced to its interpretation iff avail-
able. The given step is defined based on the→r relation since it only depends
on the incoming intermediate statement. As described above, this definition
is inducing corresponding steps in the →s relation and the global → state
transition relation.

3.7. SEMANTIC 99

Example 3.13 (literals). Let ’5’ = lit(’5’ : int 〈4〉) be a literal and I ∈ I be
the active interpretation such that I[’5’] = 5 ∈ N ⊂ V. Then we can prove
the transition

lit(’5’ : int 〈4〉) : int 〈4〉 →r 5 : int 〈4〉

and for instance a corresponding global transition

(e, {(a, lit(5 : int 〈4〉) : int 〈4〉)})→ (e, {(a, 5 : int 〈4〉)})

utilizing the inference rules (lit), (r) and (step).

Calls Call expressions are the first more complex operations since they
are composed of sub-expressions which have to be evaluated first. Also ad-
ditional steps regarding the proper instantiation of generic type parameters
have to be conducted. The general order of processing calls is therefore
covering three steps:

1. compute targeted function and arguments (in fixed order)

2. instantiate function body (if target function is a callable)

3. evaluate the function body (if target function is a callable)

The first step is about the evaluation of the target function and argument
values. Those steps are covered by the inference rules

(e, a, e0)
op−→s (e′, e′0)

(call trg)

(e, a, e0(e1, . . . , en) : t)
op−→s (e′, e′0(e1, . . . , en) : t)

(e, a, ei)
op−→s (e′, e′i)

(call arg)

(e, a, ν(ν1, . . . , νi−1, ei, . . .) : t)
op−→s (e′, ν(ν1, . . . , νi−1, e

′
i, . . .) : t)

where the first allows the target function to be processed while the second
does the same for any of the involved arguments. As within all rules the
operation op describes the replacement that has to be conducted somewhere
within e.g. ex to obtain e′x. Note that the evaluation order of the targeted
function and the involved arguments is fixed from left to right.

Finally, at some point the target function and its arguments will be
completely evaluated – hence they have reached an irreducible state. A this
point we have to conduct the actual function call which is covered by the
two inference rules

σ = MGS([t1, . . . , tn], [type(ν1), . . . , type(νn)])

s′ = ε[v1 : t1 7→ ν1] . . . [vn : tn 7→ νn](σ(s))
(call callable)

(((v1 : t1, . . . , vn : tn)→ s)(ν1, . . . , νn) : t)→r eval(s
′) : t

100 CHAPTER 3. INSPIRE

and

ν(e, ν1, . . . , νn) = (e′, ν ′) ν : t0 is not a callable
(call value)

(e, ν : t0(ν1 : t1, . . . , νn : tn) : t)→e (e′, ν ′ : t)

where in the second rule ν∗, ν
′ ∈ V are values instead of the conventional

irreducible expressions IEi.
The first covers the situation in which the targeted function has been

reduced to a callable which has to be evaluated by instantiating the generic
types within the body s followed by binding the callable’s parameters to the
values of the handed in arguments. The resulting eval construct is forming
the scope for any potential return-value propagation as it is covered within
the section regarding the eval construct.

The second rule, on the other hand, is applicable if the targeted function
has evaluated into an actual function ν ∈ V, e.g. by interpreting a abstract
symbol. In this case the function is evaluated based on the current environ-
ment and the list of arguments. The resulting modified environment and
value ν ′ ∈ V is used for restricting the allowed successor states within the
→s relation. This rule is the interface for the integration of any language
extension to interact with the environment and the state of the processing
thread.

Example 3.14 (call expression – callable object). Let f ∈ IE be an inter-
mediate expression reducible to the callable expression (p, q) → s : t where
p, q ∈ IV are variables, s ∈ IS a statement forming a function body and t ∈ T
the return type of the function f . Further, let x, y ∈ IE be two expressions
reducible to x′ and y′. Then for any environment e ∈ E and thread address
a ∈ T we can prove the global steps

(e, {(a, f(x, y))}))→∗ (e, {(a, ((p, q)→ s : t)(x, y))})) (using (call trg))

→∗ (e, {(a, ((p, q)→ s : t)(x′, y))})) (using (call arg))

→∗ (e, {(a, ((p, q)→ s : t)(x′, y′))})) (using (call arg))

→ (e, {(a, eval(s′) : t)})) (using (call callable))

where s′ is the function body s instantiated by the generic variable instan-
tiation σ and having its formal parameters p and q replaced by its actual
parameters x′ and y′ according to the inference rule (call callable).

Example 3.15 (call expression – abstract operator). For comparison, let
f ∈ IE be an abstract operator, hence a literal, representing the + : N×N→
N operator for natural numbers and ’2’, ’3’ ∈ IS constants representing corre-
sponding integers. Further, let the interpretation I ∈ I include correspond-
ing interpretations. Then for any environment e ∈ E and thread address

3.7. SEMANTIC 101

a ∈ T we can prove the global steps

(e, {(a, f(’2’, ’3’))}))→ (e, {(a,+(’2’, ’3’))})) (using (call trg) and (lit))

→ (e, {(a,+(2, ’3’))})) (using (call arg) and (lit))

→ (e, {(a,+(2, 3))})) (using (call arg) and (lit))

→ (e, {(a, 5)})) (using (call value))

where we omit the type annotations of intermediate expressions for clarity.
The first step, for instance, is based on the inference tree

f ∈ dom(I)
(lit)

f →r +
(r)

(e, a, f)
f→+−−−→s (e,+)

(call trg)

(e, a, f(’2’, ’3’))
f→+−−−→s (e,+(’2’, ’3’)) f /∈ ISgsync

(step)
(e, {(a, f(’2’, ’3’))}))→ (e, {(a,+(’2’, ’3’))}))

The remaining steps can be verified accordingly.

The given inference tree demonstrates the mechanics of the established
relation infrastructure. The relation →s is utilized for thread-local transi-
tions. However, the actual reduction may be applied on some nested sub-
structure, yet the global step needs to know whether the conducted operation
is a synchronizing operation or not. Therefore the →s relation is annotated
by the actual modification f → + which is carried out to the global (step)
rule where the corresponding property can be checked.

Structs and Unions Struct and union expressions evaluate their sub-
expressions before packing the resulting values into a corresponding data
structure. The evaluation of the sub-expressions is covered by the inference
rules

(e, a, ei)
op−→s (e′, e′i) ∀1≤x<i . ex ∈ IEi

(s arg)

(e, a, struct {. . . , ni = ei, . . .})
op−→s (e′, struct {. . . , ni = e′i, . . .})

and

(e, a, ei)
op−→s (e′, e′i)

(u arg)

(e, a, union {n = e}) op−→s (e′, union {n = e′})

and the packing by

(s value)
struct {n1 = ν1, . . . , nk = νk} →r s[n1 : ν1, . . . , nk : νk]

and

102 CHAPTER 3. INSPIRE

(u value)
union {n = ν : t} →r u[packt(ν)]

where the terms of the shape s[n1 : ν1, . . . , nk : νk] ∈ V and u[ν] ∈ V are
the structures utilized for encoding struct and union values and the function
packt : V → V packs a value of type t into a common data format for unions
(e.g. a binary format). The reverse operation unpackt : V → V is utilized
to extract data from the resulting union. The details of this encoding are
beyond the scope of this section. The only essential constraint at this point
is that for all types t ∈ Tv and values v ∈ D(t) in the domain of t the
constraint

unpackt(packt(v)) = v

is satisfied. Hence, a value stored within a union utilizing a specific type
can be properly restored using the same type.

Member Access Access expressions are unpacking the values packed by
struct and union expressions. The corresponding operation is covered by
the inference rules

(access struct)
(s[. . . , ni : νi, . . .] : struct {. . . , ni : ti, . . .}).ni : ti →r νi : ti

and

type(ν) = ti
(access union)

(u[ν] : union {. . . , ni : ti, . . .}).ni : ti →r unpackti(ν) : ti

where the first is extracting a value contained within a structure created by
a struct expression and the second the value packed by a union expression.

Example 3.16 (accessing structs). To demonstrate the interaction of the
struct packing and the extraction of values we demonstrate the evaluation
of the expression

(struct {a = ’12’; b = ’14’; }).a

creating a struct and extracting the value of a member field. For any envi-
ronment e ∈ E and thread address a ∈ T we can prove the global steps

(e, {(a, (struct {a = ’12’; b = ’14’; }).a)})→
→ (e, {(a, (struct {a = 12; b = ’14’; }).a)}) ((s arg) and (lit))

→ (e, {(a, (struct {a = 12; b = 14; }).a)}) ((s arg) and (lit))

→ (e, {(a, s[a : 12, b : 14].a)}) (using (s value))

→ (e, {(a, 12)}) (using (access struct))

where we omit the type annotations of intermediate expressions for clarity.

3.7. SEMANTIC 103

Example 3.17 (accessing unions). For comparison we also demonstrate a
similar case for a union expression given by the code fragment

(union {a = ’12’}).a

creating a union value and extracting the contained field. Let int be the
type of integer values within this example. For any environment e ∈ E and
thread address a ∈ T we can prove the global steps

(e, {(a, (union {a = ’12’ : int}).a : int)})→
→ (e, {(a, (union {a = 12 : int}).a : int)}) ((u arg) and (lit))

→ (e, {(a, u[packint(12)].a : int)}) (using (u value))

→ (e, {(a,unpackint(packint(12)))}) (using (access union))

= (e, {(a, 12)})

where we omit the type annotations of intermediate expressions for clarity
except for the two essential annotations – the type of the value packed
and the type expected as the result of the unpack operation. Those two
operations are also the reason why type annotations had to be added to
intermediate expression. Only the presence of those types enable the proper
application of the corresponding pack and unpack conversions.

Recursive Function and Recursive Function Variables Function ex-
pressions are reduced to callable expressions by resolving recursive relations.
Therefore a given (recursive) function is first unfolded to obtain the body to
be processed when invoking the represented function. This body statement
is then packed into a callable expression, together with the list of exposed
variables.

Definition 3.51 (recursive function unfolding). Let f ∈ Ev be the valid
(recursive) function

rec fx.{f1 = (v11, . . . , v1n1)→ t1 s1, . . . , fk = (vk1, . . . , vknk)→ tk sk}

The unfolded statement unfold(f) ∈ S is obtained by replacing every un-
bound recursive variable fj in sx by

rec fj .{f1 = (v11, . . . , v1n1)→ t1 s1, . . . , fk = (vk1, . . . , vknk)→ tk sk}]

for all 1 ≤ j ≤ k. Further, let f ′ = conv(f) ∈ IE be the annotated equivalent
of f within the set of intermediate expressions. Then unfold(f ′) ∈ IS is
defined by conv(unfold(f)).

Based on the unfolded function body the reduction of a function expres-
sion into a callable intermediate expression is incorporated by

104 CHAPTER 3. INSPIRE

s′ = unfold(rec fx.{. . . , fx = (v1, . . . , vn)→ t s, . . .} : t)
(fun)

rec fx.{. . . , fx = (v1, . . . , vn)→ t s, . . .} : t→r (v1, . . . , vn)→ s′ : t

Since the unfolding process is not exposing unbound recursive function
variables and due to the fact that no valid IR fragment is exhibiting any free
recursive function variables, recursive variables will never by reached during
the resolution process. Hence no rules have to be specified for those.

The reason for converting functions into callables is to provide a uniform
construct for any callable object in the IR. Since the value of bind expressions
is also a potential target for calls a similar reduction has to be offered for
those too.

Bind Before turning a bind into a callable expression its captured values
have to be evaluated. This is driven by the two inference rules

(e, a, ei)
op−→s (e′, e′i)

(bind trg)

(e, a, (. . .)⇒ e0(e1, . . . , en) : t)
op−→s (e′, (. . .)⇒ e′0(e1, . . . , en) : t)

and

(e, a, ei)
op−→s (e′, e′i) ∀0 ≤ j < i . ej ∈ (IV ∪ IEi)

(bind arg)

(e, a, (. . .)⇒ e0(. . . , ei, . . .) : t)
op−→s (e′, (. . .)⇒ e0(. . . , e′i, . . .) : t)

where the first is focusing on the target function of the nested call expres-
sion while the latter is handling its arguments. However, since we have no
transition rule for variables we will eventually end up with a nested call
expression consisting of irreducible expressions and free variables – those to
be left unbound within the resulting callable expression. At this state we
can close the bind expression by reducing it into a callable expression. This
step is covered by

∀nj=0 . ej ∈ (IEi ∪ {v1, . . . , vk})
(bind)

(v1, . . . , vk)⇒ e0(e1, . . . , en) : t→r (v1, . . . , vk)→ e0(e1, . . . , en) : t

which ensured that it can only be applied once all captured values have
been fully evaluated. In the end both, function and bind expressions are
reduced to callable expressions which can be utilized as the target of a call
expression.

Job This kind of expression has several sub-expressions whose evaluation
is covered by the three rules

(e, a, el)
op−→s (e′, e′l)

(job low)

(e, a, job [el, eu] b : t)
op−→s (e′, job [e′l, eu] b : t)

3.7. SEMANTIC 105

(e, a, eu)
op−→s (e′, e′u)

(job up)

(e, a, job [νl, eu] b : t)
op−→s (e′, job [νl, e

′
u] b : t)

(e, a, b)
op−→s (e′, b′)

(job body)

(e, a, job [νl, νu] b : t)
op−→s (e′, job [νl, νu] b′ : t)

When the lower and upper boundary as well as the job body have reached
an irreducible state a job can be closed to form a spawnable object by

(job close)
(job [νl, νu] νb : t)→r ([νl, νu]→ νb : t)

The resulting spawnable object combines constraints on the size of the
thread group required to process the represented job and the job-body νb to
be evaluated by processing threads.

Values, Callables and Spawnables This kind of intermediate expres-
sions are irreducible expressions. Consequently there are no inference rules
covering those. They serve as structures for case distinctions within other
rules, in particular the rules covering call expressions.

Evaluate The evaluation construct is limiting the scope of return state-
ments. An evaluation expression eval(s) : t ∈ IE is evaluating the contained
statement s ∈ IS until it either evaluates to an irreducible expression (=a
value) or to a return statement carrying an irreducible expression. In both
cases the obtained value will be the value the evaluation expression is re-
duced to.

The gradual evaluation of the contained statement is covered by the rule

(e, a, s)
op−→s (e′, s′)

(eval step)

(e, a, eval(s) : t)
op−→s (e′, eval(s′) : t)

the forwarding of an irreducible value by

type(ν) = t
(eval value)

eval(ν) : t→r ν

and the termination of a return stmt by

type(ν) = t
(eval return)

eval(return ν) : t→r ν

Note that the type safety constraints regarding the result type of the eval-
uation could be omitted since those are already enforced by the restriction
to valid program fragments.

The evaluation expression is the cross-over point between the evaluation
of expressions and statements. The semantic of those is covered next.

106 CHAPTER 3. INSPIRE

Statements

The processing of statements is driven by the stepwise execution of sequences
of statements. The central construct for sequencing statements is the com-
pound statement.

Compound When processing a compound statement consisting of several
statements only the first statement is allowed to progress. This is covered
by the rule

(e, a, s0)
op−→s (e′, s′0)

(comp expr)

(e, a, {s0; s1; . . . ; sn})
op−→s (e′, {s′0; s1; . . . ; sn})

Only if the first statement has reached an irreducible state it is dropped
to enable the processing of the subsequent statement. The corresponding
transition is incoorperated by

(comp step)
{ν; s1; . . . ; sn} →r {s1; . . . ; sn}

Finally, if no more statements are left the resulting empty compound state-
ment is reduced to the unit value unit ∈ V by

(comp unit)
{} →r unit

The unit value is the value all statements (not being expressions) are reduced
to. It indicates that the conducted computation was not obtaining any value
but may have been causing side effects by manipulating the environment.

Declaration A variable declaration is processed by evaluating the value
the declared variable should be bound to. This is covered by

(e, a, e0)
op−→s (e′, e′0)

(decl expr)

(e, a, decl v = e0)
op−→s (e′, decl v = e′0)

Once the evaluation has reached an irreducible state the declared variable is
substituted within its scope by the obtained value. This step is covered by

σ = [v 7→ ν]
(decl value)

{decl v = ν; s1; . . . ; sn} →r {σ(s1); . . . ;σ(sn)}

where σ(si) = [v 7→ ν](si) is replacing every free occurrence of the variable
v ∈ IV in si ∈ IS by the irreducible expression ν ∈ IEi.

3.7. SEMANTIC 107

Condition A conditional statement starts by processing the condition ex-
pression and, based on the obtained result, one of the two branches follows.
The first step is covered by

(e, a, e0)
op−→s (e′, e′0)

(if expr)

(e, a, if (e0) then s1 else s2)
op−→s (e′, if (e′0) then s1 else s2)

and the branch selection by

(if true)
if (true : bool) then s1 else s2 →r s1

and

(if false)
if (false : bool) then s1 else s2 →r s2

where true and false are elements of the value set V.

While The behavior of the while loop is based on the definition of the
conditional statement above. By introducing

(while)
while (e0) do s→r if (e0) then {loop(s);while (e0) do s} else {}

the semantic of a while loop is covered by relying on the rules established
for conditional expressions. The loop(s) construct enclosing the processed
loop body is utilized to limit the scope of break and continue expressions
analogous to the way eval limits the scope of return statements.

Note that for the given definition the condition expression e0 is repeat-
edly evaluated before every single iteration of the while loop as well as once
before the while loop is terminated – as desired.

For Unlike for while loops the range-boundaries of for loops are evaluated
only once before entering the first iteration of the loop. The corresponding
evaluation steps are covered by the three inference rules

(e, a, es)
op−→s (e′, e′s)

(for start)
(e, a, for (v = es . . . ee : ei) do s)

op−→s

(e′, for (v = e′s . . . ee : ei) do s))

(e, a, ee)
op−→s (e′, e′e)

(for end)
(e, a, for (v = νs . . . ee : ei) do s)

op−→s

(e′, for (v = νs . . . e
′
e : ei) do s))

108 CHAPTER 3. INSPIRE

(e, a, ei)
op−→s (e′, e′i)

(for inc)
(e, a, for (v = νs . . . νe : ei) do s)

op−→s

(e′, for (v = νs . . . νe : e′i) do s))

The actual loop iterations are then covered by

νs, νe, νi ∈ Z (νi > 0 ∧ νs < νe) ∨ (νi < 0 ∧ νs > νe)
(for step)

for (v = νs . . . νe : νi) do s
→r

{loop({decl v = νs; s}); for (v = νs + νi . . . νe : νi) do s}

after the evaluation of the range-boundaries has reached an irreducible state.
The iterator variable v is incorporated by utilizing the inference rules cov-
ering declaration statements and as for the while loop a loop construct is
introduced to limit the scope of continue statements13. Finally the termi-
nation of the loop is covered by

νs, νe, νi ∈ Z ¬((νi > 0 ∧ νs < νe) ∨ (νi < 0 ∧ νs > νe))
(for done)

for (v = νs . . . νe : νi) do s→r {}

Note that in any case the range-boundaries are evaluated only once before
entering the first loop iteration and can therefore not be influenced by side-
effects caused by processing the loop body.

Return The processing of return statements is separated into two phases.
In the first the value to be returned has to be evaluated using

(e, a, e0)
op−→s (e′, e′0)

(return expr)

(e, a, return e0)
op−→s (e′, return e′0)

Once this evaluation is completed the return statement starts escaping en-
closing compound statements by following the transitions validated by

(comp return)
{return ν; s1; . . . ; sn} →r return ν

until an eval(. . .) expression is reached and the computed return value is
delivered to the call site of the corresponding callable.

13Break statements are prohibited by the definition of valid IR fragments.

3.7. SEMANTIC 109

Break, Continue and Loop Break and continue statements are con-
suming subsequent statements within the compound statement due to the
rules

(break prop)
{break; s1; . . . ; sn} →r break

and

(continue prop)
{continue; s1; . . . ; sn} →r continue

until they reach a loop statement. At the loop statement the rules

(loop continue)
{loop(continue); s} →r s

and

(loop break)
{loop(break); s} →r {}

determine whether the next iteration of a loop (represented by s – which is
either a while or for loop statement) is processed (continue) or the loop is
terminated (break). Further, in case the sub-statement of a loop statement
is evaluation to a return statement the return is passed through by

(loop ret)
loop(return ν)→r return ν

However, in case no break, continue, or return has yet reached the loop
statement, the inner body is allowed to progress as defined in

(e, a, s)
op−→s (e′, s′)

(loop step)

(e, a, loop(s))
op−→s (e′, loop(s′))

and if this evaluation reaches a irreducible state the full loop body evaluates
to this value due to

(loop iter)
loop(ν)→r ν

Parallel Constructs

In a last step the semantic of the parallel constructs offered by INSPIRE is
covered by the following set of inference rules.

110 CHAPTER 3. INSPIRE

Thread Identification To access information on a processing thread, in
particular its id and the size of its associated thread group, the functions
getThreadID and getNumThreads have been specified within the syntax
section. Their semantic is defined by the two inference rules14

ν ∈ N0
(thread id)

(a, getThreadID(ν))→a (a[ν].id)

and

ν ∈ N0
(group size)

(a, getNumThreads(ν))→a (a[ν].size)

Both rules utilize the locally available thread address to obtain the required
information.

Spawn The creation of a thread is a local operation to be conducted by
individual threads causing global effects. For the local step we introduce the
inference rule

g ∈ N0 is a fresh group ID
(local spawn)

spawn([νl, νu]→ b)→r g

enabling arbitrary threads to process spawn operations. However, since a
call spawn(..) ∈ ISgsync is a global synchronizing expression the general rule
(step) introduced on page 95 is not applicable to close the gap between the
→s relation and the global system state transition relation →. Instead this
gap is closed by

(e, t, s)
spawn([νl,νu]→b)→g−−−−−−−−−−−−−→s (e, s′) νl ≤ n ≤ νu

(spawn)

(e, {. . . , (t, s), . . .})→ (e, {. . . , (t, s′), . . .} ∪
⋃n−1
i=0 {(t.g(i/n), b())})

which is considering the global side-effects of the local spawn operation pro-
cessed within a single thread. The rule states that whenever there is a thread
t capable of evolving from a state s to a state s′ by processing a spawn op-
eration it is allowed to do so. As a side effect n threads, where n is between
the lower and upper group-size boundaries of the spawnable [νl, νu]→ b, are
created. The addresses of the new threads are extensions of the spawning
thread and each of the new threads is processing the job-body b.

14This works under the assumption that getThreadID, getNumThreads /∈ dom(I).

3.7. SEMANTIC 111

Merge To specify the semantic of the merge operations we utilize the
same pattern as for the spawn operation. The reduction step

(local merge)
merge(ν)→r unit

enables local threads to progress. However, since as for the spawn operation
merge(. . .) is a global synchronizing expression the general (step) rule is not
applicable. Instead the rule

(e, ai, si)
merge(ν)→unit−−−−−−−−−−→s (e, s′i) @j . aj .group = ν

(merge)
(e, {. . . , (ai, si), . . .})→ (e, {. . . , (ai, s′i), . . .})

is introduced ensuring that the state transitions induced by the local merge
operations are only enabled if all threads of the corresponding group have
terminated their execution and have been evicted from the thread pool.

A variation of this schema is provided for the merge-all operation whose
semantic is fixed by the local transition

(local merge all)
merge()→r unit

and the global step

(e, ai, si)
merge()→unit−−−−−−−−−→s (e, s′i) @j . ∃l ≥ 1 . aj [l] = ai

(merge all)
(e, {. . . , (ai, si), . . .})→ (e, {. . . , (ai, s′i), . . .})

While the former merge operator allows every thread to block until an ar-
bitrary groups identified by a group id g has terminated its execution, the
latter is blocking until all directly or indirectly spawned sub-threads have
completed their processing.

Work Distribution Within the syntax section the operator

pfor : (int 〈4〉 , int 〈4〉 , int 〈4〉 , (int 〈4〉 , int 〈4〉 , int 〈4〉)⇒ unit)→ unit

has been introduced to distribute workload within a thread group. Threads
within a thread group utilize this construct by passing (matching) ranges of
processing steps (first three arguments) and a function capable of processing
sub-ranges of the full range. The pfor primitive will then coordinate the
partitioning of the given range among the participating threads and cause
them to process their assigned sub-ranges.

To formally clarify the operator’s semantic ranges have to be defined.

Definition 3.52 (ranges). Let a, b, c ∈ Z be three integers and c 6= 0. A
range denoted by a . . . b : c is an abbreviation of the set

{x ∈ Z | a ≤ x ∧ x < b ∧ ∃i ∈ N0 . x = a+ ic}

112 CHAPTER 3. INSPIRE

if c > 0 and

{x ∈ Z | a ≥ x ∧ x > b ∧ ∃i ∈ N0 . x = a+ ic}

if c < 0 where a and b are the boundaries and c is the step size. Let the set of
all ranges be denoted by R. A range partition of a range (a . . . b : c) ∈ R is
a set of non-empty ranges {r1, . . . , rn} ∈ 2R such that

⋃n
i=1 ri = (a . . . b : c)

and for each element x in a . . . b : c there is exactly one ri such that x ∈ ri.

To stipulate the partitioning of ranges we introduce a function

shares : (T × N×R)→ 2R\∅

such that shares(a, p, r) assigns each thread a a set of sub-ranges of r for
its p-th execution of a pfor operation. For this function we have to ensure
that the full range r is distributed among the members of a’s thread group
during their p-th pfor evaluation.

Let shares′ : (N4 × R) → 2R\∅ be a function such that for all ranges
r ∈ R and for all g, s, p ∈ N0 where s > 0 the set

s−1⋃
i=0

shares′(g, i, s, p, r)

is a range partition of r. Then we define shares : (T × N×R)→ 2R\∅ by

shares(a, p, r) = shares′(a.group, a.id, a.size, p, r)

to obtain the desired properties.
To count the number of processed pfor operations within a thread we

introduce the counter pfc : T → N0 with the default value pfc⊥ = 0 to the
environment state (see page 90).

The semantic of pfor is then covered by

{(ν ′1s . . . ν ′1e : ν ′1i), . . . , (ν
′
ns . . . ν

′
ne : ν ′ni)} = shares(a,pfce(a), νs . . . νe : νi)

op = pfor(νs, νe, νi, νb)→ {νb(ν ′1s, ν ′1e, ν ′1i); . . . ; νb(ν ′ns, ν ′ne, ν ′ni)}
e′ = pfce(a)++

(pfor)

(e, a, pfor(νs, νe, νi, νb))
op−→s (e′, {νb(ν ′1s, ν ′1e, ν ′1i); . . . ; νb(ν ′ns, ν ′ne, ν ′ni)})

reducing the local call pfor(νs, νe, νi, νb) to the statement

{νb(ν ′1s, ν ′1e, ν ′1i); . . . ; νb(ν ′ns, ν ′ne, ν ′ni)}

processing the sub-ranges assigned to the local thread.
Note that the processing of pfor is a thread-local operation and does not

cause any synchronization. In particular some threads within a group may

3.7. SEMANTIC 113

proceed processing subsequent pfor calls before others may have finished
earlier invocations. Also, pfor operations are not syntactically linked –
hence different pfor instances within an IR code fragment being processed
by threads within a common group may distribute workload among each
other. The connection is established by the pfor execution counter.

Finally it has to be pointed out that due to the specification of pfor the
full range of elements to be processed is only guaranteed to be covered if
every thread within a group is passing identical ranges to connected pfor
operation invocations.

Example 3.18 (pfor application). Let a ∈ T be a thread address and
a1 = a.g(0/2) ∈ T and a2 = a.g(1/2) ∈ T the addresses of two threads
constituting a thread group g spawned by a. Furthermore, let the function
shares : (T × N×R)→ 2R\∅ be defined such that

shares(a1, 14, [0 . . . 10 : 1]) = {[0 . . . 5 : 1], [9 . . . 10 : 1]}

and
shares(a2, 14, [0 . . . 10 : 1]) = {[5 . . . 9 : 1]}

Hence, the full range [0 . . . 10 : 1] for the 14-th pfor invocation of thread
group g is distributed among the two threads such that the first is responsible
for the sub-ranges [0 . . . 5 : 1] and [9 . . . 10 : 1] while the second is responsible
for the sub-range [5 . . . 9 : 1]. Other instantiations of the function shares
lead to different workload distributions. However, by definition, there is no
valid instantiation such that overlapping sub-ranges may be assigned to the
involved threads nor may elements of the full range be skipped.

Let e ∈ E be an environment such that pfce(a1) = 14, s, s2 ∈ IS be
arbitrary intermediate statements and f ∈ IEi be a irreducible expression
forming a valid body argument for a pfor invocation. Then we can prove
the global transition

(e, {(a, s), (a1, pfor(0, 10, 1, f)), (a2, s2)})→
→ (e′, {(a, s), (a1, {f(0, 5, 1); f(9, 10, 1); }), (a2, s2)})

utilizing the (pfor) inference rule where e′ = pfce(a1)++, hence a copy of the
environment e where the counter pfc for thread a1 has been increased by
one. Equally we can prove the independent global transition

(e2, {(a, s), (a1, s1), (a2, pfor(0, 10, 1, g))})→
→ (e′2, {(a, s), (a1, s1), (a2, {g(5, 9, 1); })})

for environments e2, e
′
2 ∈ E such that pfce2(a2) = 14, pfce′2(a2) = 15 where

s, s1 ∈ IS are arbitrary intermediate statements and g ∈ IEi is an irre-
ducible expression representing a function capable of processing sub-ranges
of the overall pfor range in the context of a2. Furthermore, due to the

114 CHAPTER 3. INSPIRE

(step) inference rule regarding global transitions, non-synchronizing individ-
ual transitions within threads may be arbitrarily interleaved. Consequently,
since pfor is a non-synchronizing operation the processing of the sub-ranges
may be conducted independently in any overlapping or even non-overlapping
fashion.

Data Distribution The syntax section has also introduced the data shar-
ing construct

redistribute : (α, (array 〈α〉)⇒ β)→ β

The general idea is that every thread within a group is contributing a value of
type α as the first argument and a projection function as a second argument
selecting the data from the full list of contributed elements to be made
locally available.

Since redistribute is a globally synchronizing operation we have to add
support for the thread local step

ν1, . . . , νn ∈ IEi
(local redist)

redistribute(νv, νs)→r νs([ν1, . . . , νn])

and the associated global transition

∀n−1
i=0 (e, a.g(i/n), si)

redistribute(νvi,νsi)→νsi([νv1,...,νvn−1])−−−−−−−−−−−−−−−−−−−−−−−−−→s (e, s′i)
(redist)

(e, {. . . , (a.g(0/n), s0), . . . , (a.g(n− 1/n), sn−1), . . .})
→

(e, {. . . , (a.g(0/n), s′0), . . . , (a.g(n− 1/n), s′n−1), . . .})

The local transition does not enforce any constraint on the resulting
value. However, the global rule is restricting transitions to cases in which
the exchanged data is consistent among the full list of involved threads.
Those threads are connected via their group id.

From the provided definition it can be derived that the redistribution
operation is a blocking operation causing every participating thread to wait
until all threads within the group are ready to conduct the data exchange.
Once this state is reached, all threads within the group are advanced simul-
taneously.

Example 3.19 (redistribute application). Let a ∈ T be a thread address
and a1 = a.g(0/2) ∈ T and a2 = a.g(1/2) ∈ T the addresses of two threads
constituting a thread group g spawned by a. Further, let f, g ∈ IEi be irre-
ducible expressions to be utilized as a second argument for the redistribute
function. Then, for an arbitrary environment e ∈ E we can prove the tran-
sition

(e, {(a1, redistribute(12, f)), (a2, redistribute(14, g))})→
→ (e, {(a1, f([12, 14])), (a2, g([12, 14]))})

3.7. SEMANTIC 115

since a1 = a.g(0/2) and a2 = a.g(1/2) are all threads of group g and in the
initial state they are both ready for the synchronized global transition and
the included data exchange. The corresponding inference tree is given by

Premise A Premise B
(redist)

(e, {(a1, r(12, f)), (a2, r(14, g))})
→

(e, {(a1, f([12, 14])), (a2, g([12, 14]))})
where r = redistribute and Premise A is given by

12, 14 ∈ V
(local redist)

r(12, f)→r f([12, 14])
(r)

(e, a1, r(12, f))
r(12,f)→f([12,14])−−−−−−−−−−−→s (e, f([12, 14]))

and Premise B is given by

12, 14 ∈ V
(local redist)

r(14, g)→r g([12, 14])
(r)

(e, a2, r(14, g))
r(14,g)→g([12,14])−−−−−−−−−−−→s (e, g([12, 14]))

Note the interaction between the local transition rule (local redist) and the
global transition rule (redist). The local transition would allows any thread
at any time to progress by picking arbitrary values for the reduction. Hence,
local transitions like

r(12, f)→r f([3, 12, 8, 9])

would also be supported by the →r relation. However, those are not af-
fecting the global state transition relation→ since the conventional relation
adapter, the (step) inference rule (see page 95), excludes reductions on global
synchronizing operations including redistribute invocations. Hence, only lo-
cal reductions validated by the global perspective of the (redist) inference rule
are accepted and may hence cause a global state transition as demonstrated
in this example.

Channels The last parallel element of INSPIRE is the channel infras-
tructure. A channel is a fixed length blocking queue which is utilized by
threads to conduct synchronized point-to-point communication. To cover
the behavior of channels, constructs to model their states are required.

Definition 3.53 (channel state). The state of a channel is defined by a pair

(c, q) ∈ N+ × V∗

where N+ is the set of natural numbers not including 0, the element c ∈ N+

defines the capacity of the channel and the string q its current queue state.
The length |q| of a value string q = [ν1, . . . , νn] ∈ V∗ is defined by

|[ν1, . . . , νn]| = n

116 CHAPTER 3. INSPIRE

and the set of all valid channel states C is defined by

C = {(c, q) ∈ N+ × V∗ | |q| <= c}

Let s = (c, q) ∈ C be a channel state. The functions empty : C → B defined
by (c, q) 7→ (|q| = 0) and full : C → B defined by (c, q) 7→ (|q| = c) test
whether a channel is empty or full. Further we define the partial function
read : C → V by

read((c, q)) :=

{
νn if q = [ν1, . . . , νn] and n > 0

undefined otherwise

the partial function pop : C → C by

pop((c, q)) :=

{
(c, [ν1, . . . , νn−1]) if q = [ν1, . . . , νn] and n > 0

undefined otherwise

and the partial function put : (C × V)→ C by

put((c, q), ν) :=

{
(c, [ν, ν1, . . . , νn]) if q = [ν1, . . . , νn] and n < c

undefined otherwise

Let Ci be an arbitrary set of channel identifiers and chl : Ci → C a
function mapping identifiers to their state. Then the inference rule

c ∈ Ci is a fresh channel id
(chl create)

(e, channel.create(νt, νc))→e (chle(c)← (νc, []), c)

defines a thread-local operation creating a new empty channel to transfer
values of type νt using a buffer with a capacity of νc ∈ N0. The channel
state itself is stored within the global environment. The release operation is
covered by

(chl release)
(e, channel.release(νc))→e (e, unit)

Since for the specification of the semantic of IR constructs we are not con-
cerned with resource consumption the fact that the channel state is not
actually removed from the environment is ignored at this point. Neverthe-
less, the release operation is required for the resource management within
actual implementations.

The operations sending/receiving messages to/from channels are covered
by the inference rules

¬ full(chle(νc))
(chl send)

(e, channel.send(νc, νv))→e (put(chle(νc), νv), unit)

and

3.7. SEMANTIC 117

¬ empty(chle(νc))
(chl recv)

(e, channel.recv(νc))→e (pop(chle(νc)), read(chle(νc)))

Both are blocking in case the targeted channels are full or empty respec-
tively. Also both are mere thread-local transitions not effecting any other
thread. To verify the state of a channel the operations channel.full and
channel.empty are offered according to the rules

(chl full)
(e, channel.full(νc))→e (e, full(chle(νc)))

and

(chl empty)
(e, channel.empty(νc))→e (e, empty(chle(νc)))

This completes the set of inference rules defining valid state transitions uti-
lized to formalize the semantic of our IR.

Example 3.20 (channel operations). The utilization of channels always
involves a variety of statements and instructions such that even for small
examples the transition-relation based notation utilized to formalize their
semantic is impractical for providing any meaningful example. Instead we
provide a example including channel operations and describe the allowed
transitions utilizing a formalism focusing on the most relevant parts regard-
ing channels. The basis of our example is given by the code fragment

1 auto c = channe l . c r e a t e (in t <4>,2) ;
2 merge(spawn (job [2 , 2] ()⇒ {
3 for (in t<4> i = 0 . . 5 : 1) {
4 i f (getThreadID (0) == 0) {
5 channe l . send (c , produce ()) ;
6 } e lse {
7 consume (channe l . r ecv (c)) ;
8 }
9 }

10 })) ;

including three threads. The main thread creates a channel c, spawns two
threads and waits for their completion. The two inner threads implement
a simple producer/consumer pattern based on channel c. The first thread
produces values and sends them to the channel while the second thread
retrieves and consumes those values in order.

To model the execution state of this example code we utilize a triple

(cb, pm, p1, p2)

where cb ∈ N∗ is a tuple describing the state of the buffer utilized by the
channel c, pm ∈ N ∪ {×} the program point of the main thread based on
referencing a line in the given code fragment, and p1, p2 ∈ N ∪ {×} the
iteration number currently processed by the two inner threads respectively.

118 CHAPTER 3. INSPIRE

([],2,1,1)

([p1],2,2,1)

([],2,2,2)([p2,p1],2,3,1)

([p2],2,3,2)

([],2,3,3)([p3,p2],2,4,2)

([p3],2,4,3)

([p3],2,4,3)

([],2,4,4)([p4,p3],2,5,3)

([p4],2,5,4)

([],2,5,5)([p5,p4],2,×,4)

([p5],2,×,5)

([],1,×,×)

([],×,×,×)

([],2,×,×)

Figure 3.5: Reachable States of Example 3.20

The program state × indicates that the corresponding thread is not running
at all. Hence, e.g. ([p1, p3], 2, 3, 1) would correspond to a state where the
channel buffer contains the products p1 and p3, the main thread is processing
line 2, the first inner thread is about to process line 5 of its 3rd iteration and
the second inner thread is about to process line 7 of its 1st iteration. Note
that this representation is a abstract summary of the information covered
by the states connected by the global transition relation →.

The state transitions supported by this setup are illustrated in Figure 3.5.
Each of the shown transitions is based on an element of the →∗ relation.
The represented program starts by spawning two threads which produce
and consume data, thereby never exceeding the boundaries of the channel
utilized for the data exchange. Send operations are blocked whenever the
channel is full and receive operations whenever the channel is empty. For
instance, there is no transition from state ([p2, p1], 2, 3, 1) to the invalid
state ([p3, p2, p1], 2, 4, 1) since the capacity of the utilized channel is 2. Also,
there is no transition from state ([], 2, 4, 4) to the valid, yet not reachable
state ([], 2, 4, 5) since the receive operation processed by the second thread
is blocked until some data is available in the channel buffer.

3.8. EXTENSIONS 119

3.8 Extensions

After formalizing the IR constructs, restricting their composition to form
valid statements and the formalization of the semantic of type, expression
and statement constructs, this section focuses on language extensions built
on top of the infrastructure established by the language core. The section
starts by summarizing the means offered for defining language extensions,
which is then followed by descriptions of important instances.

3.8.1 Extension Mechanisms

Language extensions consist of the introduction of types, constants and op-
erators. Types and operators might either be abstract, hence their actual
internal implementation remains undefined, or concrete by providing a defi-
nition combining predefined types, operators and language constructs offered
by the core or other extensions.

Types

Means Extensions may introduce parametrized abstract types by utilizing
the abstract type construct or by composing new types utilizing the sup-
ported type constructors (see Definition 3.1). In case of the introduction
of a closed abstract type a ∈ Tc its associated domain Da has to be de-
fined while for composed types constructed by combining existing types the
domains are fixed by Definition 3.25.

Sub-Typing In addition to the domains, sub-type relations between in-
troduced types may be added according to Definition 3.27. The utilization of
sub-type relations can significantly reduce the number of operator overloads
required for modeling operations based on new types.

Constants

Means Each extension may define constant values for their introduced,
closed types. For instance, the extension handling boolean values is intro-
ducing two constants representing the truth values true and false. This kind
of constants are integrated into INSPIRE by utilizing literal expressions ex-
hibiting a corresponding identifier and type.

For a more convenient interaction with constants, extensions may define
syntactic sugar for the concrete syntax of INSPIRE backed up by constructs
of the abstract syntax. As for the core constructs, the impact of this ab-
breviations is limited to the text-based representation of INSPIRE code
fragments.

120 CHAPTER 3. INSPIRE

Semantic To integrate constants defined by extensions into the semantic
specification of INSPIRE, interpretations for literals have to be provided.
The corresponding interface has been defined in Section 3.7.1. Essentially
an interpretation I ∈ I has to be provides such that dom(I) is a super-set
of the introduced constants and every constant c of type t is mapped to an
element I[c] ∈ Dt, hence, to an element of the corresponding domain. The
resolution of the corresponding value is covered by the inference rule (lit)

introduced on page 98.

Operators

Means Like types, operators can be introduced by extensions as an ab-
stract construct utilizing a literal expression of a corresponding function
type or as a concrete element by providing a lambda-expression implement-
ing its functionality. The former variant provides the possibility of introduc-
ing black-box operations abstracting from operations conducted on abstract
types while the latter is a transparent approach that can be inspected by
e.g. program analysis.

Abstract operators are utilized if the internal representation should be
shielded from the details of an operation. For instance, the exact details
of summing up two arithmetic values on a bit level is beyond the scope of
INSPIRE and hence this operation will be realized as a abstract black-box
operation. Another use case are operators manipulating data structures like
linked lists, sets or trees. The details of those operations may be excluded
from the representation. Instead they are explicitly considered by analysis
understanding their semantic implications. In general, when analyzing or
processing code fragments including abstract operators, those either have to
be treated explicitly or by applying the most conservative assumptions.

Introducing operators by providing an IR based implementation, on the
other hand, opens them up for being processed by preexisting utilities. Anal-
ysis and transformations understanding the elements and constructs em-
ployed for defining concrete operators can derive the effects of those directly
from their implementation. Here we utilize the fact that an actual imple-
mentation of an operator is its most accurate semantic description. Since
the interpretation of concrete operators is derived from their definitions they
are also referred to as derived operators.

For both approaches, abstract or derived operators, semantic sugar may
be defined to make representations more easily digestible for humans.

Validity Furthermore, the utilization of operators introduced by exten-
sions may be constraint by extending the rules of Definition 3.37 and Defi-
nition 3.38 regarding the structure of valid expressions and statements.

3.8. EXTENSIONS 121

Semantic The integration of derived operators into the semantic frame-
work established in Section 3.7 is covered by the provided IR-based imple-
mentation. A derived operator is equivalent to its implementation and can
hence be substituted by it.

The semantic of an abstract operator, on the other hand, has to be
defined similar to constants. An interpretation I ∈ I has to be provided
by the extension introducing an abstract operator o of type (t1, . . . , tn)→ t
such that I[o] is a function

(E ×D(t1)× . . .×D(tn))→ (E ×D(t))

accepting an environment and a list of argument values and returning a
potentially modified environment and the computed result. This interpre-
tation is integrated into the small-step semantic transitions of Section 3.7
by the inference rules (lit) and (call value).

For the frequent case of pure interpretation functions not effecting the
environment we consider a interpretation function

f : (D(t1)× . . .×D(tn))→ D(t)

equivalent to the function

f ′ : (E ×D(t1)× . . .×D(tn))→ (E ×D(t))

defined by f ′(e, d1, . . . , dn) = (e, f(d1, . . . , dn)) throughout this section. This
convention eliminates the requirement of forwarding unaffected global envi-
ronments when handling pure functions.

3.8.2 Important Extensions

In the following a set of modular extensions are covered. A few of those
have already been mentioned and utilized within previous sections. At this
point a complete specification of those is provided.

Meta Types

In several cases operators depending on types are required. For instance,
the operator channel.create requires an argument determining the type of
value to be transferred through the resulting channel and another fixing the
size of the buffer to be allocated.

Types The bridge between types and values within the IR is formed by
the generic meta type family

type 〈t〉

where the type t ∈ T is the type to be represented. The domain Dtype〈t〉 is
defined by the singleton set {t} ⊂ T. Consequently, every expression of the

122 CHAPTER 3. INSPIRE

given type is always evaluated to the same value. This value is represented
by the literal

lit(’t’ : type 〈t〉)
where ’t’ ∈ I is a string-representation of the represented type. Hence,
I[lit(’t’ : type 〈t〉)] = t for all t ∈ T. Consequently, the literal

lit(’A’ : type 〈A〉)

is representing the generic type A and

lit(’struct{x : B 〈A〉}’ : type 〈struct{x : B 〈A〉}〉)

a struct type containing a single member x of the parametrized generic type
B 〈A〉. As for other literals we will omit the extra syntax and will only write
’A’ or A instead of lit(’A’ : type 〈A〉) if its interpretation is clear from the
context.

Numerical Meta Types In several cases static numerical values need to
be incorporated into types. For instance the capacity of a channel or the size
of vector of elements should be properly reflected within the corresponding
type. This is realized by the type family

i′ 〈〉

where i′ ∈ I is the string-representation of an integer i ∈ N0. The associated
domain is defined by Di′ = ∅. For instance, 4 = 4 〈〉 is a numerical meta
type representing the integer value 4. Its domain is given by D4 = ∅. Hence,
numerical meta types are pure meta types for modeling concepts in the type
system. No expression can exhibit a numerical meta type since non could
be evaluated to a value of their domains – since those are empty.

Numerical Parameter Meta Types To utilize numerical meta types
the type family

param 〈t〉
where t = i′ 〈〉 for some i ∈ N0 is defined. The associated domain is given
by Dparam〈t〉 = {t} similar to the meta type family type 〈. . .〉. Literals of
parameter meta types have the shape

lit(i′ : param
〈
i′ 〈〉
〉
)

which we identify with lit(i′ : param 〈i′〉) and i′ if its interpretation is clear
from the context. The interpretation of those literals is given by

I[lit(i′ : param
〈
i′ 〈〉
〉
))] = i′ 〈〉 ∈ T

for all i ∈ N0. Hence, the param type family is a variant of the type family
restricted to numerical meta types.

3.8. EXTENSIONS 123

Primitive Types

The next class of extensions covers primitive types which already have been
encountered in the syntactic definition of IR expressions and statements.

Unit The unit 〈〉 type is a generic type to be assigned to operations causing
side effects but not omitting actual results. For instance the channel.send
of type

(channel 〈α, β〉 , α)→ unit

is one of those operations. While not obtaining any information it causes
the desirable side-effect of submitting a value to a given channel.

The domain Dunit〈〉 of the unit 〈〉 type is given by Dunit〈〉 = {unit} where
the element unit is a token not present in any other domain. The literal
lit(unit : unit 〈〉) is representing this value and its interpretation is fixed to
I[lit(unit : unit 〈〉)] = unit.

Boolean The generic type bool 〈〉 is utilized for representing the set of
truth values. Its domain is given by Dbool = B = {true, false}. Furthermore
the two constants

lit(true : bool)

and

lit(false : bool)

with their interpretation I[lit(true : bool)] = true and I[lit(false : bool)] =
false are defined by this extension.

On top of the bool type and its constants several operators are defined.
All of them are derived operators implemented by composing predefined
constructs and primitives, as listed in Table 3.1.

Since the listed boolean operators are defined as derived operators their
semantic can be deduced from their definitions. For instance, an analysis
embedded in a framework supporting the semantic of the core language
constructs and their composition could be capable of deducing that bool.neg
is a pure function and the result of bool.neg(true) is false. Furthermore
any future analysis may inspect the provided definitions to obtain required
data regarding those operators. No fact-database covering effects of these
operators has to be established nor maintained.

However, backends converting IR code into target code (e.g. C) are not
actually synthesize code containing functions implementing the listed oper-
ators. Instead applications of those operators are recognized and converted
to the actual built-in operators offered by target languages.

124 CHAPTER 3. INSPIRE

Name Type Definition

bool.neg (bool)→ bool

(b oo l a) {
i f (a) return f a l s e ;
return t r u e ;

}

bool.and (bool, bool)→ bool

(b oo l a , b oo l b) {
i f (a) return b ;
return f a l s e ;

}

bool.or (bool, bool)→ bool

(b oo l a , b oo l b) {
i f (a) return t r u e ;
return b ;

}

bool.eq (bool, bool)→ bool

(b oo l a , b oo l b) {
i f (a) return b ;
return boo l . neg (b) ;

}

bool.ne (bool, bool)→ bool
(b oo l a , b oo l b) {

return boo l . neg (boo l . eq (a , b)) ;
}

Table 3.1: List of (derived) boolean operators.

Although common in logic the definition of the conjunction operator above
is not widely utilized within actual programming languages. In real world
languages short-circuit evaluation for boolean expression is the standard
and their proper representation is crucial for the correct representation of a
majority of input codes.

Since all operator applications within our IR are represented by function
calls to keep the number of language constructs low, all arguments are al-
ways evaluated before the actual function is called (call-by-value semantic).
However, short-circuit evaluation demands that some parameters are only
evaluated under certain conditions. For instance in the C code fragment

i f (f () && g ()) { . . . }

the function g is only evaluated in case f() evaluates to false. To prop-
erly represent this behavior the operators of Table 3.2 are utilized within
INSPIRE. Unlike the previous definitions, the lazy alternatives accept the
second argument as a lazy evaluated boolean expression of the closure type
() ⇒ bool which will only be processed in case the first argument is not
sufficient to determine the value of the boolean operator.

The example above would therefore be encoded within INSPIRE by

i f (bool . land (f () , ()⇒g ())) { . . . }

3.8. EXTENSIONS 125

Name Type Definition

bool.land (bool, ()⇒ bool)→ bool

(b oo l a , ()⇒ boo l b) {
i f (a) return b () ;
return f a l s e ;

}

bool.lor (bool, ()⇒ bool)→ bool

(b oo l a , ()⇒ boo l b) {
i f (a) return t r u e ;
return b () ;

}

Table 3.2: Short-circuit evaluated, derived boolean operators.

where ()⇒g() is a bind expression wrapping up the evaluation of g into a
lazy expression of type ()⇒ bool. Finally, the last boolean-related operator
is the trinary if-then-else operator which is covered by the generic bool.ite
operator as follows:

Name Type Definition

bool.ite (bool, ()⇒ α, ()⇒ α)→ α

(b oo l a , ()⇒ α b , ()⇒ α c) {
i f (a) return b () ;
return c () ;

}

Here the resulting value is the value computed by one of the two passed
lazy expression b and c. The decision which of the two has to be evaluated
depends on the value of a.

Since the full notation of the definitions nor the abbreviated names of
the boolean operators are neither convenient for being handled by humans
we will utilize the familiar C operators, their infix notation, short-circuit
evaluation, parenthesis and precedence order within the concrete INSPIRE
syntax. For instance, by utilizing this convention the concrete syntax based
code fragment

(b oo l a , b oo l b) {
return ! (a == b) ;

}

is (structurally) equivalent to the definition of the bool.ne operator provided
above.

Arithmetic For arithmetic operations in C like languages three cases have
to be distinguished – operations on signed integers, unsigned integers and
floating point values. Further, for every case, the precision has to be deter-
mined. Within INSPIRE the three type families

int 〈t1〉 , uint 〈t1〉 , and real 〈t2〉

126 CHAPTER 3. INSPIRE

are utilized to distinguish those three cases where t1 ∈ {i 〈〉 ∈ T | i ∈
{1, 2, 4, 8}} and t2 ∈ {i 〈〉 ∈ T | i ∈ {4, 8}} are numerical type parame-
ters. Those parameters determine the precision of the represented arith-
metic type. For instance, int 〈4〉 represents a signed 4-byte integer encoded
using two’s complement and uint 〈2〉 a unsigned 2-byte integer. The types
real 〈4〉 and real 〈8〉 represent the single and double precision floating point
formats defined by IEEE 754-2008 standard. The domains of the types are
defined accordingly. Outlining all the associated details is straight forward,
yet clearly beyond the scope of this thesis.

Due to their value domains some numerical types are sub-types of
others. This relation is covered by the inference rules

a ≤ b
(int)

int 〈a〉 <: int 〈b〉

a ≤ b
(uint)

uint 〈a〉 <: uint 〈b〉

a < b
(u2s)

uint 〈a〉 <: int 〈b〉

(real)
real 〈4〉 <: real 〈8〉

extending the sub-type relations started in Section 3.27. Within the same
type family a type with a smaller precision is always a sub-type of types
with larger precision. Additionally an unsigned integer type is a sub-type
of a signed integer type whenever its precision is strictly smaller than the
super-types precision.

Numerical constants can be introduced by corresponding literals. For
instance the literal

lit(8 : int 〈2〉)

represents the 2-byte signed integer 8 and

lit(−2.4 : real 〈8〉)

the double value −2.4. The interpretation I is extended accordingly

3.8. EXTENSIONS 127

Unlike for the boolean type, arithmetic operators are incorporated by
abstract literals not exhibiting IR based definitions. The following table
provides a summery of the basic operators.

Name Type Description

int.add (int 〈α〉 , int 〈α〉)→ int 〈α〉 Signed Addition
int.sub (int 〈α〉 , int 〈α〉)→ int 〈α〉 Signed Subtraction
int.mul (int 〈α〉 , int 〈α〉)→ int 〈α〉 Signed Multiplication
int.div (int 〈α〉 , int 〈α〉)→ int 〈α〉 Signed Division
int.mod (int 〈α〉 , int 〈α〉)→ int 〈α〉 Signed Modulo

uint.add (uint 〈α〉 , uint 〈α〉)→ uint 〈α〉 Unsigned Addition
uint.sub (uint 〈α〉 , uint 〈α〉)→ uint 〈α〉 Unsigned Subtraction
uint.mul (uint 〈α〉 , uint 〈α〉)→ uint 〈α〉 Unsigned Multiplication
uint.div (uint 〈α〉 , uint 〈α〉)→ uint 〈α〉 Unsigned Division
uint.mod (uint 〈α〉 , uint 〈α〉)→ uint 〈α〉 Unsigned Modulo

real.add (real 〈α〉 , real 〈α〉)→ real 〈α〉 FP Addition
real.sub (real 〈α〉 , real 〈α〉)→ real 〈α〉 FP Subtraction
real.mul (real 〈α〉 , real 〈α〉)→ real 〈α〉 FP Multiplication
real.div (real 〈α〉 , real 〈α〉)→ real 〈α〉 FP Division

Furthermore comparison operators (<,≤,=, 6=,≥, >), conversion operators
within the same type family like

int.to.int : (int 〈α〉 , param 〈β〉)→ int 〈β〉

and and between families like

real.to.int : (real 〈α〉 , param 〈β〉)→ int 〈β〉

are covered. Those conversion functions demonstrate another application of
the numerical parameter meta type param.

All of the operators are interpreted by pure functions exhibiting the
expected behavior. For instance, I[int.add] is given by the function

f : (Dint〈α〉 ×Dint〈α〉)→ Dint〈α〉

defined by (x, y) 7→ x+α y where +α is the addition operator of the signed
α-byte integers.

As for the boolean operators the operator symbols, overloads, prece-
dence order, literal syntax and infix notation of the C language family is
imported in our concrete syntax formulation to avoid the explicit notation
of the actual IR constructs.

128 CHAPTER 3. INSPIRE

Character The type families char (8-bit) and wchar (16-bit), character
literals, char-based comparison operators and conversion functions from and
to the integral types are provided by the character extension. As for the
arithmetic package all of those are abstract and their detailed specification is
exceeding the scope of this section. Syntactically, as within the C language
family, literals of the shape ’c’ are utilized to represent character values.
However, there is no implicit conversion between characters and numeric
values or booleans – explicit conversions need to be applied.

Containers

In addition to primitive (scalar) types constructs for composed data struc-
tures are required to modeling more advanced language features.

Lists The type family list 〈t〉 represents a sequence of ordered elements of
type t. The associated domains are defined by

Dlist〈t〉 = D∗t

for all t ∈ T, hence, the set of all sequences of elements of the domain Dt.
Furthermore the two abstract constructors

empty : (type 〈α〉)→ list 〈α〉

and

cons : (α, list 〈α〉)→ list 〈α〉

are offered for assembling lists. Their interpretation is given by I[empty] =
fempty and I[cons] = fcons where

fempty(x) = []

for all x ∈ T and

fcons(x, [y1, . . . , yn]) = [x, y1, . . . , yn]

for all x, y1, . . . , yn ∈ V.

In the concrete syntax the construct [] is utilized to represent a call to
the empty constructor with a proper type (if it is clear from the context)
and the construct [x1, . . . , xn] is equivalent to the term

cons(x1, cons(x2, cons(. . . cons(xn, []) . . .)))

gradually assembling the corresponding sequence.

Lists are mainly utilized for initializing other homogeneous collections of
elements like arrays or vectors which are covered next.

3.8. EXTENSIONS 129

Arrays Members of the type family array 〈α〉 represent homogeneous se-
quences of ordered elements whose length is dynamically determined at their
creation point. As for lists the domain of an array is determined by

Darray〈t〉 = D∗t

where Dt is the domain of the element type t. The operators

array.create : (type 〈α〉 , uint 〈8〉)→ array 〈α〉

and
array.create : (list 〈α〉 , uint 〈8〉)→ array 〈α〉

can be utilized to create array values containing undefined elements or the
elements of the given list respectively. In both cases the second parameter
determines the length of the resulting array. Furthermore the subscript
operator

array.subscript : (array 〈α〉 , int 〈8〉)→ α

can be utilized to extract an element from an array by specifying its in-
dex within the represented sequence. The interpretation of those abstract
symbols is fixed accordingly by

I[array.create](t, s) = [v0, . . . , vs−1]

where v0, . . . , vs−1 are arbitrary elements of Dt,

I[array.create]([v0, . . . , vn], s) = [v0, . . . , vs−1]

where for all n < i < s the value vi is an arbitrary element of Dt and

I[array.subscript]([v0, . . . , vn], i) =

{
vi if 0 ≤ i < n

undefined otherwise

realizing the projection to a component of the represented value.
Within the concrete syntax the array.subscript operator is abbreviated

by a[i] where a is the expression computing the array to be accessed and i
the index of the requested element.

Vectors For homogeneous sequences of elements with a statically fixed
length the type family vector 〈t, s〉 is defined where t ∈ T is the element
type to be stored within the sequence and the numerical type parameter
s ∈ {i 〈〉 ∈ T | i ∈ N0} the length. The domains are defined by

Dvector〈t,s〉 = Ds
t

As for arrays the two constructors

vector.create : (type 〈α〉 , param 〈β〉)→ vector 〈α, β〉

130 CHAPTER 3. INSPIRE

and

vector.create : (list 〈α〉 , param 〈β〉)→ vector 〈α, β〉

are offered. Unlike for arrays the size of the resulting vector has to be stati-
cally fixed by a numerical type parameter instead of a dynamically evaluated
integer expression. To access an element contained within a vector the array
subscript operator can be utilized since vector types are sub-types of the cor-
responding array types. This relation is incorporated by the inference rule

(a2v)
vector 〈t, s〉 <: array 〈t〉

Additionally generic manipulation operations like

vector.reduce : (vector 〈α, β〉 , γ, (β, γ)→ γ)→ γ

and higher order operators, including the pointwise operator

vector.pointwise : ((α)→ β)→ ((vector 〈α, γ〉)→ vector 〈β, γ〉)

converting an operator of type (α) → β into a vectorized variation, are
covered for modeling SIMD instructions15.

Mutable State

So far all the primitives and constructs introduced by the language core and
the covered extensions are restricted to handling immutable data objects.
For instance, we can create vectors of four integers and we can implement
functions creating copies of those vectors where selected components are
substituted by alternative values but we do not have the ability to alter the
content of a given vector instance. This characteristic is typical for func-
tional languages and does not limit expressibility. However, since INSPIRE
is intended to cover imperative languages, which are based on the funda-
mental concept of applying sequences of operations on mutable memory
locations, corresponding support for mutable data is required.

The approach we have taken for modeling mutable memory locations is
orthogonal to the remaining extensions and the language core itself. Hence,
details may be altered without effecting any other extension or the core and
on the other hand future extensions can fully utilize the constructs of the
mutable state extension.

15SIMD = single instruction, multiple data; utilized for exploiting instruction level
parallelism using vectorization

3.8. EXTENSIONS 131

Syntax A mutable memory location is addressed by a value of the type
family

ref 〈t〉

where t ∈ T determines the type of value stored within the referenced loca-
tion. Its content may be retrieved utilizing the abstract function

ref.deref : (ref 〈α〉)→ α

and updated by the abstract operator

ref.assign : (ref 〈α〉 , α)→ unit

For the concrete syntax we will utilize the familiar unary ∗ operator in
prefix notation for the application of the ref.deref operator or consider it
an implicit operation exhibiting no explicit notation at all. For instance,
let x be a variable of type ref 〈t〉 for some t ∈ T. Then the expressions
ref.deref(x) and ∗x are equivalent. Further, the concrete syntax terms ∗x
and x are considered equivalent if the deref operation can be deduced from
the context.

The assignment operator, on the other hand, is represented by the bi-
nary assignment operators = in in-fix notation when utilizing the concrete
syntax. In special cases, where the distinction between the initialization of
a variable, which is also utilizing the = symbol, and an assignment should
be stressed, the more accurate := assignment operator is employed. As for
other operators we will inherit operator precedences from the C language
family.

Creation and Destruction To create a fresh memory location the
operator

ref.alloc : (type 〈α〉 ,memloc)→ ref 〈α〉

is provided. Its application is allocating a memory location suitable to main-
tain an instance of the type specified by the first parameter and returns
a value referencing it. The second parameter of type memloc determines
whether the location should be allocated on the heap, the stack or other
address spaces like potential scratchpad memory within embedded systems
or some kind of device memory available on OpenCL devices. For each case
constants like

memloc.stack : memloc

are offered.

Beside specifying the targeted memory segment, the selection of the
memory location also determines the life cycle of the allocated location. For
instance, while stack-allocated locations will be automatically freed at the

132 CHAPTER 3. INSPIRE

Name Type Definition

ref.var (type 〈α〉)→ ref 〈α〉
(type 〈α〉 t) {

return
r e f . a l l o c (α , memloc . s t a c k) ;

}

ref.var (α)→ ref 〈α〉

(α v) {
auto r = r e f . var (α) ;
r = v ;
return r ;

}

ref.new (type 〈α〉)→ ref 〈α〉
(type 〈α〉 t) {

return
r e f . a l l o c (α , memloc . heap) ;

}

ref.new (α)→ ref 〈α〉

(α v) {
auto r = r e f . new(α) ;
r = v ;
return r ;

}

Table 3.3: Derived memory allocation operators.

end of their surrounding scopes, heap allocated locations are required to be
released explicitly by utilizing the operator

ref.delete : (ref 〈α〉)→ unit

Frequently memory locations need to be allocated containing some un-
defined value or allocated and initialized with some value within a single
expression. For this cases we offer the overloaded, derived operators listed
in Table 3.3 which are abbreviate in the concrete syntax utilizing the key-
words var and new.

Comparison Operators The operator

ref.eq : (ref 〈α〉 , ref 〈β〉)→ bool

determines whether two references are addressing the same memory loca-
tion. Correspondingly ref.ne is a derived operator negating the result of
ref.eq. As usual we will utilize the C operators == and != when comparing
references.

Null Reference To represent the value of a reference not referencing
any memory location (e.g. since it has not yet been initialized) the constant

ref.null : ref 〈none〉

3.8. EXTENSIONS 133

is utilized where the generic abstract type none is an abstract type with an
empty domain (Dnone = ∅). To check whether a given reference is a null
reference the derived operator ref.is.null defined by

(ref<α> r)→bool { return r == ref.null;}

is utilized.

Sub-References Typically the data stored within memory location is
structured. For instance, when storing a struct composed of several fields
within a memory location, fractions of the memory location are utilized for
the various fields. By sub-referencing we are referring to the support of
obtaining references to the nested fields of structured data within memory
locations (and the reverse process). It is based on the abstract operator

ref.narrow : (ref 〈α〉 , datapath, type 〈β〉)→ ref 〈β〉

and its inverse operator

ref.expand : (ref 〈α〉 , datapath, type 〈β〉)→ ref 〈β〉

where the datapath parameter addresses a sub-structure within a structured
memory location. Corresponding values can be constructed using the con-
stant

dp.root : datapath

and three constructors – one addressing fields within structs

dp.member : (datapath, identifier)→ datapath

a second unpacking values from a union value

dp.unpack : (datapath, type 〈α〉)→ datapath

and a third addressing elements within arrays or vectors

dp.element : (datapath, int 〈8〉)→ datapath

More data path constructors may be added by additional extensions to nav-
igate data structures and containers introduced by those.

The constant dp.root is addressing a full structure and every application
of a constructor is narrowing down the addressed object to a part of the
parent structure. For instance, the value of the expression

dp.element(dp.root, 12)

is a path to the 12-th element of an array or vector.

134 CHAPTER 3. INSPIRE

The application of a ref.narrow starts with a given reference, follows
the provided data path and returns a reference to the element reached by the
last step. Since the type of the resulting reference can not be deduced via
the type system it has to be provided by an extra argument. The operator
ref.expand is the inverse operation navigating from a sub-reference to a
reference addressing an enclosing structure.

Example 3.21 (narrow and expand). Let v be a variable of type

ref 〈array 〈struct{x : int 〈4〉 , x : int 〈4〉}〉〉

The expression

ref.narrow(v, dp.element(dp.root, 12), struct{x : int 〈4〉 , y : int 〈2〉})

is of type ref 〈struct{x : int 〈4〉 , y : int 〈2〉}〉 and referencing the 12-th ele-
ment of the array referenced by v. Similar

ref.narrow(v, dp.member(dp.element(dp.root, 12), x), int 〈4〉)

of type ref 〈int 〈4〉〉 is referencing the x field of the 12-th element of the
array referenced by v. Let f be the result of the last expression. Than

ref.expand(f, dp.member(dp.root, x), struct{x : int 〈4〉 , y : int 〈2〉})

of type ref 〈struct{x : int 〈4〉 , y : int 〈2〉}〉 is a reference to the struct where
the reference f is targeting the field x.

Applications of the ref.narrow and ref.expand operator can be utilized
to navigate freely within structured memory locations. However, for spe-
cial cases derived operators and associated concrete syntax constructs are
utilized. The four main derived operators are

Name Definition

array.ref.elem

(ref 〈array 〈α〉〉 a , int 〈8〉 i) {
return r e f . narrow (a ,

dp . e lement (dp . root , i) , α) ;
}

vector.ref.elem

(ref 〈vector 〈α〉〉 a , int 〈8〉 i) {
return r e f . narrow (a ,

dp . e lement (dp . root , i) , α) ;
}

struct.ref.elem

(ref 〈α〉 a , i d e n t i f i e r i , type 〈β〉 t) {
return r e f . narrow (a ,

dp . member (dp . root , i) , t) ;
}

union.ref.elem

(ref 〈α〉 a , type 〈β〉 t) {
return r e f . narrow (a ,

dp . unpack (dp . root , t) , t) ;
}

3.8. EXTENSIONS 135

covering the access of array, vector and struct and union values. Note
that a distinction between arrays and vectors is required since sub-typing
rules between arrays and vectors are not extended to references of those.
Also a generic type for the input references of the struct.ref.elem and
union.ref.elem operators has to be utilized since no generic type restricting
inputs to structs or units can be specified within our IR’s type system16.

To avoid the extensive notation of the abstract IR syntax the C subscript
operator x[i] and structure reference operator x. f are utilized within the con-
crete syntax to denote the corresponding operation. Nevertheless, internally
all these operations are mapped to applications of the ref.narrow operator.
The ref.expand on the other hand is required to model C conversions of
pointer-to-scalar values to pointer-to-array values and in particular within
C++ to convert a reference to a base type to a reference of a derived type
– however, details of those are beyond the scope of this section.

Semantic In addition to the syntax of the constructs provided for handling
mutable states the semantic of the involved types and abstract operators has
to be defined.

Definition 3.54 (reference domain). Let L be an arbitrary set of memory
locations such that η /∈ L where η is the value of the null location. Further
let P bet the set of all data paths generated by the grammar

p ::= u | d
u ::= ⊥ | i.u | f.u | t.u
d ::= ⊥ | d.i | d.f | d.t

where p is the starting symbol, i ∈ Z is an arbitrary index, f ∈ I is a field
name identifier and t ∈ T a type. The domain of the reference type ref 〈t〉
is defined by

Dref〈t〉 = (L × P) ∪ {η} = R

Hence, a reference is either null or a pair of a memory location and a data
path addressing the targeted sub-structure within the associated location.

Note that the definition provides the possibility of forming paths in both
directions – addressing sub-structures (e.g. ⊥.n.3) and super-structures (e.g.
x.⊥). The capability of addressing super-structures is required to provide
an interpretation for the ref.narrow and ref.expand operators such that
those are total and the inverse of each other.

Example 3.22 (reference values). Let l ∈ L be a memory location. The
pair (l,⊥) ∈ L×P is a reference addressing the full structure stored within

16Extending the type system for this use case would be possible but its complexity is
hardly justified by the additional gain.

136 CHAPTER 3. INSPIRE

memory location l while (l,⊥.4) is addressing the 4-th component of the
tuple of values stored within l. A reference (l, 2.⊥) would referencing the
super-structure containing the value of l as its second sub-component. How-
ever, since l is the full structure allocated at this location such a reference
to a super-structure must not be dereferenced.

For the mutable state extension interpretations of the abstract con-
stant ref.null and the operators ref.alloc, ref.delete, ref.eq, ref.narrow,
ref.expand, ref.deref , and ref.assign have to be provided.

Null and the Equals Operator For the null-constant the interpre-
tation is given by

I[ref.null] = η

where η is the null location. Also, the interpretation of the ref.eq can be
defined in a straightforward way by

I[ref.eq](a, b) = (a = b)

which is simply mapping the interpretation of the equality operator between
references to the equality of elements of the set of references R.

Creation and Destruction Let state : L ⇀ V be a partial mapping
assigning memory locations the value stored within those. The evolution of
this mapping during the course of the execution of a program fragment is
the main focus of the mutable state extension. It is therefore maintained
within the universal environment of the program state (see Definition 3.43).

The creation of a memory location is conducted by the ref.alloc operator
whose interpretation is given by

I[ref.alloc](e, t,m) = (statee(l) = [], (l,⊥))

where l ∈ L \ dom(statee) is a fresh location and ⊥ the empty data path
addressing the root structure. The new location is created and initialized
with the default value [] ∈ V within the environment e.

Note that at this point we ignore the memory location designator m. A
proper handling would require a formalization of the corresponding scopes
and a partitioning of the set of memory locations L according to the utilized
designators. Since this distinction is not required for the rest of the thesis
we omit the associated details for brevity. Also, the handling of life cycles
of memory locations is frequently omitted for similar reasons within related
literature [83].

The delete operator is simply eliminating the mapping of a memory
location from the environment. This is realized by its interpretation

I[ref.delete](e, (l,⊥)) = (statee(l) \ l, unit)

3.8. EXTENSIONS 137

which removing the value l from the domain of statee. Note that the delete
operator is not defined for references addressing sub-structures. The data
path is required to be ⊥. Consequently free operations may not be applied
on sub-structures.

Data Paths Before we can specify the formalization of the remain-
ing reference operators, data path constants and constructors have to be
covered. Their interpretation is given by

I[dp.root]() = ⊥

I[dp.member](p, f) = p.f

I[dp.unpack](p, t) = p.t

I[dp.element](p, i) = p.i

All of them produce a value of the set of data paths P according to their in-
put arguments. We further define a utility function | · | : P → N determining
the length of a data path by

|a| =

0 if a = ⊥
|a′|+ 1 if a = a′.x

|a′| − 1 if a = x.a′

the function inv : P → P inverting a data path by

inv(a) =

⊥ if a = ⊥
x. inv(a′) if a = a′.x

inv(a′).x if a = x.a′

the function head : P → (N ∪ I ∪ T) obtaining the first element of a data
path p where |p| > 0 by

head(p) =

{
x1 if p = ⊥.x1.x2 . . . xn

undefined otherwise

the function tail : P → P obtaining the remaining data path when elimi-
nating the head element of a path p where |p| > 0 by

tail(p) =

{
⊥.x2 . . . xn if p = ⊥.x1.x2 . . . xn

undefined otherwise

138 CHAPTER 3. INSPIRE

and the function concat : P × P → P computing the concatenation of two
data paths a and b by

concat(a, b) =

a if b = ⊥
concat(a, b′).x if |a| ≥ 0 and b = b′.x

concat(a′, tail(b)) if a = x.a′ and head(b) = x

undefined if a = x.a′ and head(b) 6= x

inv(concat(inv(a), inv(b))) otherwise

Example 3.23 (data path handling). Let a = ⊥.1.x.2 be a data path, then
len(a) = 3, inv(a) = 2.x.1.⊥, head(a) = 1 and tail(a) = ⊥.x.2. If two data
paths both have positive or both negative length the concatenation of those
two paths is the simple concatenation of the involved steps. For instance,

concat(⊥.1.2,⊥.x) = ⊥.1.2.x

and
concat(x.⊥, y.⊥) = y.x.⊥

If the length of the two data paths is not exhibiting the same sign the first
path is consumed by the second. For instance,

concat(a.3.f.⊥,⊥.a.3) = f.⊥

and
concat(⊥.c.0, 0.⊥) = ⊥.c

If the consumption is crossing the root path ⊥ both temporary paths are
pointing in the same direction – hence, their length has the same sign – and
the operation switches to the concatenation mode as can be observed by

concat(a.b.⊥,⊥.a.b.c.d) = ⊥.c.d

and
concat(⊥.a.b, y.x.a.b.⊥) = y.x.⊥

Finally, the consumption of a data path is not defined if the next step
given by the second parameters is not matched by the first parameter. For
instance, concat(⊥.a, b.⊥) is undefined since it is not possible to walk a path
up by a b-field step if you are at a point reached by addressing an a-field.

Based on those data path operators the interpretation of the narrow and
expand operators is defined by

I[ref.narrow]((l, p1), p2, t) = (l, concat(p1, p2))

and
I[ref.expand]((l, p1), p2, t) = (l, concat(p1, inv(p2)))

Both operators are updating the data-path component of the input reference
value (l, p1) by a value computed based on the data path provided as a second
argument.

3.8. EXTENSIONS 139

Deref and Assign Operators Finally the effects of an operation
reading a memory location (ref.deref) and updating a location (ref.assign)
have to be formalized. When reading a value addressed by a reference (l, p)
the value stored at memory location l has to be loaded and decomposed ac-
cording to the data path p to reach the requested value. This decomposition
is conducted by the get : V × P → V operation defined by

get(ν, p) =

ν if p = ⊥
get(νi, tail(p))

if ν = [ν0, . . . , νn] and head(p) = i ∈ {0, . . . , n}
get(νi, tail(p))

if ν = s[. . . , ni : νi, . . .] and head(p) = ni ∈ I
get(unpackt(ν

′), tail(p))
if ν = u[ν ′] and head(p) = t ∈ T

undefined otherwise

Based on the get operation the interpretation of ref.deref can be defined
by

I[ref.deref](e, (l, p)) = (e, get(statee(l), p))

where statee(l) ∈ V is obtaining the value stored at memory location l from
the environment e and the application of get extracts the value of the sub-
structure addressed by the reference (l, p).

Similar, when updating a the value stored within a memory location
during an assignment operation, the current value has to be obtained, the
addressed sub-structure located, and replaced by the new data element. The
corresponding update-operation is based on the operator set : V×P×V → V
defined by

set(ν, p, v) =

v if p = ⊥
[. . . νi−1, set(νi, tail(p), v), νi+1, . . .]

if ν = [ν0, . . . , νn] ∧ head(p) = i ∈ {0, . . . , n}
s[. . . , ni : set(νi, tail(p), v), . . .]

if ν = s[. . . , ni : νi, . . .] ∧ head(p) = ni ∈ I
u[packt(set(unpackt(ν

′), tail(p), v))]
if ν = u[ν ′] ∧ head(p) = t ∈ T

undefined otherwise

Finally the interpretation of the assignment operator is given by

I[ref.assign](e, (l, p), ν) = (set(statee(l), p, ν), unit)

where statee(l) is obtaining the value of memory location l before the ap-
plication of the operator, set(statee(l), p, ν) is conducting the necessary up-
date operation, ν ∈ V is the value to be implanted into the addressed sub-
structure of the referenced memory location’s value and unit is the single
element of the unit domain.

140 CHAPTER 3. INSPIRE

Sources and Sinks An extension of the reference based modeling of mu-
table states covered within the previous section is based on the distinction
of read-only, read-write and write-only memory locations. This concept is
based on the three type families

src 〈t〉, ref 〈t〉, and sink 〈t〉

where t ∈ T is the type of the value stored in the referenced memory location.
A source-reference of type src 〈t〉 is a read-only reference, a reference of
type ref 〈t〉 is a read-write reference and a sink of type sink 〈t〉 can only
be written. This is enforced by altering the types of the deref and assign
operators to

ref.deref : (src 〈α〉)→ α

and
ref.assign : (sink 〈α〉 , α)→ unit

Hence, only sources may be read and only sinks may be written. By adding
the sub-type inference rules

(src)
ref 〈a〉 <: src 〈a〉

and

(sink)
ref 〈a〉 <: sink 〈a〉

turning references into special cases of sources and sinks, references can be
read and written as usual. Additional modifications are required for the
ref.narrow and ref.expand operators to support source and sink references
as well, yet details are omitted for brevity at this point. The semantic
interpretation of those operators, however, is not effected when treating
sources and sinks equivalent to references – it is sufficient that the access
privileges on the addressed memory locations are solely enforced by the type
system.

Due to the requirement of interfacing with external C/C++ libraries
depending on the distinction between const and non-const C pointers or
C++ references, const type-modifiers have to be preserved when converting
C/C++ input codes into INSPIRE and back. Therefor this extended variant
of the mutable state extension is implemented within the Insieme Compiler.

Locks

A final common language extension required for the encoding of features
encountered within a variety of parallel APIs are locks which might also be
referred to as mutexs. A lock is represented utilizing the composed type

lock = channel 〈unit, 1〉

3.9. MODELING INPUT CODES 141

which is a channel with a capacity of 1 not relaying any information. Instead
the synchronizing side-effects of send and receive operations are utilized to
model lock-acquire and lock-release operations. The corresponding defini-
tions are summarized by the following table:

Name Type Definition

lock.create ()→ lock

() {
auto r e s =

channe l . c r e a t e (uni t , 1) ;
channe l . send (res , un i t) ;
return r e s ;

}

lock.acquire (lock)→ unit
(l o c k l) {

channe l . r ecv (l) ;
}

lock.release (lock)→ unit
(l o c k l) {

channe l . send (l , un i t) ;
}

lock.probe (lock)→ bool
(l o c k l) {

return ! channe l . empty (l) ;
}

Upon creation the buffer of the underlying channel is filled with the unit
element. The presence of this element marks the availability of the lock.
To acquire the lock this unit-token needs to be retrieved (channel.recv),
to release the lock some token needs to be returned (channel.send). The
synchronizing side-effects are inherited from the utilized primitives.

3.9 Modeling Input Codes

To demonstrate the suitability of our language core and the associated ex-
tensions to model actual input codes a few example constructs are outlined
within this sections. Although all of them have been implemented in the
Insieme compiler the actual encoding is the topic of ongoing development
and may have been further refined or even redefined to fit additional require-
ments. Also, the covered details shall only provide insights on how language
constructs and API primitives are encoded into our IR and are by far not
all the constructs supported by the Insieme project.

3.9.1 Sequential Host Language Constructs

The Insieme infrastructure is mainly designed to support parallel input codes
based on C or C++ language extensions or APIs. Consequently our IR has
to be suitable for modeling the constructs of those host languages as well.
To provide a hint on how those might be encoded, the handling of some
essential language features is briefly outlined in this section.

142 CHAPTER 3. INSPIRE

Variables

One of the most essential concepts of imperative languages, including C, are
mutable variables. A basic variable declaration like

int x = 0 ;

is creating a mutable memory location (on the local stack) suitable to store
a value of type int. The corresponding encoding in our IR is similar to

re f<in t<4>> x = r e f . var (0) ;

making the allocation of (stack) memory explicit. Also the type of variable
x is ref 〈int 〈4〉〉 indicates that the variable name x is actually referring to a
memory location storing a value, not the value itself. Whenever the variable
x is utilized within an operation, e.g. in the C code fragment

x + 1 ;

it is implicitly de-referenced to obtain its value for the computation. In our
IR this is made explicit by

i n t . add (r e f . d e r e f (x) ,1) ;

which is equivalent to

∗x + 1 ;

due to the syntactic sugar rules we have introduced earlier. Note that within
C the type of the expression x and x+1 is in both cases int. However, in
the first case it is considered an l-value, hence suitable as a target for an
assignment operation while in the second case it is a r-value – a value that
can only be read. Within our IR, the expression x is of type ref<int<4>>

identifying it as a suitable target for an assignment while ∗x+1 is of type
int<4>. Hence, by making the implicit creation and dereferenciation of
memory locations inherent in C explicit within our IR, issues regarding l-
and r-values have been bypassed. Also, implicit semantics introduced for
the convenience of end users is made explicit, eliminating the requirement
of analysis and other IR based utilities to consider those implicit effects and
related distinctions.

Pointers

Beside basic (stack) variables data may be stored within heap allocated
data structures. The language features provided by C to access data not
necessarily located on the stack are C pointers. A code snippet like

int x = 0 ;
int∗ y = &x ;

3.9. MODELING INPUT CODES 143

is declaring such a pointer (y) referencing the memory location of x. In our
IR the same fragment could be represented by

re f<in t<4>> x = r e f . var (0) ;
r e f<re f<in t<4>> y = r e f . var (x) ;

No new pointer construct is required. Instead a nested ref type is utilized for
representing pointers. Also, the address-of operator & of C is not required
since in IR the variable x is actually representing the memory reference, not
the value as it is implicitly in C.

The double nesting corresponds to the fact that every C pointer is actu-
ally a mutable memory location (outer ref) containing the address of another
location (inner ref). An operation updating the value of the referenced ele-
ment like

∗y = 12 ;

can therefore be encoded by

r e f . a s s i g n (r e f . d e r e f (y) , 12) ;

which is equivalent to

∗y := 12 ;

by considering all the syntactic sugar defined above while an update of the
actual pointer value like

int z = 14 ;
y = &z ;

is encoded by

re f<in t<4>> z = r e f . var (14) ;
y := z ;

While in the former case the location pointed to is updated in the latter the
outer reference is modified.

The allocation of memory on the heap is realized in C by calls to library
functions. An example is given by

int∗ z = mal loc (s izeof (int)) ;

which in our IR could be encoded using

re f<re f<in t<4>>> z = r e f . var (r e f . new(in t <4>)) ;

Here the fact that in this declaration both, local stack memory and heap
memory is allocated is made explicit. Also it shows that, unlike within C, no
new construct had to be introduced to support the handling of data on the
heap. C pointers are handled by utilizing the same reference type extensions
utilized for modeling any other mutable state in the IR.

144 CHAPTER 3. INSPIRE

Pointer Arithmetic Besides addressing and manipulating data stored
in arbitrary locations (heap, stack, or even others) C pointers provide an
additional feature – pointer arithmetic and their connection to arrays, which
are indeed pointers. For instance, the following code snippet outlines several
common ways of dealing with arrays and pointers in C

1 int x [5] ; // array o f 5 i n t s on the s t a c k
2 x [3] ; // reads 4 th element o f x
3 ∗x ; // reads 1 s t e lement o f x
4 ∗(x + 3) ; // reads 4 th element o f x
5

6 int∗ y = x ; // y i s an a l i a s f o r x
7 y [3] ; // y can be used l i k e an array
8 ∗(y + 3) ; // or po in t e r
9

10 int∗ z = mal loc (s izeof (int) ∗ 5) ; // on heap
11 z [0] = 12 ; // used l i k e an array
12 ∗(z + 3) = 14 ; // or po in t e r (4 th e lement)
13

14 int∗ w = z + 2 ; // an o f f s e t e d a l i a s to array z
15 ∗w; // reads 3rd element o f z
16 w [1] ; // reads 4 th element o f z
17

18 w−−; // o f f s e t i s moved down by one
19 ∗w; // reads 2nd element o f z
20 w [1] ; // reads 3rd element o f z

In the first block an array x is created on the stack and accessed utilizing
array (line 2) and pointer notation (line 3 and 4). In the following block
an alias y for x is created (line 6) which can be accessed utilizing the same
notation (line 7 and 8). This illustrates the duality of arrays and pointers
in C as well as the mechanism utilized when passing arrays as arguments to
function calls. However, note that although the same operator is utilized in
line 2 and 7 the execution of line 2 involves a single memory access while
line 7 requires two operations – reading the value of variable y to compute
the address of the location containing the actual value to be read.

In the following block a heap allocated array is created (line 10) and
accessed again utilizing array (11) and pointer notation (12). In both cases
2 memory access operations are involved. Finally, within the last block,
a pointer w representing an offseted alias of array z is created, read and
manipulated – another common feature frequently utilized within C codes.

Following the naive encoding of pointers covered above, pointer arith-
metic can not be supported based on the available primitives. To support
pointer arithmetic, pointers needed to be encoded as pairs of the type

struct { re f<array<α>> base ; in t<4> o f f s e t ; }

where α is to be substituted by the element type, base is a reference to an
allocated memory location and offset an implicit offset to be incorporated

3.9. MODELING INPUT CODES 145

whenever the pointer is dereferenced. For brevity, in the following code
snippets we will utilize the abbreviation ptr for this generic struct-based
pointer type. Further we introduce the derived operators

Name Definition

ptr.init
(re f<array<α>> r) → p t r {

return struct { base = r , o f f s e t = 0 } ;
}

ptr.read
(p t r p) → re f<α> {

return array . r e f . elem (p . base , p . o f f s e t) ;
}

ptr.add

(p t r p , in t<4> i) → p t r {
return struct {

base = p . base ,
o f f s e t = p . o f f s e t + i

} ;
}

to initialize, read and update pointers.
Based on those the first block of the C code example above can be

encoded in our IR by

re f<array<in t<4>>> x
= r e f . var (array . c r e a t e (in t <4>,5)) ;

r e f . d e r e f (array . r e f . elem (x) ,3) ;
r e f . d e r e f (p t r . read (p t r . i n i t (x))) ;
r e f . d e r e f (p t r . read (p t r . add (p t r . i n i t (x) ,3))) ;

In this encoding the array x is allocated on the stack – due to the ref.var
call – and treated like a standard array. However, when switching to a
pointer notation the reference to the array is converted into the pair-based
pointer encoding utilizing a call to ptr.init. Based on this representation
pointer arithmetic is performed. Finally, whenever read, the pointer encod-
ing is unwrapped by a call to ptr.read and the addressed memory location
is dereferenced using the standard ref.deref operator.

The second block creating the alias y of x

int∗ y = x ; // y i s an a l i a s f o r x
y [3] ; // can be used l i k e an array
∗(y + 3) ; // or po in t e r

is encoded into INSPIRE similar to

l e t p t r t = struct {
re f<array<in t<4>>> base ;
in t<4> o f f s e t ;

} ;

r e f<p t r t> y = r e f . var (p t r . i n i t (x)) ;
r e f . d e r e f (p t r . read (p t r . add (r e f . d e r e f (y) ,3))) ;
r e f . d e r e f (p t r . read (p t r . add (r e f . d e r e f (y) ,3))) ;

146 CHAPTER 3. INSPIRE

As can be observed, the array subscript based access (y[3]) including an
implicit dereferencing and the pointer based access (∗(x+3)) are represented
by the same IR expression. Also the two involved memory read operations
are explicitly represented by the two invocations of the ref.deref operator
while in the previous direct array access case only one read operation was
involved. The same is true for the heap based operations of the third block,
where

int∗ z = mal loc (s izeof (int) ∗ 5) ; // on heap
z [0] = 12 ; // used l i k e an array
∗(z + 3) = 14 ; // or po in t e r (4 th e lement)

is encoded into

l e t p t r t = struct {
re f<array<in t<4>>> base ;
in t<4> o f f s e t ;

} ;

r e f<p t r t> z = r e f . var (p t r . i n i t (
r e f . new(array . c r e a t e (in t <4>,5))

)) ;
p t r . read (p t r . add (r e f . d e r e f (z) ,0)) := 12 ;
p t r . read (p t r . add (r e f . d e r e f (z) ,3)) := 14 ;

where a new array is allocated on the heap (call to ref.new) and its location
is stored in a local mutable variable z. As in the previous case, the array
and pointer based access to the array elements is encoded utilizing equally
structured expressions.

Finally, the remaining pointer arithmetic operations covered by the last
two blocks of the C example above given by

int∗ w = z + 2 ; // an o f f s e t e d a l i a s to array z
∗w; // reads 3rd element o f z
w [1] ; // reads 4 th element o f z

w−−; // o f f s e t i s moved down by one
∗w; // reads 2nd element o f z
w [1] ; // reads 3rd element o f z

including the creation of a pointer referencing an array with a given offset,
is represented within our IR by

re f<p t r t> w = r e f . var (p t r . add (r e f . d e r e f (z) ,2)) ;
r e f . d e r e f (p t r . read (r e f . d e r e f (w))) ;
r e f . d e r e f (p t r . read (p t r . add (r e f . d e r e f (w) ,1))) ;

w := p t r . add (r e f . d e r e f (w) ,−1) ;
r e f . d e r e f (p t r . read (r e f . d e r e f (w))) ;
r e f . d e r e f (p t r . read (p t r . add (r e f . d e r e f (w) ,1))) ;

making all the implicit and explicit operations involved in the C code explicit
utilizing a unified set of primitives.

3.9. MODELING INPUT CODES 147

Additional pointer arithmetic operations, including comparison opera-
tors and pointer differences, can be encoded using similar means by focus-
ing on the offsets. This encoding is exploiting the fact that these kind of
operators have undefined behavior when being applied to unrelated pointers
according to the C language specification.

However, although encoded as pairs within the IR, in the backend these
pairs of base pointers and offset values and their associated operators are
converted back into regular C pointer constructs. The purpose of the en-
coding is mere to simplify and unify the handling of memory references and
locations in the IR and its associated analysis and transformation utilities.

Global Variables

Unlike within processed input codes our IR does not exhibit a concept sim-
ilar to a global scope since every representation of a full program is only
consisting of a single expression. However, although their usage is discour-
aged, global variables are a frequently encountered construct utilized by
many programs. Hence, support for those is required.

Fortunately global variables can be easily encoded in our IR utilizing
literals. For instance, a global counter c as utilized in

int c ;
void i n i t () { c = 0 ; }
int i n c () { return ++c ; }

void main () {
i n i t () ;
i nc () ;

}

can be encoded within INSPIRE using a simple literal

l i t (c : r e f<in t<4>>)

utilized by the corresponding implementations. Essentially the literal rep-
resents a named global memory location containing an integer. The full
encoding of the given example looks like

()→un i t { // encoding o f main
()→un i t { // encoding o f i n i t

c := 0 ;
} () ; // i n i t c a l l
()→un i t { // encoding o f inc

c := c+1;
return c ;

} () ; // inc c a l l
}

where the literal c is defined as introduced above.

148 CHAPTER 3. INSPIRE

3.9.2 Common Parallel Constructs

A variety of parallel APIs offer similar primitives and building blocks which
we will describe at this point before actually diving into concrete APIs in
order to reduce the amount of details to be covered in later sections.

Barriers

Barriers are among the basic primitives available in many APIs, in particular
including MPI, OpenMP and OpenCL. Barriers allow groups of threads to
synchronize. The group management is handled within INSPIRE by the
creation of thread groups utilized for processing jobs. To realize a barrier
operation among the members of a group an operator barrier is defined by

()→un i t {
red is tr ibute (uni t , (α d)→un i t { return un i t ; }) ;

}

which simply utilizes the blocking data-sharing construct redistribute for re-
alizing a synchronization event between threads of a group without actually
exchanging any data. The data item contributed by each thread is the unit
constant and the selection function is ignoring the aggregated array of con-
tributions and just returning the unit value. Consequently the only effect of
an invocation of the barrier operator is its synchronization effect as desired.

Reductions

Another frequently encountered class of primitives are parallel reduction
operations. In such an operation every thread contributes a value which will
then be aggregated utilizing some, typically associative and commutative,
binary operator. For the encoding of such reduction operations a generic
function reduce of type

(α, (β, α)→ β, β)→ β

has been introduced where the first parameter is the value contributed by
the current thread, the second the reduction operator and the third the
initial value for the reduction, e.g. the identity element of the reduction
operator. It is implemented by

(α v , (β ,α)→ β op , β i n i t)→ β {
red is tr ibute (v , (array<α> data)⇒{

re f<β> r e s = var (i n i t) ;
for (u int<8> i = 0 . . getNumThreads (0)) {

r e s := op (∗ res , ∗(data [i])) ;
}
return ∗ r e s ;

}) ;
}

3.9. MODELING INPUT CODES 149

which is simply applying the reduction operation on the aggregated list of
contributions collected by the redistribute operator. An example application
summing up all the values of thread-local variables x among the threads of
a thread group looks like

reduce (x , i n t . add , 0) ;

where x is the variable to be contributed by the local thread, int.add the op-
erator to be utilized for the reduction and 0 the literal encoding the identity
element of the reduction operation. The result will be the sum of all the con-
tributions of the individual threads and as a side effect the synchronization
of all threads.

3.9.3 Parallel APIs

Finally we can provide an overview on the actual encoding of parallel con-
structs encountered in our primary targeted parallel APIs.

OpenMP

The central element within OpenMP to express parallelism is the definition
of a parallel region similar to

#pragma omp p a r a l l e l
{

. . .
}

which is represented based on our IR’s primitives by

merge(para l l e l (job [1 ,INT MAX] ()⇒{
. . .

})) ;

Hence, a parallel region is outlined into an extra function by wrapping it
into a closure utilizing a bind expression, wrapped into a job to be processed
by at least one thread and spawned by a call to the parallel primitive. The
resulting thread group is merged since the spawning thread in OpenMP is
blocked until the nested parallel region has completed its task.

In case OpenMP data clauses are specified corresponding code has to be
introduced. For instance, the input code

int x = 0 ;
#pragma omp p a r a l l e l f i r s t p r i v a t e (x)
{

x = x+1;
}

is converted into

150 CHAPTER 3. INSPIRE

re f<in t<4>> x = var (1) ;
merge(para l l e l (job [1 ,INT MAX] ()⇒{

re f<in t<4>> px = var (x) ;
px := ∗px + 1 ;

})) ;

which is creating a private copy px of the otherwise shared variable x in the
body of the parallel job. This private copy is then utilized for the applied
operations as defined by the OpenMP standard. Similar approaches are
followed to provide support for private and lastprivate.

Worksharing Constructs OpenMP offers three worksharing constructs
for C – the loop construct, sections and the single construct. All of them
are encoded within our IR using its unified worksharing construct pfor. For
starters, a parallel OpenMP loop like

#pragma omp for
for (int i = 0 ; i != 10 ; i++) {
<loop body>

}

is represented by

pfor (0 ,10 ,1 , (in t<4> a , in t<4> b , in t<4> c)⇒{
for (in t<4> i = a . . b : c) {
< l oop body>

}
}) ;
b a r r i e r () ;

The encoding is based on an outlined version of the original loop body
where all required information is captured by the utilized bind expression.
Within this function the original loop body is processed. Since our IR’s pfor

operator does not cause an implicit synchronization an explicit barrier call
is added at the end – unless an explicit OpenMP nowait tag is provided in
the input code.

In case a for loop is conducting a reduction the corresponding IR operator
introduced in the previous section is utilized. For instance, the simple case

int sum = 20 ;
#pragma omp for reduce (+:sum)
for (int i = 0 ; i != 10 ; i++) {

sum += a [i] ;
}

is internally represented by

re f<in t<4>> sum = var (20) ;
{

re f<in t<4>> psum = var (0) ;
pfor (0 ,10 ,1 , (in t<4> a , in t<4> b , in t<4> c)⇒{

3.9. MODELING INPUT CODES 151

for (in t<4> i = a . . b : c) {
psum := ∗psum + ∗a [i] ;

}
}) ;
sum := ∗sum + reduce (∗psum , i n t . add , 0) ;

}

including the creation of a private copy psum of the variable sum initialized
with the identity element of the reduction operator + (=0), the internal, pri-
vate aggregation while processing loop iterations and the concluding group-
wide aggregation utilizing the reduce operator. Note that the application of
this final operator is causing an implicit synchronization among the threads
of the group and hence allows the obligatory barrier to be omitted.

OpenMP sections are also distributed among the threads of a group
by converting them into iterations of a parallel loop and selecting sections
based on the value of the iterator variable. Similarly the single construct is
interpreted like a single section.

Synchronization OpenMP barriers are realized utilizing the barrier func-
tion introduced in the previous section. However, OpenMP also provides
additional synchronization means, in particular critical regions. Those are
implemented by utilizing global variables and the lock extension which itself
is based on IR channel operations.

For example, two critical regions

#pragma omp c r i t i c a l
{ <A> }
. . .

#pragma omp c r i t i c a l
{ }

are encoded by

l o c k . a c qu i r e (g om p c r i t i c a l l o c k) ;
{ <A> }
l o c k . r e l e a s e (g om p c r i t i c a l l o c k) ;
. . .
l o c k . a c qu i r e (g om p c r i t i c a l l o c k) ;
{ }
l o c k . r e l e a s e (g om p c r i t i c a l l o c k) ;

where g omp critical lock is a literal of type lock which is equivalent to a global
variable in a conventional context. In case the critical section is named a
fresh global lock is bound to the name and utilized accordingly.

Tasks Another frequently utilized feature in OpenMP are its tasks. Their
encoding is similar to the encoding of tasks in Cilk which will be covered
next.

152 CHAPTER 3. INSPIRE

Cilk

Essentially Cilk adds two additional keywords to its C host language: spawn

and sync. Both have to be encoded into IR constructs. The example code
fragment

x = spawn f (n−1) ;
y = spawn f (n−2) ;
sync ;

is internally represented by

para l l e l (job [1 , 1] ()⇒{
x := f (n−1) ;

}) ;
para l l e l (job [1 , 1] ()⇒{

y := f (n−2) ;
}) ;
merge () ;

which is creating jobs to be processed by a single thread for each spawned
procedure call. As required by the Cilk specification, an execution in an
other thread is not mandatory. The presents of the spawn keyword is merely
indicating the potential of concurrently processable workload. The conclud-
ing synchronization is conducted by an invocation of the merge operator
which is equivalent to Cilk’s sync operator. Furthermore the implicit sync

operation at the end of every task-spawning function in Cilk is made explicit.
The OpenMP task and taskwait constructs are encoded equivalently.

OpenCL

When running an OpenCL kernel, a function is being applied to every node
within a 1, 2 or 3-dimensional grid in parallel. Thereby, the total grid,
known as the global range, is partitioned into a large number of equally sized
local groups of work items. Items within the same local group may share
data using a fast shared memory segment. Also, synchronization means are
exclusively offered within local groups.

This two-level decomposition and its various aspects need to be reflected
within the IR since its proper utilization is the key for high-performance
computing on accelerators. The two levels are encoded using two nested
thread groups. The following code fragment illustrates the general schema:

<g l o b a l−vars>
merge(para l l e l (job [< g l o b a l−range >] ()⇒{
< l o c a l−vars>
merge(para l l e l (job [< l o c a l−range >] ()⇒{
<ke rne l−code>

})) ;
})) ;

3.9. MODELING INPUT CODES 153

The outer level corresponds to the global range – reduced to a single dimen-
sion if applied to a 2 or 3-dimensional grid – using one thread per local group
and the inner level models the local groups. Global and local memory is allo-
cated for the corresponding variables within their code sections respectively.
Within the actual kernel code, getThreadID(0) can be used to obtain the
index of the work item within the local group and getThreadID(1) to access
the group ID.

The real challenge when converting OpenCL codes into IR is the rather
extensive “boilerplate” code for device setup and kernel preparation sur-
rounding an OpenCL kernel invocation. In the Insieme compiler the host
code is analyzed to identify the kernel calls and the associated data manipu-
lation operations to generate IR code focused on those essential operations.
The original OpenCL library calls are thereby eliminated by the frontend
for clarity and re-added by the backend using runtime system APIs.

The seamless integration of the kernel code into the host program enables
the compiler to analyze and tweak the execution of the entire program (host
and kernel part). For instance, constants may be forwarded from the host to
the kernel codes or successive kernel invocations operating on the same data
may be merged. Also, the data a kernel is applied to may be automatically
split and distributed among multiple devices [36].

MPI

Unlike for OpenMP, Cilk and OpenCL, in an MPI application the parallelism
is neither confined to a single code region nor a single process. Fortunately,
our parallel model is not restricted to threads within a single process. IR
threads of a group can be distributed among multiple processes, as long as
they do not share access to a common memory location – as it is always the
case for MPI codes.

The whole-program parallelism of an MPI application can be modeled us-
ing a top-level merge/parallel/job combination. Within the executed job, an
array of communication channels of type channel 〈msg, 1〉 is created (COM-
array). The utilized msg type is a abstract type modeling MPI messages
and associated meta data, including their type, size and actual payload. The
basic structure of an MPI program in INSPIRE is the following

merge(para l l e l (job [1 ,INT MAX] ()⇒{
array<channel<msg,1>> com =

red is tr ibute (channe l . c r e a t e (msg , 1) , i d) ;
/∗ . . . MPI program body . . . ∗/
channe l . r e l e a s e (com [getThreadID (0)]) ;

})) ;

where id is the identity function of type (α) → α. This frame covers the
obligatory MPI Init and MPI Finalize calls. However, unlike those it
can be nested and processed multiple times.

154 CHAPTER 3. INSPIRE

Each channel within the COM-array is associated with one of the par-
ticipating workers. If one MPI worker sends data to a peer using MPI Send

or similar primitives, the data is encapsulated into a message and submitted
to the channel associated with the receiver using the channel.send prim-
itive. Consequently, MPI instructions receiving messages (e.g. MPI Recv)
are based on the channel.recv operator accessing the channel associated to
the local thread. All point-to-point MPI communication routines, including
the asynchronous variants, can be modeled similarly.

Beside Send/Recv routines, MPI covers a rich set of collective operations.
These kind of operations have been generalized by the IR’s redistribute
operator which is specialized for the particular cases. Examples covering
barriers and reduction operators have been demonstrated above. Another
example would be an MPI broadcast operation distributing information from
process 0 to all other involved processes. Such an operation is modeled by

// se tup
re f<in t<4>> x = var (0) ;
i f (getThreadID (0) == 0) {

x = . . . ; // some source a t p roc e s s 0
}

// b roadca s t (0− to−a l l)
x := red is tr ibute (∗ x , (array<in t<4>> d)→ in t<4> {

return d [0] ;
}) ;

Similar derived constructs can be used to represent other broadcast, scatter,
gather and all-to-all routines. However, for supporting more advanced fea-
tures offered by MPI, including user defined data types or the utilization of
message tags or message source IDs the necessary details in the encoding are
clearly beyond the scope of this summary as well as the subject of ongoing
research.

Remark: Converting shared to distributed memory code is known to
be a hard problem. Presenting instances of the problem in a different format
can obviously not eliminate the underlying fundamental complexity. With
our work we do not claim to provide any solutions for this problem. The goal
of our IR is to offer one common infrastructure enabling the representation
of both kind of applications to facilitate future research in this and other
directions.

Other Languages

The parallel control-flow model of INSPIRE is generic enough to support
a variety of additional parallel APIs, including pthreads and the C++11
threading facilities. Also, PGAS based approaches should be coverable by
our IR. However, this issue has not yet been sufficiently investigated since
no language based on this paradigm has been integrated into our system so

3.10. IMPLEMENTATION 155

int f(...) {
 ...
}

int g(...) {
 ...; f(...); ...;
}

void main() {
 g(...); f(...);
}

{ ... } { ... } { ... }

translation unit

f g main

(a)
source code

(b)
conventional AST

(c)
INSPIRE (logical)

(d)
INSPIRE (physical)

main

{ ... }
f

f

{ ... }

g

{ ... } { ... }

main

{ ... }

f

{ ... }

g

{ ... }

Figure 3.6: Comparison of IR structures.

far. Furthermore, our IR is not limited to C/C++. In particular our plat-
form can serve as the foundation for implementing parallel domain specific
languages (DSLs) which would benefit from the available infrastructure and
from the implicit mapping of parallel constructs to sophisticated runtime
system primitives within our backend.

3.10 Implementation

So far our focus has been solely placed on language aspects of INSPIRE.
No implementation details regarding the actual data structures utilizes for
building the internal program representation within the Insieme compiler
have yet been covered. While the full details are clearly beyond the scope of
this thesis – and are best studied by investigating the actually implementa-
tion – this section will focus on a few key implementation details essential for
the following chapters. In particular the organization of the IR data struc-
ture itself and its implications on the way sub-structures can be addressed
and manipulated shall be covered.

3.10.1 Overall Structure

As has been mentioned earlier, unlike other high-level IRs, INSPIRE does
not strive to reflect the structure of translation units. Figure 3.6 illustrates
how the C source depicted in (a) is represented. Within a typical AST based
IR, a data structure representing a translation unit is created (b). The root
node represents an organizational structure, e.g. a file, and lists a set of
top-level definitions. Each definition is defined by sub-structures which may
refer to top level elements or even external content.

INSPIRE follows a different approach. Instead of reflecting the organi-
zation of the input source files, it models the actual execution using a single
expression. Figure 3.6 (c) illustrates the corresponding parse tree. The root

156 CHAPTER 3. INSPIRE

element represents the entire execution of a code fragment, hence, typically
the main function of a standalone application or some isolated library rou-
tine. Furthermore, whenever a function is called, the expression defining the
target function is present right at the call site, independently from the trans-
lation unit it was originally defined in. This way, our IR provides a holistic
view on the entire execution of a program, facilitating context sensitive or
even whole-program optimizations.

Since all IR codes are simple terms of the grammar introduced in Section
3.4, the data structure utilized for representing instances is a plain tree
structure covering expression, statement and type constructs equally, not
containing any cross or back edges and reflecting the recursive definition of
all our language constructs. The only addition to the grammar of Definition
3.1, 3.4 and 3.6 is the decision to annotate every expression explicitly with
its most general type (see Definition 3.29) since it is a frequently utilized
property of expressions.

The self-contained design of our IR allows for a variety of properties to
be deduced from a given sub-tree without the requirement of any additional
global context. Also, local modifications to a function f , valid only within
the current call-context (reflected by the path from the root node to the
function), do not affect any other instance of f .

The downside of a representation following the schema of Figure 3.6
(c) is the huge memory requirement due to the excessive duplication of
functions and types. To alleviate this problem, nodes are shared in our
implementation as illustrated in Figure 3.6 (d). The logical tree structure is
physically realized by a DAG. This enables the representation of IR codes
consisting of several million logically addressable nodes (by their path from
the root) using a few thousand physical nodes. For example, BT, the largest
NAS benchmark [9] in terms of lines of code (2.281), is encoded in our IR
using 10.296.189 addressable logical nodes, yet physically realized using only
12.549 nodes, resulting in a total memory consumption of 1.8 MB.

Annotations

The information stored within the IR DAG is limited to the language con-
structs covered by the grammar definition of section 3.4. However, in some
cases, additional information like user defined hints on loop scheduling poli-
cies, results of analyzes, or assertions on values may have to be stored some-
where. To provide an integrated means to record this kind of information,
every IR node can be annotated with generic information. Beside being uti-
lized internally for caching information, these annotations are also utilized
for forwarding meta-information on constructs through various stages of the
compiler and even to the runtime system.

If utilized properly, annotated information representing results of anal-
ysis never has to be updated due to modifications of the structure it has

3.10. IMPLEMENTATION 157

A

B C

D
E

F

G H

A

B C

D
E

F

G H

P1 P2

P3

A1

A3

A2

A4

a) node pointers b) node addresses

Figure 3.7: Two ways of addressing substructures within an IR DAG.

been attached to since all IR nodes are immutable. Furthermore, due to
the implicit node sharing, analysis results for identical substructures are
implicitly available within all contexts the corresponding IR substructure
is utilized. Annotations therefore provide a convenient infrastructure for
implementing memorization for tools operating on IR structures which can
provide tremendous performance benefits.

3.10.2 Addressing Substructures

There are two essential ways of addressing IR structures. Both are illustrated
in Figure 3.7. The first, simple approach is by utilizing a simple pointer to
the root of an IR substructure (DAG) to address the corresponding fragment.
Consequently we refer to this concept as node pointers. For instance, the
pointer P1 in Figure 3.7 a) references the sub structure

B(D,E(G,H))

while P2 addresses

C(E(G,H), F)

While simple pointers are a very common and straight-forward means in a
C++ data structure to address sub-structures they have their limitations.
For instance, if we consider the full structure which is encoding the term

A(B(D,E(G,H)), C(E(G,H), F))

pointers can not be utilized to address the first appearance of the sub-term

E(G,H)

since this sub-term is shared. Pointer P3 in Figure 3.7 a) is addressing the
proper sub-term but the multiple appearances of the same sub-term can not
be distinguished due to the implicit sharing of nodes. However, for various

158 CHAPTER 3. INSPIRE

utilities, in particular tools to transform IR structures, such a distinction
is necessary. Also, from a given pointer one can not navigate to its parent
node since within the physical IR DAG there is no unique parent in the
general case. A parent would only exist in the logical IR tree, which is
not materialized. Consequently a second way for addressing substructures
satisfying these requirements had to be introduced.

So called node addresses do not only reference individual nodes within
the IR structure, they describe the path to those nodes starting from an
arbitrary root node. Figure 3.7 b) illustrates this approach. Addresses A1
and A2 are both referencing the sub-term

E(G,H)

of the overall structure. However, while A1 is referencing the first appear-
ance within

A(B(D,E(G,H)), C(E(G,H), F))

reached over the substructure B(D,E(G,H)) the address A2 references the
second by describing the path over C(E(G,H), F). Correspondingly address
A3 is referencing the H in the second appearance of E(G,H).

Addresses are not required to start at a fixed, common root node. Like
file system directory paths they may start at an arbitrary node and describe
a relative path to one of its sub-nodes. Address A4 does so by referencing
the F in C(E(G,H), F) where the latter is the root node of the address.

Implementation wise an address is realized by a consistent sequence of
node pointers. However, to minimize the overhead of handling node ad-
dresses common prefixes of addresses are shared. Hence, an address [a, b, c, d]
references the address [a, b, c] as a base address and extends it by an extra
step to the node referenced by d.

3.10.3 Manipulating Substructures

A obvious problem of immutable data structures is that they can not be
altered when conducting transformations. For instance, a simple term

A(B(D), C(D))

can not be transformed into

A(B(D), C(E))

by addressing the second D and simply rewriting it to an E. Instead new
structures forming a proper representation of the desired, modified term need
to be constructed in a bottom up fashion. Thereby common sub-structures
present in the original term are supposed to be reused. The corresponding
operation is illustrated in Figure 3.8. The in pointer is referencing the

3.11. C++ SUPPORT 159

B C

A

D

A

B C

D E

A

in in out

(before) (after)

C

Figure 3.8: Applying transformations on an immutable IR DAG.

original structure and out the transformed version. As can be observed,
common sub-terms are shared between both instances. Furthermore, based
on this infrastructure no manipulation operation is destructive. The original
code versions are preserved without any extra effort – in particular not the
requirement of creating a deep copy of the structure.

However, due to this design decision, whenever a node is going to be al-
tered new versions of all nodes along the path between the updated node and
the root node representing the handled code fragment have to be created.
Yet, the length of this path is logarithmic in the size of the overall program
and therefore imposes an acceptable small price for a easy-to-use, memory
efficient data structure with implicit sharing of annotated information.

Developers utilizing the IR data structures are shielded from those inter-
nal mechanisms by higher level manipulation utilities abstracting this low
level IR structure organization. The implicit sharing of nodes and the cre-
ation of modified version of existing nodes when transforming IR structures
is hidden from the developer.

3.11 C++ Support

So far the content covered within this chapter focused on supporting C
constructs for brevity. However, within the Insieme project, INSPIRE has
been adapted to support C++ codes as well. An overview on the necessary
additions shall be provided in this final section to complete the coverage
of the Insieme IR. While most of the content presented in this chapter has
been implemented within the Insieme infrastructure as described, some of
the details may still be the subject of ongoing or future developments.

3.11.1 Challenges and Requirements

In conventional compilers support for C++ is achieved by implementing
frontents lowering C++ input code into classic, byte-level intermediate rep-
resentations. Structural information regarding e.g. classes, constructors,

160 CHAPTER 3. INSPIRE

destructors, (virtual) member functions, inheritance relations, templates,
temporary variables and C++ references are thereby resolved. Hence, non
of those concepts are present within the utilized low-level IRs. On the one
hand this greatly simplifies the handling of program code due to significantly
reduced complexity. On the other hand, similar to the problem of decom-
posing loops into jump instructions, the structural information regarding
type relations or virtual member function calls is lost, effectively hampering
the ability of a compiler to analyze and tune these kind of language features.

Also, for low-level IRs, the scopes of “global” operations and transfor-
mations, e.g. well known techniques like global value numbering utilized for
common sub-expression eliminations, are individual procedures. However,
in C++ programs, built based on an object oriented programming style,
computations are typically distributed among a plethora of member func-
tions invoking each other through dynamic dispatching mechanisms. Inter-
procedural analyzes and the consideration of the possibility of dynamically
dispatched function calls gain a much higher relevance when dealing with
C++ applications than they do within procedural C codes. In the latter,
computational intensive code is typically contained within a single function
and the problem of dynamically dispatched functions simply does not exist
since it is not supported by the C language.

For these and other reasons the Insieme compiler is utilizing a high-level
IR preserving a variety of constructs of the input program. However, ac-
cording to our design principles, the incorporation of C++ support should
be realized by adding as little extra constructs to our intermediate language
as necessary. One common approach that has been followed in the past is to
rewrite C++ applications into C applications before converting them into
the compiler internal IR. Although this would essentially reduce the number
of constructs to be added to the IR to zero, this approach induces similar
issues than a lowering to low-level IRs, yet on a higher level. For instance,
the naive encoding of high-level features, in particular virtual function dis-
patching or support for Runtime Type Information (RTTI) would result in
complex C code including fragments that are hardly processable by compiler
analysis. A careful encoding considering the compilers analytical abilities is
required to mitigate those effects [114].

Still, the lowering of C++ code to C code imposes another, even severe
problem. One of our design objectives is to provide support for an open
system. In particular the Insieme compiler is required to support interfac-
ing external libraries not processed by our compiler. Hence it has to be
possible to model interfaces of those external modules such that they can
be addressed and utilized by IR internal code fragments. Pure C code can
not address member functions of objects described by external libraries –
unless the name mangling is reproduced in C – or utilize templated code
as encountered within most modern C++ libraries including the ubiquitous

3.11. C++ SUPPORT 161

Standard Template Library (STL) being part of the C++ program language
specification and frequently referenced third-party libraries including boost.

In particular standardized template libraries implementing widely uti-
lized container classes including vectors, sets and maps may even be prefer-
ably treated as abstract data types within a high-level compiler – just as end
users are used to utilize them. For instance the semantic of the operations
defined on a C++ vector is well defined and may be incorporated into an
analysis instead of trying to deduce the same information from its imple-
mentation. This additional awareness of higher-level constructs can lead to
more accurate static program analyzes. Consequently the requirement on
the IR of the Insieme compiler is to provide means to interface with abstract
external C++ (template) libraries such that end user code based on those
can be processed independently.

Requirements

C++ comprises a plethora of language features providing end users the
means for building flexible, reusable code. Fortunately only a subset of
those features are required for interfacing with C++ codes. These include:

• Constructors, Destructors and Member Functions – although
essentially just ordinary functions with an extra implicit this parame-
ters those functions require a special syntax when being invoked and
therefore need to be marked as such explicitly. Also, the implicit invo-
cation of destructors at the end of local scopes has to be incorporated.

• Subtype Relations – in addition of providing means to C++ to
inherit implementations, C++ class inheritance also introduces sub-
type relations between types. In the general case a class B derived
from a class A is a sub-type of A and may be utilized as a substitute
in a variety of contexts. Hence, the inheritance relation needs to be
covered in the IR as well.

• Virtual Member Functions – another aspect of the polymorphism
encountered in object-oriented programming languages which allows
member functions to be overloaded based on the runtime type of the
object they are applied to. Means for a corresponding mechanism
are essential for supporting object-oriented C++ applications to be
processed by the Insieme compiler.

• Templates – among the most powerful features of C++ for imple-
menting flexible, reusable libraries are its template facilities. It sup-
ports the definition of code templates to be instantiated for specific
types. Most standard and third-party libraries are utilizing this mecha-
nism – sometimes exclusively – for providing implementations of data

162 CHAPTER 3. INSPIRE

structures and algorithms. Support for corresponding interfaces is
hence necessary.

• Concepts – an implicit trait of C++ is that classes utilized as tem-
plate parameters are required to support a certain set of named opera-
tors. For instance, std :: set demands, among others, an implementation
of the < (less-than) operator of potential element types. Means for at-
taching such named operators to types are required.

• C++ References and other Type Constructs – since C++ refer-
ences are essentially pointers which are implicitly dereferenced when-
ever utilized they could be modeled within the IR as such, making
dereferencing operations explicit. However, the distinction between
pointers and C++ references may influence the resolution of over-
loaded functions when being passed as an argument. So do const
modifiers and enums – which hence have to be preserved when en-
coded into our IR.

• Exceptions – on the statement level C++ adds support for exceptions
being raised and caught as part of the control flow. As for the other
features, since external libraries may utilize exceptions to communicate
with the client code, corresponding mechanisms are required to be
supported by INSPIRE.

Although this list seems comprehensive it still eliminates a variety of
C++ constructs that would be encountered within a conventional, complete
C++ AST like the clang AST [3]. Those include access modifiers, (most)
names, namespaces, name resolution, function overloading, default parame-
ters, implicit conversions, initializer lists, elidable constructor calls, creation
and destruction of temporary objects, the distinction between declarations
and definitions, template specializations, template meta programming, and
the handling of translation unit boundaries. Within the Insieme compiler
all these are handled by the frontend and/or converted into equivalent code
utilizing the available set of IR constructs.

3.11.2 Language Modifications

To provide proper support for C++ language features a few additional type,
expression and statement constructs have been added to the language cov-
ered within section 3.4.

Types

To add support for objects, some modifications and extensions to the type
constructs listed in Definition 3.1 needed to be conducted. Those modifica-
tions add support for modeling classes to the IR type system and introduce

3.11. C++ SUPPORT 163

additional function types to distinguish constructors, destructors and mem-
ber functions.

Classes The representation of classes is realized by extending the struct
type constructor by the capability of referencing base types to be extended.
The rule (struct) of Definition 3.1 is therefore extended to the following
format:

Definition 3.55 (classes). Let p1, . . . , pn ∈ T be distinct types, t1, . . . , tm ∈
T be types, n1, . . . , nm ∈ I be identifiers utilized as names and v1, . . . , vn ∈ B
be boolean flags for any n,m ∈ N. Then

struct : v1 p1, . . . , vn pn {n1 : t1, . . . , nm : tm}

is a struct type inheriting fields from the types p1, . . . , pn and defining the
additional fields n1, . . . , nm of type t1, . . . , tm.

The flags v1, . . . , vn determine whether the inheritance is virtual, hence
multiple references to the same base class within the inheritance DAG are
shared, or not, causing an individual copy of each base class to be present.
A struct type r is a sub-type of any type b ∈ T whenever b only occurs once
within r’s closure of the inheritance relation.

Abstract Classes To model external libraries, abstract types of the form
(abstract) of Definition 3.1 are utilized. Although providing the generic,
abstract properties required to model external (templated) classes encoun-
tered within C++ libraries, abstract types as covered within Definition 3.1
lack the ability of describing inheritance relationships. To add this feature
the rule (abstract) of Definition 3.1 is extended similar to the struct type
rule as follows:

Definition 3.56 (abstract class type). Let i ∈ I be an identifier, p1, . . . , pn ∈
T be distinct types, v1, . . . , vn ∈ B be boolean flags and t1, . . . , tk ∈ T be
types for any n, k ∈ N. Then

i : v1 p1, . . . , vn pn 〈t1, . . . , tk〉

is an abstract type extending the base types p1, . . . , pn.

The flags v1, . . . , vn have the same effect as for the struct type, namely
to distinguish virtual and non-virtual inheritance. As for structs, abstract
types are implicit sub-types of any type occurring once within the closure
of the inheritance relation seeded by themselves.

Definition 3.57 (class types). Let C be the union of all struct or abstract
types, type variables or recursive types which are equivalent to struct types.
We refer to this set of types as class types.

164 CHAPTER 3. INSPIRE

Constructor, Destructor and Member Function Types In addition
to the extended versions of the struct and abstract type construct three
new type constructs representing the type of constructors, destructors and
member functions have been introduced.

Definition 3.58 (object function types). Let c ∈ C be a class type and
t1, . . . , tn, tr ∈ T be types. Then the constructs

c :: (t1, . . . , tn)→ tr (mfun)

c :: (t1, . . . , tn) (ctor)

∼ c :: () (dtor)

are types as well.

The class type c determines the type of object corresponding functions
can be applied on. The types t1, . . . , tn define the parameters to be passed as
arguments and the type tr determines the result type of a member function
invocation. For the type deduction types of the shape

c :: (t1, . . . , tn)→ tr

c :: (t1, . . . , tn)

∼ c :: ()

are considered equivalent to the function types

(ref 〈c〉 , t1, . . . , tn)→ tr

(ref 〈c〉 , t1, . . . , tn)→ ref 〈c〉
(ref 〈c〉)→ ref 〈c〉

respectively.

Constructors, destructors and member functions are created anywhere
within the IR tree by implementing its behavior using a lambda expression
((func) of Definition 3.4) and typing it using a corresponding type. In case a
virtual member function should be invoked, a literal with the corresponding
name has to be created and typed using a member-function type. The
implementation then has to be present within some ClassMetaInfo container
attached to the targeted class type or one of its sub-types as it is covered
next.

ClassMetaInfo The structure designed to represent classes does not cover
the implementation of named (virtual) member functions or essential con-
structors or destructors as they might be required by external libraries
(see the requirement regarding concepts above). This information is stored
within an annotation attached to the class type – the ClassMetaInfo.

3.11. C++ SUPPORT 165

Definition 3.59 (class meta info). Let L ⊂ E be the set of lambda ex-
pressions, c1, . . . , cn ∈ L be lambdas of a constructor type, d ∈ L be a
lambdas of a destructor type, v, v1, . . . , vm, k1, . . . , km ∈ B be boolean flags,
n1, . . . , nm ∈ I be names and f1, . . . , fm ∈ L be lambda expressions of a
member function type. Then

ClassMetaInfo {
c1, . . . , cn

v d

n1 : v1 k1 f1, . . . , nm : vm km fm

}

is an instance of a ClassMetaInfo object aggregating function implementa-
tions associated to a class type. All included constructors, destructors and
member functions have to be based on the same class type c. An instance
of this annotation may only be attached to type c.

The constructors c1, . . . , cn are methods for constructing instances of
type c and might include default, copy and move constructors. The destruc-
tor d defines the function to be invoked for destructing an object and the
flag v determines whether the destructor is a virtual function. Finally, the
list n1 : v1 k1 f1, . . . , nm : vm km fm enumerates all named (n1, . . . , nm)
member functions f1, . . . , fm to be attached to the class. Those member
functions may be virtual (v1, . . . , vm) and/or constant (k1, . . . , km). In the
latter case they are not allowed to the directly or indirectly modify fields of
the object passed as the first argument (this pointer).

C++ References As has been covered in the requirement section, ref-
erences are essentially syntactic sugar for pointer based operations. Hence,
internally C++ references are converted utilizing similar primitives. Point-
ers are covered by IR references (see Section 3.8.2). Consequently C++
references are encoded utilizing IR references as well. However, to provide
means to distinguish pointers from references – which is required when pass-
ing references / pointers to external functions, C++ references are encoded
by wrapping the corresponding IR reference into a struct. For instance, a
C++ reference int& is encoded within INSPIRE using something similar to

struct { c p p r e f : r e f<in t<4>> }

Corresponding generic, derived packing and unpacking operations like

(struct { c p p r e f : r e f<α> } r) → re f<α> {
return r . c p p r e f ;

}

166 CHAPTER 3. INSPIRE

to bridge the gap between IR references and encoded C++ references are
incorporated as required. As will be shown in the following chapter, these
kind of wrapper operations can be implicitly processed by our analysis frame-
work. Similar approaches have been followed for encoding const modifiers
and enumerations.

Expressions

Unlike for the type system no expression constructs need to be extended or
added. The existing infrastructure for the definition of lambdas combined
with the extended set of type constructors is sufficient to express construc-
tors, destructors and member functions in addition to the pre-existing sup-
port for ordinary functions. Corresponding calls can as usually be conducted
utilizing call expressions (rule (call) of Definition 3.4).

Virtual Functions However, although the syntax is not modified, the
semantic of call expressions is extended to support the resolution of virtual
member functions. To invoke a virtual member function a literal matching
the corresponding name and type has to be targeted by a function call.

Example 3.24 (virtual function call). Let A be a class type annotated with
a ClassMetaInfo object including an entry for a virtual member function f
of type A :: (int 〈4〉) → unit. Further, let B be a class derived from A. To
invoke the virtual member function f on an object x of the dynamic type
ref 〈B〉 a call to a literal

f : A :: (int 〈4〉)→ unit

is used. Such a call to a member function literal triggers the implicit virtual
function resolution. Hence, the call expression is searching within the meta
information attached to B for an implementation of f of the corresponding
type. If found, it is processed, otherwise the search continues within A’s
meta information.

For comparison, in case a specific implementation of f shall be invoked,
thereby skipping the resolution of the virtual function, the literal repre-
senting the target of the call expression has to be replaced by the lambda
expression encoding the corresponding implementation.

Member Field Access Another minor extension has to be added to pro-
vide sub-classes access to members of their parent types. Typically mem-
bers of a struct are accessed utilizing the sub-referencing extension (see
Section 3.8.2). This mechanism provides means for constructing data paths
from the root element (the full object) to the sub-elements to be addressed.
Since fields may be contained within parent classes an additional data path

3.11. C++ SUPPORT 167

constructor providing the possibility to navigate to a base class of a given
reference has to be added. Therefore the abstract operator

dp.parent : (datapath, type 〈α〉)→ datapath

is added. In combination with the ref.narrow and ref.expand operators
this construct supports the necessary navigation step from a derived class
to one of its base classes as well as in the other direction.

Statements

No additional statements have to be added to cover the object-oriented
aspects of C++. However, the semantic of the compound statement has to
be updated and two new constructs supporting the raising and handling of
exceptions are required.

Compound Statement Modification Every compound statement is
defining a scope for the life-time of memory locations on the stack. Conse-
quently, at the end of the scope all those memory locations need to be freed,
as it is already the case for the basic IR. For the C++ support this respon-
sibility is extended by the requirement for the compound statement to call
the destructor for class-values in the reverse order of their allocation before
releasing their storage space. While in the current implementation the de-
struction of objects is considered implicit, explicit destructor calls should be
added at the end of scopes in a future development step.

The throw Statement Let e ∈ E be an arbitrary expression of type
t ∈ T. The statement

throw e

is a statement interrupting the current control flow and continuing execution
in the most closely nested enclosing scope of a try . . . catch statement capable
of handling values of type t.

The try . . . catch Statement Let s, h1, . . . , hn ∈ S be a statement and
v1, . . . , vn ∈ V be variables. The statement

try

s

catch(v1) h1

. . .

catch(vn) hn

is establishing a try-catch scope. Any exception e thrown / raised within
statement block s will be check against the types of the variables v1, . . . , vn.

168 CHAPTER 3. INSPIRE

If any of those types is a super-type of the type of e or of the abstract type
any the corresponding exception handler routine h1, . . . , hn is processed and
the program continues after the try-catch scope. In case non is matching,
the exception is forwarded to the next enclosing try-catch scope.

The variable vi declared within the catch expression is visible within the
corresponding handler function hi except if it is of type any. Variables of
the any type may be used to encode the C++ catch-all construct catch(. . .).

Exceptions may not be thrown across the boundaries of jobs, work shar-
ing constructs (pfor) or the data distribution primitive (redistribute). Do-
ing so will result in undefined behavior. Correspondingly, exceptions may
only be thrown and caught within a single thread of execution.

3.11.3 Modeling C++ Constructs

To conclude this brief overview on the support of C++ constructs within
the Insieme IR examples demonstrating the encoding of essential language
features shall be outlined.

A Simple Class Hierarchy

Consider the following C++ class definition covering a variety of the features
incorporated into the Insieme IR.

1 struct A {
2 int x ;
3

4 // a cons t ruc t o r
5 A(int x) : x (x) {}
6

7 // a non−v i r t u a l member func t i on
8 void f (int a) { . . . } ;
9

10 // a v i r t u a l member func t i on
11 virtual int g () { . . } ;
12 }
13

14 struct B : public A {
15 int y ;
16

17 // a cons t ruc t o r
18 B(int x , int y) : A(x) , y (y) {}
19

20 // implementat ion o f A’ s v i r t u a l g f o r type B
21 int g () { . . . } ;
22 }

Class A is defined to contain a single integer and class B extending it by
an additional member field. The corresponding encoding of those types in
INSPIRE is similar to

3.11. C++ SUPPORT 169

struct {
x : in t <4>;

}

and

struct : struct { x : in t <4>; } {
y : in t <4>;

}

Let A denote the first type and B the second. The encoding of the con-
structor of class A would be of type A :: (int 〈4〉) and similar to

(re f<A> t h i s , in t<4> x)→ re f<A> {
(∗ t h i s) . x := x ;
return t h i s ;

}

Let A ctor be the encoding of A’s constructor. Than B’s constructor of type
B :: (int 〈4〉 , int 〈4〉) is represented by

(re f t h i s , in t<4> x , in t<4> y)→ re f {
A ctor (t h i s , x) ;
(∗ t h i s) . y := y ;
return t h i s ;

}

Hence, C++’s (implicit) constructor initializer lists are explicitly repre-
sented by nested constructor calls and assignments. Also the forwarding
of the implicit this pointer is made explicit by the first parameter.

The creation of objects on the stack or on the heap conducted by

A a1 (12) ;
A∗ a2 = new A(14) ;

is encoded by

re f<A> a1 = A ctor (r e f . var (A) ,12) ;
r e f<A> a2 = A ctor (r e f . new(A) ,14) ;

unifying the treatement of heap and stack allocated memory.
The non-virtual member function f of class A is encoded by

(re f<A> t h i s , in t<4> a)→un i t {
. . .

}

and exhibits the type A :: (int 〈4〉)→ unit. A corresponding member func-
tion call on an object conducted by the C++ code snippet

A a (1) ;
a . f (2) ;

is encoded as

170 CHAPTER 3. INSPIRE

re f<A> a = A ctor (r e f . var (A) ,1) ;
(re f<A> t h i s , in t<4> a)→un i t {

. . .
}(a , 2) ;

which is just the same as any other function call when interpreting f ’s type
as (ref 〈A〉 , int 〈4〉) → unit. The same function can be applied to objects
of type B since B is a subtype of A and may hence be passed to f as its
first argument.

Finally, let gA and gB represent the IR versions of the two virtual func-
tions g of class A and B respectively. Hence, gA is bound to the name g
within A’s meta class information while within B’s meta info g is mapped
to gB. To invoke the virtual function a call expression targeting a literal
defining the name of the function and its type has to be created. In the
given case this literal is

g : A :: ()→ int 〈4〉

and a virtual member function call within C++ like

A& r = < some source > ;
r . g () ;

is represented in our IR by

re f<A> r = < some source > ;
g (r) ;

This will trigger the virtual function lookup operation which is searching for
the corresponding implementation of g based on the dynamic type of r. If
the call shall be statically bound to A’s implementation the encoding would
be

re f<A> r = < some source > ;
gA(r) ;

where gA is the lambda defining A’s version of the member function g.

External Template Libraries

As has been covered in the requirements section, among the most important
requirements on the design of the C++ additions has been the support of
external generic libraries. We will quickly demonstrate our solutions ability
of dealing with such based an the frequently utilized std :: vector container of
the Standard Template Library.

The generic C++ type std :: vector 〈T 〉 is encoded in our IR using the
abstract (generic) type std :: vector 〈α〉. However, like in C++, actual
instances require a proper type variable instantiation. Let us consider a
simple example creating a vector of integers in C++. The corresponding
C++ code fragment is given by

3.12. SUMMARY 171

std : : vector<int> v ;

which is creating a new vector value on the local stack. It does so by invoking
a constructor, which we have to cover in our IR encoding. However, since
the operation shall be kept abstract since we are interfacing a third-party
library we do not utilize a lambda based implementation for the constructor.
Instead we use an abstract constructor literal

vector ctor : std :: vector 〈α〉 :: (type 〈α〉)

for the initialization. Note that meta-type parameters are ignored by the
code generation yet necessary for the IR type system. The corresponding
IR code would therefore look like

re f<s t d : : v ec tor<in t<4>>> v =
s t d : : v e c t o r (// the c tor− l i t e r a l

r e f . var (s t d : : v ec tor<in t<4>>) ,
in t<4> // the type parameter

) ;

Support for operators to be applied on the vector are added correspondingly.
For instance, in C++ a new element can be added to the end of the list
represented by a vector instance by

v . push back (5) ;

To encode this operation into IR a generic abstract literal

push back : std :: vector 〈α〉 :: (α)→ unit

representing the templated push back operation is introduced and utilized.
The corresponding encoded code fragment would therefor be equivalent to

push back (v , 5) ;

Hence the generic type system of or IR is utilized for modeling equivalent
features of C++ templates. Furthermore, as for abstract generic types in-
troduced by language extensions, single literals are capable of describing a
full family of abstract operators. For instance, the push back literal above
is covering this abstract operation for any instantiation of the generic C++
vector class. This way of addressing families of generic operator instances
utilizing a single construct can e.g. be utilized for simplifying the specifi-
cation and/or implementation of analysis since the effects of a few generic
primitives may be specified instead of a variety of individual instances.

3.12 Summary

In this chapter the novel design of the Insieme intermediate representation
has been covered. A full description of the syntax and semantic of the in-
cluded type, expression and statement constructs has been provided. The

172 CHAPTER 3. INSPIRE

resulting holistic, parallelism aware, high-level intermediate representation
is novel in the are of general purpose compilers targeting parallel programs
[48]. The preservation of the high-level structure, the enforcement of a
holistic view on the processed program, its concise design, its unified par-
allel model, and the utilization of abstract data types to focus on relevant
aspects of a processed code makes the resulting IR an unprecedented foun-
dation for static analyses and manipulations of parallel codes – as will be
further investigated by the following chapters. Furthermore, its concise na-
ture facilitated the complete formal specification of its semantic, as has been
conducted in Section 3.7. This specification provides the foundation for rea-
soning about programs encoded utilizing the Insieme IR as well as for the
development of comprehensive and advanced program analysis infrastruc-
tures (see Chapter 4). In turn, this capability of reasoning about (parallel)
programs enables static optimizers to conduct save code transformations to
tune a processed program to improve arbitrary objectives including the re-
duction of its execution time, the improvement of its parallel efficiency or
its scalability (see Chapter 6).

Chapter 4

Analyses

Besides their purpose of serving as a common format bridging the gap be-
tween collections of input and output languages, compiler IRs of optimizing
compilers also provide the foundation for analyses and transformations to
be employed for improving the quality of processed programs. The former –
the analysis of codes – is the topic of this chapter, while transformations will
be covered in the following Chapter 5. The strategic application of those,
to improve the quality of codes, is the topic of Chapter 6.

The area of program analyses covers a wide spectrum. Simple techniques
range from basic primitives provided for navigating an IR, over the imple-
mentation of a tool box of basic IR inspection utilities, to flow-insensitive
analyses including type checks and the extraction of code features to charac-
terize codes. The latter may, for instance, be utilized for machine learning
based optimization approaches. More elaborate techniques range from flow-
and (potentially) context-sensitive analyses considering the actual (inter-
procedural and parallel) control flow of a program, over sophisticated ap-
proaches like e.g. polyhedral model based analyses, to dynamic program
analyses involving the observation of actual executions of the processed code.
All of those are – to a certain extend – supported by the Insieme compiler
infrastructure and covered in this chapter.

This chapter starts by a brief overview on the means offered by the
Insieme infrastructure for navigating its IR in Section 4.2, followed by an
overview on flow-insensitive analyses in Section 4.3. The main contribution
of this chapter, however, is a flow- and context-sensitive constraint based
analysis (CBA) framework covering all INSPIRE language constructs, in-
cluding its parallel primitives, its functional core encompassing functions
and closures as first-class citizens and the related dynamic dispatch prob-
lem. Furthermore, the majority of its extensions, in particular including
the mutable state extension, are supported. This framework is covered in
Section 4.4. Finally, Section 4.5 and 4.6 provide a brief overview on the
support and integration of polyhedral model based and dynamic analyses.

173

174 CHAPTER 4. ANALYSES

4.1 Contributions

The major contributions of this chapter are:

• the establishment of an infrastructure for flow-insensitive analyses pro-
cessing the Insieme IR, including a feature extraction framework for
characterizing codes (Section 4.3)

• the development of a novel, comprehensive, flow- and context-sensitive
constraint based analysis framework for programs encoded utilizing the
Insieme IR offering analytical capabilities at an unprecedented scale
for general purpose compilers targeting parallel codes (Section 4.4)

• the demonstration of the utilization of the beneficial traits of our IR
structure, in particular its high-level nature, for conducting polyhedral
model based analyses (Section 4.5)

• the facilitation of dynamic analyses targeting non-functional proper-
ties of programs observed during their execution (e.g. execution time
or energy consumption) by utilizing the close coupling between the
compiler and runtime system (Section 4.6)

In the context of this thesis, this chapter demonstrates that the IR developed
in the previous chapter, following the criteria of the thesis’s hypothesis,
provides a valuable foundation for conducting analyses targeting higher-level
concepts, in particular including issues related to coarse grained parallelism
and the tuning of (parallel) programs.

4.2 Navigating the IR

The foundation of all the analyses presented in this chapter and implemented
in the Insieme infrastructure is provided by the basic facilities for navigating
IR data structures, which are thus to be covered first.

Basic Steps

As has been covered in the implementation Section 3.10.2, nodes in the IR
tree – which is physically realized as a DAG – can be addressed by node
pointers referencing individual node instances or node addresses covering
additional context information. Both addressing modes are fully typed.
Hence, for instance, a reference to an IR node representing a call expression
may be addressed by a call expression pointer or by one of its super types
– an expression pointer, a statement pointer (since every expression is a
statement), or, in the most general case, a node pointer. Correspondingly
a call expression address, an expression address, a statement address or a
node address may be utilized in case the path to a call expression node shall

4.2. NAVIGATING THE IR 175

be denoted. Naturally, means for identifying the type of a referenced node
are offered as well.

Each object referencing a node – either pointer or address based – pro-
vides typed access to named sub-structures. For instance, a reference to a
call expression provides member functions to access its sub-structures, in-
cluding the expression representing the function to be invoked as well as the
involved arguments. The result of accessing an argument of a call expression
pointer is a expression pointer while the same operation been applied on a
call expression address yields an expression address. In the latter case, the
resulting address is an extended version of the path referencing the original
call expression node.

When referencing IR nodes utilizing node addresses, the parent node of
the addressed node in its current logical context can be obtained, unless
the path is only consisting of a single root node, while for node pointers an
upward navigation in the IR tree can not be provided.

For a variety of small inspection operations those basic navigation fa-
cilities are already sufficient. For instance, testing whether a given type is
representing an array type and extracting the element type or similar sim-
ple, yet ubiquitously required operations can be easily implemented utilizing
those facilities.

In addition to named sub-structures, every node reference provides ac-
cess to the full list of sub-structures to realize support for generic visitor
operations. However a direct utilization of those is discouraged in favor
of a collection of higher-order visitor functions providing effective generic
implementations of a variety of IR tree traversal orders.

Visitors

Logically the IR data structure is a tree and most algorithms based on it
require support for traversing it. Therefore a set of higher-order functions
offering type save IR tree traversal strategies are provided.

The two basic tree traversal strategies are the well known depth-first
and breath-first strategies where the first may be conducted in pre- or post-
order. Additionally a parallel visiting strategy is provided, where the in-
volved nodes are visited in an arbitrary order, yet simultaneously by multiple
concurrent threads. Those strategies provide the foundation of the imple-
mented higher-order tree traversal functions. Additionally each traversal
may be customized by an orthogonal set of optional modifiers. Those op-
tions include:

• Visit-Once Option: with this option a visitor is visiting every instance
of a node within the IR DAG only once. For instance, a visitor travers-
ing the term A(B(C), B(C))) in depth-first post-order would visit the
node sequence C,B,C,B,A while in depth-first post-order with the

176 CHAPTER 4. ANALYSES

visit once option the sequence C,B,A would be visited. The second
B and its sub-nodes are skipped. Due to the high amount of node
sharing – in particular for type constructs and literals – this option
can significantly reduce the number of visited nodes and hence the
run-time complexity of algorithms if utilized properly.

• Interruptible Option: with this option a visitor is allowed to interrupt
the tree traversal at any point during the traversal. Especially for
implementing functions searching for sub-structures satisfying a given
property this feature provides a convenient facility.

• Prunable Option: in some cases during the traversal of an IR tree the
traversal of the sub-structures of a given node can be skipped since
the effect of their traversal is known. For instance, when searching for
a given expression type constructs and all their sub-structures within
the IR tree may be skipped since it is known that an expression can
never be a sub-structure of a type. Such a pruning is supported by
this option. At every step visitors are asked whether sub-structures
shall be covered or may be skipped.

• Node Pointer or Node Address Based: the traversal of the tree may
be conducted utilizing node pointers or node addresses. The selection
of which kind of addressing mode is utilized can be freely chosen.
While pointers are fast, node addresses provide the sometimes required
capability of navigating the current context of a visited node – in
particular its parent node could be obtained.

• Filters: in many cases algorithms are not interested in every node
within an IR tree. Filters may therefor be specified to select a sub-set
of the nodes to be visited. A convenient one, for instance, is to filter
out a certain set of node types. This way visitors only visiting e.g. for
loops and checking those for certain requirements may be realized.

The implementation of those tree traversal operations is based on C++
templates and the interface is utilizing C++11 lambdas for the convenience
of the developer formulating algorithms on top of them. For instance, to
check whether a given code fragment code contains e.g. a for-loop, the cor-
responding operation can be realized by

bool r e s = v i s i t D e p t h F i r s t O n c e I n t e r r u p t i b l e (
node , [] (ForStmtPtr cur) { return true ; }

) ;

where visitDepthFirstOnceInterruptible is the higher-order visitor function real-
izing the interruptable depth-first visiting where every node is only visited
once and the C++11 lambda

[] (ForStmtPtr cur) { return true ; }

4.3. FLOW-INSENSITIVE ANALYSES 177

the filter identifying the for loop statements to be looking for. By returning
true the tree traversal is interrupted at the first encounter of a for loop
and visitDepthFirstOnceInterruptible returns true if an interrupt occurred. The
decision to use node pointers for the tree traversals and to filter out any
node not being a for statement is implicitly deduced by the signature of the
filter utilizing C++ template meta programming facilities.

4.3 Flow-Insensitive Analyses

Although limited in their accuracy, flow-insensitive analysis provide fast
means for deducing static properties of program codes. Besides others, any
property that can be deduced from an IR tree by induction over its structure
is the result of a flow-insensitive analysis and may therefore be implemented
as such. The required infrastructure to do so is provided by the basic IR
navigation and visitor infrastructure presented in the previous section.

The main purpose of this section, however, is to demonstrate the uti-
lization of the preservation of higher level constructs in the Insieme IR to
implement simple, flow-insensitive analyses applicable in the context of a
variety of operations. Those include the verification of the proper composi-
tion of language constructs, the extraction of static code features, e.g. for
characterizing codes for machine learning based approaches, and a variety
of simple code transformations. Examples of such analyses and their appli-
cation will be outlined in the following sub-sections.

4.3.1 Type Checks and Validity Constraints

While of limited relevance for actual code optimization passes, the support
of an automated utility verifying the proper composition of IR code frag-
ments is among the most productivity increasing features regarding the im-
plementation of IR utilities. In particular the development of IR frontends,
new IR extensions involving the definition of derived operators, or the im-
plementation of code transformations can benefit from such an IR-check
infrastructure capable of validating produced IR codes.

Essentially the corresponding operations implement the type checking
procedure of Definition 3.31 and the validity constraints introduced in Sec-
tion 3.6. All of these are based on IR tree traversals conducting local checks
on the encountered nodes and the collection of identified issues to be re-
ported to the user.

4.3.2 Code Features

Another application of flow-insensitive analysis is the extraction of code fea-
tures from a given program fragment. Support for this kind of operations

178 CHAPTER 4. ANALYSES

is, for instance, required when applying machine learning based optimiza-
tion strategies on program codes [58]. In such a setup code features are
extracted from code fragments to characterize their behavior. Such features
may include simple counters covering the number of integer or floating point
operations, memory accesses, ratios between instruction types to describe
the instruction mix, the number of branches, loops or function calls, the
maximum loop nesting depth or the presence of recursive function calls. All
these values can be retrieved directly by a simple traversal of the IR tree.

A Simple Feature Extraction Framework

The extraction of static program features can be formalized in a generic
framework. A feature is thereby defined three components:

• a value set V

• an extractor function ε and

• an aggregation function t

The value set is defining the domain of the represented feature, the extractor
function is extracting a corresponding value from a given IR node and the
aggregation function defines how the values of sub-structures have to be
aggregated to compute the feature value of a composed construct.

A simple feature extraction framework may just count the number of
static occurrences of nodes exhibiting properties of interest, like the invoca-
tion of a class of operators, within a given code fragment. This operation is
realized by the framework covered in the following definition.

Definition 4.1 (static feature extraction framework). Let IR = T ∪ E ∪ S
be the set of all IR nodes. A feature f is defined by a triple f = (V, ε,t)
where V is an arbitrary domain, ε is a function of type IR → V and t a
function of type V∗ → V. The feature value νf (n) of an IR node n ∈ IR is
computed by the function νf : IR→ V defined by

νf (n) = ε(n) +

|n|⊔
i=1

(νf (n[i]))

where |n| determines the number of child nodes of a node n and n[i] is the
i-th child node of n.

This simple formalism is sufficient to count the number of static instruc-
tions present in programs as it is utilized for characterizing loops and other
code fragments in machine learning based optimizing compilers [58, 63].
The following example outlines the required instantiation of the involved
components.

4.3. FLOW-INSENSITIVE ANALYSES 179

Example 4.1 (counting operations). Let OP ⊂ E be a set of abstract or
derived operators. To describe the static number of applications of operators
in OP within a given code fragment a feature

cOP = (N, εOP ,tOP)

can be defined where εOP : IR→ N is given by

εOP (n) =

{
1 if n = f(a1, . . . , an) and f ∈ OP
0 otherwise

and tOP : N∗ → N is defined by

tOP ([f1, . . . , fn]) =
n∑
i=1

fi

Thus, the extractor εOP is identifying calls of operators in OP and the
aggregation function tOP is summing up the number of occurrences en-
countered in sub-structures. Combined with the framework introduced by
Definition 4.1 a value for a feature c{+} is extracted from a code fragment
n ∈ IR by evaluating νc{+}(n). For instance, applied to a simple code frag-
ment n equal to

s := ∗ s + ∗a [i] ;

the evaluation of νc{+}(n) yields 1, while νc{∗}(n) yields 2 and νc{+,∗,:=}(n) is
equivalent to 4.

Similar to operations, the number of loops, conditional statements, func-
tion calls or recursive function calls may be counted by customizing the ex-
tractor function ε accordingly. Furthermore, the setup can be utilized to
compute features including the maximal depth of contained loop nests.

Example 4.2 (maximum loop nesting depth). To extract the maximum
number of nested loops a feature

(N, εnl,tnl)

where εnl : IR→ N is given by

εnl(n) =

1 if n = for (. . .) . . .

1 if n = while (. . .) . . .

0 otherwise

and the aggregation function tnl : N∗ → N is given by

tnl([f1, . . . , fn]) =
n

max
i=1

fi

can be utilized.

180 CHAPTER 4. ANALYSES

Furthermore derived features like the ratio between operators or vectors
of features can be realized utilizing the same infrastructure.

Example 4.3 (instruction ratios). Let OP1, OP2 ⊂ IR be two sets of op-
erators for which the ratio shall be obtained (e.g. arithmetic operations vs.
load/store operations or floating point operations vs. all operations). The
corresponding feature

(R, εr,tr)

is given by εr : IR→ R defined by

εr(n) = νcOP1 (n)/νcOP2 (n)

and the aggregation function tr : R∗ → R is given by

tr([f1, . . . , fn]) = 0

This definition is effectively ignoring the recursive part of the feature ex-
tractor and simply utilizing the definition of the operator-counting features
presented above.

Vectors of features are realized by combining the domains of the individ-
ual features correspondingly and applying the extraction and aggregation
functions element wise on the resulting, combined feature vector.

Weighted Features Although establishing a foundation for the extrac-
tion of static code features by simply counting and aggregating the presence
of constructs, the basic framework of Definition 4.1 does not consider the
context of a processed node. For instance, when obtaining the feature c{+}
from the code fragment

re f<in t<4>> s = var (0) ;
for (in t<4> i = 0 . . s i z e : 1) {

s := ∗ s + ∗a [i] ;
}

the result is 1 – since there is only one “static” instance of the + operator.
However, in particular when aiming for characterizing the instruction mix
of a code fragment, instructions within loops and recursions should have a
higher weighting as instructions outside. Also, instructions within branches
of a conditional statement (if) should have a reduced weight since their
likelihood of being executed is less than 1 in the general case.

We therefore extended the framework presented above by the capability
of weighting branches of an execution. Therefore the type of the aggregation
function t is extended to t+ of type (R × V)∗ → V where each element of
the input set consists of a weight and the value obtained for one of the sub-
structures of the currently evaluated node. The corresponding framework
extension is covered within the following definition.

4.3. FLOW-INSENSITIVE ANALYSES 181

Definition 4.2 (weighted feature extraction framework). Let IR = T∪E∪S
be the set of all IR nodes. A feature f is defined by a triple f = (V, ε,t+)
where V is an arbitrary domain, ε is a function of type IR → V and t+ a
function of type (R×V)∗ → V. Let at+ b be equivalent to t+([a, b]) for any
a, b ∈ R×V. The feature value ν+

f (n) of an IR node n ∈ IR is computed by

the function ν+
f : IR→ V defined by

ν+
f (n) = ε(n) +

(
1, ν+

f (c)
)
t+
(

0.5, ν+
f (t)

)
t+
(

0.5, ν+
f (e)

)
if n = if c then t else e(

1, ν+
f (x)

)
t+
(

1, ν+
f (y)

)
t+
(

1, ν+
f (z)

)
t+
(
wl, ν

+
f (b)

)
if n = for(type i = x .. y : z) b(

wl, ν
+
f (c)

)
t+
(
wl, ν

+
f (b)

)
if n = while c do b

(1, ν+
f (g))t+

⊔+
1≤i≤n

(
1, ν+

f (ai)
)

if n = g(a1, . . . , an) and g is a non-rec. lambda

(wr, ν
+
f (g))t+

⊔+
1≤i≤n

(
1, ν+

f (ai)
)

if n = g(a1, . . . , an) and g is a rec. lambda

⊔+|n|
i=1

(
1, ν+

f (n[i])
)

otherwise

where |n| determines the number of child nodes of a node n and n[i] is the
i-th child node of n. The parameters wl and wr provide means for adjusting
the weighting of loop iterations and recursive functions respectively.

For the the weighted framework, the aggregation functions presented
above need to be adapted accordingly. For the operator-counting features
the aggregation function tOP has to be updated to

t+
OP ([(w1, f1), . . . , (wn, fn)]) =

n∑
i=1

wifi

such that weights are considered properly. The aggregation function of the
maximum loop-nest depth features, however, is defined by

t+
nl([(w1, f1), . . . , (wn, fn)]) =

n
max
i=1

fn

ignoring the weights since loop iterations are not effecting the nesting levels
of loops and by defining t+

r by

t+
r ([(w1, f1), . . . , (wn, fn)]) = 0

182 CHAPTER 4. ANALYSES

the features obtained from sub-structures remain ignored when extracting
instruction ratios. However, εr has to be updated to

ε+r (n) = ν+
cOP1

(n)/ν+
cOP2

(n)

to benefit from the weighted feature extraction framework.

The effect of the weight extension is best illustrated by an example. For
instance, consider the code fragment n representing

s := x + y ;
for (in t<4> i = 0 . . s i z e : 1) {

i f (p (i)) {
s := ∗ s + ∗a [i] ;

}
}

The evaluation of the feature c{:=} by computing νc{:=}(n) will yield 2 – since

there are 2 assignments included in the representation – while ν+
c{:=}

(n) will
yield 51, assuming the parameter wl = 100. This is due to the fact that the
if branch of the body is considered to be processed 50% of the times an the
loop is expected to be iterated 100 times. Both are assumptions made by
the framework which are inherently required in the one or the other form
due to the lack of information regarding the actual behavior of loops and
conditional statements.

The weighted feature extraction has been shown to more accurately cap-
ture the characteristic of code fragments and has been utilized, for instance,
for tuning the execution of OpenCL kernels based on our infrastructure [56].

Limitations Naturally, static program features like the number of arith-
metic instructions or load/store operations are mere approximations of the
actual number of instructions issued while processing the corresponding
code fragment. Various restrictions on the available information, in par-
ticular regarding the actual control flow, result in imprecise estimations.
Also, dynamically dispatched function calls, as they can occur when utiliz-
ing function pointers in C or virtual member functions in C++, can not be
handled by this simple approach. Furthermore, code transformations like
loop unrolling or tiling will have a high impact on the estimated number
of processed operations, although the actual number of issued instructions
is not affected. However, relative metrics, like the ratio between arithmetic
operations and load/store instructions, are more resilient. Nevertheless, as
for all feature based categorization approaches, the features utilized for the
deduction of properties of program codes have to be carefully selected and
statistically tested for their actual significance.

4.3. FLOW-INSENSITIVE ANALYSES 183

4.3.3 Local Transformations

A third application for simple, flow-invariant analyses in the Insieme com-
piler infrastructure are a variety of simple code transformations and ma-
nipulation utilities build upon on those. Two categories of these operations
shall be briefly outlined at this point.

Constant Folding and Propagation

The first category of those utilities focus on pattern based code re-writing
operations. Hence, on situations in which the structure of a local code
fragment is inspected and, if it fits a certain pattern, restructured into an
equivalent, yet preferable shape. Example transformations of this kind are
local constant folding, constant propagation and dead code elimination.

Such operations can, for instance, reduce expressions like 1+2∗3 to 7 and
eliminating combinations of operators annihilating each other, like in the
expression ref . deref(ref .var(10)) which is equivalent to 10. A more complex
reductions is the elimination of a call to a locally created closure similar to

((in t<4> y) => (∗ a + 12 + y)) (2∗ z)

by substituting it by the equivalent

∗a + 12 + 2∗ z

eliminating the overhead of creating and invoking a closure. Naturally, this
principle can be extended to statements. For instance, loops which will
never be entered or unreachable branches of conditional statements may be
eliminated too.

A more advanced operation is the simplification of types of variables.
For instance, within the code fragment

{
re f<in t<4>> x = r e f . var (10) ;
for (in t<4> i = 0 . . s i z e : 1) {

a [i] := ∗x + ∗a [i] ;
}

}

the type of the variable x could be reduced to int<4> since after the initial as-
signment the state is never modified again. The analysis whether a variable
is ever utilized as the target of an assignment operation can be conducted in
a flow-insensitive manner utilizing a visitor. The type reduction produces

{
in t<4> x = 10 ;
for (in t<4> i = 0 . . s i z e : 1) {

a [i] := x + ∗a [i] ;
}

}

184 CHAPTER 4. ANALYSES

which can be further simplified to

{
for (in t<4> i = 0 . . s i z e : 1) {

a [i] := 10 + ∗a [i] ;
}

}

using another transformation of the “constant propagation” category ex-
ploiting the single-assignment characteristic of variables in our IR and the
fact that the expression utilized for initializing x does not exhibit side effects
– another property that can be determined by flow-insensitive analyses.

The application of each simplification step could enable the application
of another simplification step. A collection of these kind of IR-simplification
rules may therefore be iteratively applied on a given input code until no
further step can be conducted. The infrastructure for defining such trans-
formation rules is covered in more detail in Chapter 5, in particular within
Section 5.3 and Section 5.5.

Code Manipulation Primitives

The second category of utilities are common manipulation primitives in-
cluding utilities for inlining function calls or the reverse operation outlining
statements into an isolated function. While the former may be utilized to
eliminate function call overheads, the latter is e.g. frequently employed for
implementing support for parallel APIs in the frontend. For instance, the
body of a for loop needs to be outlined into a function before it can be
utilized by a parallel for loop (pfor) in our IR. This outlining requires the
collection of all free variables within the targeted code fragment, the con-
struction of a lambda expression accepting those as parameters and a bind
expression capturing the corresponding values from the local context. The
necessary data can all be collected utilizing flow-insensitive analyses.

Other primitives based on flow-insensitive analyses include the unfold-
ing and unrolling of recursive functions, which require the collection of all
occurrences of recursive variables within the corresponding definitions, and
the instantiation of generic IR types and functions (type variables).

4.4 Flow-Sensitive Analyses

In contrast to flow-insensitive analyses, flow-sensitive analyses consider the
order of processed operations. For instance, while a flow-insensitive analysis
may determine that two variables may (at any point) have the same value,
a flow-sensitive analysis may determine that they may have the same value
at a given point in the program’s execution, e.g. before or after processing
a specific statement.

4.4. FLOW-SENSITIVE ANALYSES 185

Flow-sensitive analyses, in general, follow common patterns providing
the opportunity of defining abstract frameworks to be utilized for their spec-
ification as well as for their implementation. The most widely known of
those are conventional data-flow analysis (DFA) frameworks. However, oth-
ers exist as well, exhibiting different traits [68]. One alternative approach,
namely constraint-based analysis (CBA), offering an extended flexibility and
additional capabilities is introduced in addition to the conventional DFA ap-
proach in the beginning of this section. The remainder of this section then
describes the design, modification and integration of CBA based techniques
for flow-sensitive analysis based on the Insieme intermediate representation,
covering all its sequential and parallel constructs.

4.4.1 Overview on Flow-Sensitive Program Analysis

The purpose of static, flow-sensitive analysis is to deduce properties of pro-
grams at certain states of their execution. For instance, for a given code
fragment, developers of code optimizations may be interested in the set of
values still being alive, hence still to be utilized in a future program state, to
identify dead code which can be eliminated without affecting the observable
program behavior. Other analyses aim on value traits including e.g. the
constancy of values, their sign or the set of memory locations a reference
value may point to before or after processing a given statement.

For instance, in the code fragment

1 a := 0 ;
2 b := 1 ;
3 i f (a < b) {
4 a := 4 ;
5 b := a + b ;
6 }
7 return a ;

one might be interested in whether some statements could be safely1 re-
moved. A live variable analysis – a classical data-flow analysis – would de-
termine that the assignment of line 5 can be eliminated since the computed
value is never read. A subsequent application of a constant folding analysis
and a corresponding constant propagation transformation would yield

1 a := 0 ;
2 b := 1 ;
3 i f (0 < 1) {
4 a := 4 ;
5 }
6 return a ;

which can be further simplified to

1safely = without altering the observable program behavior

186 CHAPTER 4. ANALYSES

1 a := 0 ;
2 b := 1 ;
3 a := 4 ;
4 return a ;

which, with an additional round of a live variable analysis would result in

1 a := 4 ;
2 return a ;

which, by utilizing constant propagation would finally be reduced to

1 return 4 ;

In the past, several techniques have been investigated and developed for
static flow-sensitive analyses, including data-flow analysis, constraint-based
analysis and abstract interpretation [68]. All of those analyzing techniques
can be abstracted into frameworks to separate the description of the oper-
ation of the corresponding technique from the definition of actual analyses.
Two of those shall be presented next – data-flow analysis (DFA) as a smooth,
well known introduction and constraint-based analysis (CBA) as a advanced,
more flexible approach which also provides the foundation for the following
sections.

Data Flow Analysis

Data flow analyses are among the most well known approaches for static
program analysis and descriptions can be found in any textbook covering
compiler based program analyses. This brief summary shall therefore only
serve as a foundation for the content to follow.

Data flow analyses are essentially solving a set of equations established
over the structure of a control flow graph.

Definition 4.3 (control flow graph). Let I be a set of low-level program
instructions. A basic block b ∈ I∗ is a sequence of low-level instructions not
including any label or jump instructions. A control flow graph (CFG) is a
connected, directed graph g = (B,E) where B ∈ 2I

∗
is a set of basic blocks

and E ⊆ B ×B a set of directed control flow edges.

An edge (b1, b2) ∈ E in a CFG indicates that a program may continue its
execution by processing the instruction sequence of block b2 after finishing
the processing of the instructions in b1. The CFG therefore summarizes all
potential flows of control through the represented program code.

4.4. FLOW-SENSITIVE ANALYSES 187

Example 4.4 (control flow graph). For instance, the CFG

a1 := 0
b1 := 1

a2 := 4
b2 := a2 + b1

a3 := φ(a1, a2)
return a3

summarizes the code fragment addressed by the motivating example above.
The instructions in the basic blocks are encodes utilizing the static single
assignment form (SSA) as it is frequently required by implementations to
simplify analyses.

Many low-level compiler IRs are organized in the shape of a control-flow
graph and may hence directly serve as the input of a corresponding data-
flow framework implementation. The LLVM-IR, for instance, is additionally
restricted to SSA form.

Before covering the actual data-flow analysis approach we have to pro-
vide one more definition introducing the structure utilized for modeling the
properties to be deduced from a program.

Definition 4.4 (property space). A property space is given by a pair

(L,
⊔

)

where L is a set of values the characterized property may exhibit and
⊔

:
2L → L is a combination operator. Based on those, let the binary t :
L×L→ L be defined by l1 t l2 =

⊔
{l1, l2}, the binary relation v: L×L be

defined by l1 v l2 iff l1 t l2 = l2, the binary relation w: L×L be defined by
l1 w l2 iff l2 v l1, ⊥ =

⊔
∅ and > =

⊔
L.

A property space consists of the set of values a property may exhibit plus
an operator merging the results of multiple, optional paths. For instance,
if a program may follow at some point two different paths, and the actual
path is unknown, the property to be obtained is computed along both paths
and combined utilizing the t operator.

Example 4.5 (property space). Let V be the set of variables encountered
within the SSA-CFG to be analyzed. When applying a live variables analysis
the corresponding property space is given by

(2V ,
⋃

)

188 CHAPTER 4. ANALYSES

Hence, every computed property is a subset of V and the union operator is
utilized for combining values computed along alternative paths. The later
is based on the fact that at any point in the program the set of variables to
be read in the future corresponds to the union of the variables read along
all the individual paths to be potentially followed from that point on. Also,
we have v being the sub-set relation ⊆ and the constants ⊥ =

⋃
∅ = ∅ ∈ 2V

and > =
⋃

2V = V ∈ 2V .
To the contrast, for a constant folding analysis focusing on a single in-

teger variable the corresponding property space is given by

(C,tc)

where C = Z ∪ {⊥c,>c} and tc : 2C → C is defined by

tc(A) =

>c if >c ∈ A ∨ |A ∩ Z| > 1

a if >c /∈ A ∧ (A ∩ Z = {a})
⊥c otherwise

In particular we have ⊥ = tc∅ = ⊥c and > = tcC = >c. Over the course
of the computation of the analysis result, the value of a variable might be
⊥c which corresponds to ’not (yet) known but may still turn out to be a
constant’, x ∈ Z if it is the constant x or >c if it has been established that
the targeted variable is definitely not a constant.

Multiple property spaces can be combined to form new property spaces.
For instance, let (L1,t1) and (L2,t2) be two property spaces. Than the
pair (L1 × L2,t12) where t12 is given by

t12({(l11, l21), . . . , (l1n, l2n)}) = (t1({l11, . . . , l1n}),t2({l21, . . . , l2n}))

is a property space combining the two given spaces by forming pairs of values
of their associated value sets. Similar component wise combinations may
be realized for an arbitrary number of spaces. Also, let (L,t) be another
property space and K be an arbitrary set. Then the pair (K ⇀ L,tK⇀L)
consisting of the set of partial mappings between the key set K and the
property domain L and the combination operator tK⇀L defined by

tK⇀L({m1, . . . ,mn}) =

{
ε if n = 0

m1 ◦ tK⇀L({m2, . . . ,mn}) otherwise

where ◦ : ((K ⇀ L)× (K ⇀ L))→ (K ⇀ L) is given by

m1 ◦m2 =

m1 if m2 = ε

(m1 ◦m′2)[k 7→ m1[k] t l] if m2 = m′2[k 7→ l] ∧ k ∈ dom(m1)

(m1 ◦m′2)[k 7→ l] if m2 = m′2[k 7→ l] ∧ k /∈ dom(m1)

4.4. FLOW-SENSITIVE ANALYSES 189

is a property space as well. Utilizing those and other connectors, more
complex property spaces can be created by combining simpler spaces. For
instance, utilizing this connector, the property space for determining the
constant value of a single variable covered above can be extended to a prop-
erty space (V ⇀ C,tV⇀C) covering all variables by utilizing the set V of
variables as the key set. The obtained properties are then describing the
constant values of all variables within the analyzed program.

In the literature, additional requirements on property spaces are dis-
cussed. For instance, frequently property spaces are required to be complete
lattices or, to guarantee convergence of the data-flow algorithms, property
spaces are required to satisfy the Ascending Chain Condition [68]. However,
the corresponding details are of little relevance for this overview section and
will be skipped for brevity.

The basic idea of data-flow analysis is to assign variables to all the entry
and exit points of basic blocks of a control flow graph which are then uti-
lized to formulate constraints among those. The domain of the variables is
defined by a property space and the constraints are based on the combina-
tion operator and its derivatives. The following definition covers the general
schema of data-flow analysis.

Definition 4.5 (data-flow analysis framework). Let (B,E) be a control flow
graph. A data-flow analysis is specified by a tuple

(L,t, t, {f, b})

where (L,t) is a property space, t : B → (L → L) is a family of transfer
functions and {f, b} determines whether it is a forward or backward analysis.
Let tb denote the transfer function t(b). Further, let pred : B → 2B defined
by

pred(b) = {x ∈ B | (x, b) ∈ E}

be a function obtaining the predecessors pred(b) of a basic block b ∈ B and
succ : B → 2B defined by

succ(b) = {x ∈ B | (b, x) ∈ E}

be a function obtaining the succeeding blocks. For all b ∈ B let inb and outb
be variables associated to the in and out state of the basic block b. The set
of constraints on those variables is obtained by aggregating the constraints

inb w
⊔

p∈pred(b)

outp

outb w tb(inb)

190 CHAPTER 4. ANALYSES

for all b ∈ B for forward analysis or the constraints

inb w tb(outb)

outb w
⊔

s∈succ(b)

ins

for backward data-flow analysis respectively. Based on those, an assign-
ment for the variables inx and outx satisfying all the constraints is com-
puted. Since their may be multiple valid assignments, the most restrictive
assignment in terms of the v relation of the property space is to be cho-
sen to obtain the most accurate results. This solution is also known as
the least fixpoint of the given set of constraints. Let C be the set of con-
straints and V =

⋃
b∈B{inb, outb} the set of variables referenced by those

constraints. A näıve algorithm to compute the desired least fixpoint assign-
ment A ∈ (V ⇀ L) is given by the following pseudo code:

// Step 1: init A with the property space’s ⊥ value
A := ε
for b ∈ B do

A := A[inb 7→ ⊥]
A := A[outb 7→ ⊥]

end for

// Step 2: gradually fix unsatisfied constraints
while ∃(v w t) ∈ C . A[v] 6w A(t) do

A := A[v 7→ (A[v] tA(t))]
end while

where A(t) is the evaluation of the term t utilizing the assignment A. The
algorithm exploits the shape of the constraints where in every case the left-
hand side is a single variable.

As for property spaces, in literature a verity of additional properties on
the transfer functions t are stated. In particular the restriction to monotone
functions to guarantee the existence of a least fixpoint of the constraints is
essential. However, those details are beyond the scope of this section and are
therefore skipped for brevity. Interested readers may be referred to related
literature for details regarding this subject [68].

In practical implementations the explicit generation of constraints is typ-
ically skipped due to their regular structure. The desired variable assign-
ment is directly computed based on the CFG utilizing implicit constraints.
However, we made them explicit as a preparation towards the concept of
constraint-based analysis.

4.4. FLOW-SENSITIVE ANALYSES 191

Example 4.6 (data-flow analysis). Let us consider a live variable analysis
on the control flow graph of Example 4.4 given by

a1 := 0
b1 := 1

a2 := 4
b2 := a2 + b1

a3 := φ(a1, a2)
return a3

For simplicity we strip of unnecessary details and obtain

A

B

C

where the labels on the nodes correspond to the identifier we utilize for
referencing to those basic blocks.

The live-variable analysis for the DFA framework is given by the tuple

(2V ,∪, t, b)

where V = {a1, a2, a3, b1, b2} and t is given by

tA(X) = X \ {a1, b1}
tB(X) = (X \ {a2, b2}) ∪ {b1}
tC(X) = (X \ {a3}) ∪ {a1, a2}

Since it is a backward analysis the framework will generate the following
constraints based on the CFG:

inA ⊇ tA(outA) = outA \{a1, b1}
outA ⊇ inB ∪ inC

inB ⊇ tB(outB) = (outB \{a2, b2}) ∪ {b1}
outB ⊇ inC

inC ⊇ tC(outC) = (outC \{a3}) ∪ {a1, a2}
outC ⊇ ∅

where the generic t, w and ⊥ have already been replaced by the specific
∪, ⊇ and ∅ operators and constants as defined by the live variable analysis
specification. The least fixpoint may then be computed by

192 CHAPTER 4. ANALYSES

Constraint inA outA inB outB inC outC

init ∅ ∅ ∅ ∅ ∅ ∅
inC ∅ ∅ ∅ ∅ {a1, a2} ∅

outB ∅ ∅ ∅ {a1, a2} {a1, a2} ∅
inB ∅ ∅ {a1, b1} {a1, a2} {a1, a2} ∅

outA ∅ {a1, a2, b1} {a1, b1} {a1, a2} {a1, a2} ∅
inA {a2} {a1, a2, b1} {a1, b1} {a1, a2} {a1, a2} ∅

after which all constraints are satisfied. The obtained variable assignment
represented by the last table row is the result of the computation. As can
be observed, at the end of block B the variable b2 is not alive. Consequently
the corresponding assignment operation may be dropped.

Limitations Although providing a vital utility for static program analysis
in conventional compiler architectures favoring DFA based systems due to
the close relation to common low-level compiler IRs and CFGs, data-flow
analysis exhibit a few limitations – some of those hampering their applica-
bility on the Insieme compiler IR. Those include:

• Separation of Control-flow and Data-flow – infrastructures following
the DFA approach separate the control-flow, specified by the control-
flow graph, from the data-flow covered by the derived constraints.
Consequently, results of data-flow computations can not influence the
control flow. For instance, in case a data flow analysis determines that
a given branch of a conditional branch is never taken since the condi-
tion is a constant, the branch would still be considered as a potential
path through the program since this result is not effecting the CFG.
This lack of interaction leads to reduced accuracy in the obtained re-
sults which may only be compensated by an iterative approach includ-
ing consecutive analysis and transformation passes or by extending the
DFA framework itself.

• Focused on intra-procedural analysis – a control flow graph is, in gen-
eral, only covering a single procedure/function body. Consequently
“global” analysis and optimizations in conventional compilers are in
general only referring to “covering a full procedure”. Inter-procedural
analysis are not covered by the basic framework, yet may be supported
by extended variants merging the CFGs of multiple procedures into
a single graph and add control-flow edges between call sites and the
entry/exit points of procedures. Additional techniques introduce con-
text information to distinguishing between different calls of the same
procedures such that, to a certain extend, the effects of the various
calls are not interfering with each other. Analyses empowered with
those kind of capabilities are referred to as context-sensitive analyses.

4.4. FLOW-SENSITIVE ANALYSES 193

Due to its functional roots, many primitives and extensions in the
Insieme IR are modeled utilizing functions and most function bod-
ies are more likely to be mere composition of nested function calls
than sequences of simple instructions. As are most object-oriented
codes. Consequently, powerful support for inter-procedural analysis is
required for any framework to be practicable applied on our IR.

• Dynamic Dispatch Problem – related to the first two issues is this
third issue. In languages where functions are first-class citizen, like in
our IR, or dynamically called utilizing function pointers (C) or virtual
function dispatching (C++), the function to be called at a given call
site may not be statically fixed. Inter-procedural extensions of CFGs,
however, may build on this assumption to identify procedures targeted
by call expressions. Essentially, in such environments, functions are
just another kind of data. Consequently, data-flow analyses can be
utilized to determine which function may be called at which call site –
yet those require a CFG. The separation of control- and data-flow rep-
resentations as covered above is hampering the proper interaction and
hence limiting the accuracy of analysis results and/or the applicability
of the DFA approach in the first place.

• Basic Blocks are formed by low-level instructions – although not lim-
iting in the general case, this property of DFAs is reducing its appli-
cability on the Insieme IR. In a CFG basic blocks consist of sequences
of three-address-code instructions, potentially restricted to SSA form,
thereby providing a simple foundation for the automated extraction
of the necessary transfer functions required for conducting analyses.
However, our IR is based on high-level expressions likely consisting
of multiple procedure calls. For applying conventional analyses those
would have to be broken up into lists of simpler instructions, resulting
in additional difficulties when mapping analysis results to the original
IR node.

• No parallel control-flow – finally, DFAs are not prepared for paral-
lel control flows. The underlying principle is designed to analyze the
effects of sequentially processed instructions. Alternatives among con-
trol flow paths are always considered exclusive – hence one or the
other, not both concurrently. However, to analyze an IR exhibiting
parallel constructs, corresponding support is required.

Nevertheless, ideas for integrating parallel control flows int DFAs have
been presented in the past. For instance, pCFGs [108] add a second
type of edge to the CFG indicating that those edges are always fol-
lowed, thereby adding support for analyzing concurrent executions.
Still, even with this extension, the parallel structure of the application

194 CHAPTER 4. ANALYSES

has to be statically known during the construction of the pCFG. Yet,
similar to the dynamic dispatch problem, the structure of the paral-
lel application may be data-dependent. For instance, the entry point
passed to a pthread create call is always provided by a function pointer.
Also, locks or other synchronization mechanisms may be referenced by
pointers, resulting in an additional data-dependent element influenc-
ing the structure of the parallel program to be analyzed. While some
work is presuming static knowledge regarding those relations [108, 40],
more recent work focus on complex preparation steps to construct in-
put graphs or similar structures for subsequent analysis steps [51, 115].

Several of those limitations and/or issues have been tackled by adding
extra information to the CFG – e.g. edges to and from other procedures,
parallel control flow edges or predicated edges to overcome the separation of
control- and data-flow information. However, essentially those steps are cus-
tomizing the structure providing the foundation for the (implicit) constraint
generation leading to more flexible solutions. Yet, ultimately the creation
of constraints could be completely detached from any (individual) structure
to maximize flexibility. This is the basic idea of constraint-based analyses.

Constraint Based Analysis

The basic idea of constraint-based analysis (CBA) is to separate the gen-
eration of constraints from solving them, by making constraints explicit.
The explicit representation of constraints in an intermediate step increases
the flexibility of the constraint generation process. Different sources may
be utilized. Furthermore, the format of constraints could (and is) enriched
to improve the expressive power of the involved constraints. The resulting
approach is best presented by an example.

Consider the following IR code fragment containing a data dependent
control flow leading to a dynamic dispatched function call:

l e t i n t = in t <4>;
i n t a = 5 ;
(in t , i n t)→ i n t f = (a<10)?+:−;
return f (2 , a) ;

We chose INSPIRE as an example since the syntax and the semantic of the
involved constructs has been introduced in the previous chapter. However,
the presented approach can naturally be applied on other languages as well.

The challenge stated for an analysis is to determine the return value of
this fragment. In a first step, every sub-term is labeled by a unique identifier:

l e t i n t = in t <4>;
i n t [a] 1 = [5] 2 ;
(in t , i n t)→ i n t [f] 3 = [([[a] 4 < [10]5] 6) ?[+]7 : [−] 8] 9 ;
return [[f] 10 ([2] 11 , [a] 12)] 13 ;

4.4. FLOW-SENSITIVE ANALYSES 195

Those labels are utilized to address the various sub-expressions. In the
next step, for each property of interest, variables are assigned to the sub-
expressions. In our example let

• Ix with property space (2Z,∪) be the integral value of the expression
bearing the label x,

• Bx with property space (2B,∪) be the boolean value of the expression
bearing the label x and

• Fx with property space (2F ,∪) be the function value of the expression
bearing the label x where F is the set of potential functions, e.g.
F = {+,−, ∗, /}

Based on those, constraints can be formulated. However, in addition to the
shape

f(v1, . . . , vn) v v

for any analysis variables v, v1, . . . , vn utilized by DFAs, CBAs support the
extended conditional constraint format

g(x1, . . . , xn)⇒ f(v1, . . . , vm) v v

where x∗ and v∗ are analysis variables, g is a n-ary guard predicate over
the variables x1, . . . , xn and f is a function computing a lower boundary
for the value to be assigned to v. Constraints of this shape state that
f(v1, . . . , vm) v v must hold in case the predicate g(x1, . . . , xn) is valid.

The constrains obtained from our input code include the following ele-
ments:

I2 ⊆ I1

{5} ⊆ I2

I1 ⊆ I4

{10} ⊆ I5

{2} ⊆ I11

{+} ⊆ F10 ⇒ {a+ b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

{−} ⊆ F10 ⇒ {a− b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

{∗} ⊆ F10 ⇒ {a ∗ b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

{/} ⊆ F10 ⇒ {a/b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

∃(a, b) ∈ I4 × I5 . a < b⇒ {true} ⊆ B6

∃(a, b) ∈ I4 × I5 . ¬(a < b)⇒ {false} ⊆ B6

{+} ⊆ F7

{−} ⊆ F8

true ∈ B6 ⇒ F7 ⊆ F9

196 CHAPTER 4. ANALYSES

false ∈ B6 ⇒ F8 ⊆ F9

F9 ⊆ F3

F3 ⊆ F10

All of those can be obtained by converting each construct in the input code
fragment into corresponding constraints. For instance, a variable declara-
tion declaring a variable with label l utilizing an initial value labeled by k
produces the constraint Xk v Xl for any type of analysis variable X and
its associated relation operator v. The constrain merely states that the
values assigned to the declared variable must at least cover the values of
its initializing expression. A subsequent variable reference labeled by an m
results in a constraint Xl v Xm, ensuring that expression m is considered to
at least represent all the values the corresponding variable covers. Similar
local rules can be fixed for all language constructs and operators.

Several cases, however, may result in more than a single constraint. In
this example the boolean expression a < b contributed two constraints and
the call expression with the label 13 produced |F| = 4 constraints. To be
more concise, the call expression rule could actually be

∀f ∈ F . (f ∈ F10 ⇒ {f(a, b) | a ∈ I11 ∧ b ∈ I12} ⊆ I13)

yet quantification is not included in the limited set of supported constraint
formats. However, in any finite code, the number of functions to be consid-
ered is finite as well. And so is the set of potentially encountered functions
F . Therefore, the actually universally quantified rule can be substituted
by all its instantiations as has been demonstrated above utilizing a finite
over-approximation F = {+,−, ∗, /} of the present functions {+,−}. Note
that in the general case also user defined functions need to be considered.

In our list of constrains we omitted elements including B2 ⊆ B1 or
I3 ⊆ I10 which may equally be derived from the input code yet do not
influence the following computation.

For our analysis we are interested in a variable assignment A representing
a least fixpoint of the given constraints and in particular in the value assigned
to the variable I13 in A.

Definition 4.6 (CBA constraint solver). Let C be the set of constrains
for which a least fixpoint shall be computed and C ′ the set of constraints
obtained by replacing every constraint of the shape

f(v1, . . . , vn) v v

by the equivalent conditional constraint

true⇒ f(v1, . . . , vn) v v

4.4. FLOW-SENSITIVE ANALYSES 197

in C. Further, let V be the set of variables referenced by the constraints in
C ′ and b a function mapping each variable v ∈ V to the bottom element ⊥
of its corresponding property space. Than the algorithm

// Step 1: init A with the property spaces’ ⊥ values
A := ε
for v ∈ V do

A := A[v 7→ b(v)]
end for

// Step 2: gradually fix unsatisfied constraints
while ∃(c⇒ t v v) ∈ C ′ . A(c) ∧ (A(t) 6v A[v]) do

A := A[v 7→ (A[v] tA(t))]
end while

computes a least fixpoint assignment A for the constraints in C.

The algorithm essentially searches for unsatisfied constraints and up-
dates the assignment accordingly. The predicates within the conditional
constraints may thereby be utilized for selecting constraints to be obeyed.
As for the DFA, limitations on the set of functions utilized within con-
straints have to be imposed to ensure the existence of a least fixpoint so-
lution. Among the most severe is the restriction to monotone functions –
for both, the guard predicate and the function computing a lower boundary
of the constraint variable. Another is, as for DFAs, the Ascending Chain
Condition ensuring the algorithm to terminate within a finite number of
steps [68].

The following table covers the least fixpoint assignment obtained by this
algorithm when being applied on the constraints listed above.

I1 I2 I4 I5 I11 I13 B6 F3 F7 F8 F10

{5} {5} {5} {10} {2} {7} {true} {+} {+} {−} {+}

The analysis could successfully deduce the resulting value being I13 = {7}.

Note that the presented CBA constraint solver algorithm is handling vari-
ables of various property spaces simultaneously while the DFA algorithm is
limited to a single property space. Furthermore, notice the interaction of
control flow and data flow in the CBA constraints. Results of data flow
analysis are utilized to activate data-flow dependent constraints, thereby
effectively constraining the number of considered paths. A standard DFA
analysis would have determined the value of the a < 10 expression, yet
the variable f would still get the uncertain value {+,−} assigned after de-
composing the conditional operator into three basic blocks including the

198 CHAPTER 4. ANALYSES

evaluation of the condition, the two branches and at least one temporary
variable.

Also, the example demonstrated that the same mechanism utilized to
constraint control-flow paths also provides a solution for solving the dynamic
dispatch problem – by treating functions like data. This support is not only
limited to primitive functions as included in the given example. Functions
created by arbitrary lambda or closure expressions may be treated as well,
including the necessary parameter and return value passing.

Due to all its benefits, the constraint-based approach has been utilized
as the foundation of the analysis framework established for the development
of flow- and context-sensitive analyses processing programs encoded using
the high-level Insieme IR.

4.4.2 Overview on the Insieme CBA Framework

The framework established for analyzing INSPIRE codes is based on the
CBA framework presented above, yet several details have been extended and
customized to gain increased flexibility to suite the specific requirements as
well as increased accuracy.

Overview on solver modifications

Among the most significant modifications is the advancement of a conven-
tional constraint solver approach, depending on a complete list of constraints
as an input, to a lazy approach, capable of incorporating constrains on de-
mand. On the one hand, the development of a lazy-solver was motivated
by the observation that only a tiny portion of the set of constraints to be
extractable from a given code fragment is required to obtain desired analysis
results. This is due to the fact that variables may describe irrelevant prop-
erties like the function value of a integer constant – e.g. I3 in the example of
the previous sub-section – or results of unreachable program states cut off
from the relevant part of the system of constraints by unsatisfied predicates.
In particular when introducing call context information the vast majority
of call-stack approximations are unreachable and all its associated variables
are hence irrelevant for the analysis.

On the other hand a lazy solver enables analysis to react on tempo-
rary results. In particular intermediate results may be utilized to form the
foundation for the creation of new constraints influencing the enclosing com-
putation of a least fixpoint solution – hence the result of an analysis. As will
be demonstrated, this feature is utilized to conduct analysis on the parallel
structure of codes where the structure description itself is a result obtained
as part of the same analysis.

Furthermore, the solver algorithm has been modified to eliminate the
strict requirement of monotone guardian predicates and lower boundary

4.4. FLOW-SENSITIVE ANALYSES 199

functions to obtain more accurate analysis results. In general, monotone
predicates and functions are sufficient to accurately model the behavior of
many language constructs and lead to a fast conversion of the solver al-
gorithm. Therefore they are utilized for the vast majority of constraints.
However, in some cases, restrictive assumptions on values can lead to more
accurate results which, however, may be invalidated over the course of the
conversion process. In such a case the assumption has to be eliminated,
previously obtained and related results “forgotten” and revised without
considering this assumption. The only restriction, however, is that such
reset-events are not repeatedly triggering each other – a property of the
constraints in other contexts referred to as stratification. Essentially the
original monotonicity condition on the individual elements of constraints
has been lifted to a global monotonicity condition addressing the full set of
constraints. Support for such a “reconsider” mechanism has been integrated
into our constraint solver to further increase the accuracy of analysis built
on top of it.

Details on the supported constrain format, our lazy constraint solver
algorithm and its properties are covered in more detail in Section 4.4.3.

Analysis Variables

Unlike in the example demonstrated in the CBA introduction, the Insieme
CBA framework is utilizing multiple structures to associated variables to.
Those include:

• Labeled Expressions – to represent the value of an expression as covered
in the CBA introduction, however, extended by thread and call context
information

• Program Points – to represent the state of some environment object,
e.g. the value of mutable memory location, before, during or after the
evaluation of a labeled expression

• Whole-Program or Global information – analysis results describing the
complete program (fragment) to be analyzed, e.g. the set of synchro-
nization points or the parallel structure of the code fragment

• Program State Graph Nodes – the nodes of the graph describing the
parallel structure of an application; those are, for instance, utilized to
represent the state of channels which can not be associated to individ-
ual program points

In the following we will provide definitions for those structures. However,
future extensions of the framework may even extend this list by additional
structures.

200 CHAPTER 4. ANALYSES

Labeled Expressions

In the introduction to CBA based systems all the sub-terms of a given code
fragment have been labeled to reference them and to associated analysis vari-
ables to them. The same concept is utilized in the Insieme CBA framework,
yet instead of using natural numbers, labels are realized by node instances,
a variant of node addresses introduced in Section 3.10.2, combined with
context information capturing the thread and function-call context.

We start by provide a definition for the node instances. A node instance
is, similar to a node address, referencing a substructure within an IR tree
by the path from a given root node to the targeted structure. However,
additionally, whenever passing a loop along the path the iteration of the
loop is specified. This way instances of the some IR sub-structure being
processed in different loop iterations can be addressed.

However, since the number of loop iterations is in general statically un-
known, an abstract representation is required.

Definition 4.7 (abstract loop iterator). An abstract loop iterator is given
by a total ordered set defined by the pair

(I,≤)

where I is an arbitrary, finite set forming the domain of the iterator and
≤: I × I is total order on the iterator values. Further, let ⊥ be the minimal
element such that ∀x ∈ I . ⊥ ≤ x and > be the maximal element such that
∀x ∈ I . x ≤ ⊥.

A simple example of an abstract loop iterator is given by the pair

({∗}, {(∗, ∗)})

which only utilizes a single token ∗ to summarize all loop iterations. Ac-
cordingly we have ⊥ = > = ∗. A more sophisticated representation is given
by

({0, 1, 2, . . . , n, ∗,−n, . . . ,−2,−1},≤)

where n is some fixed integer and ≤ is defined according to the order the
elements in the set have been listed. The value ⊥ = 0 is addressing the first
iteration, the value 1 the second, −2 the second last and −1 = > the last
iteration. The ∗ token represents any remaining iteration. This loop iterator
abstraction enables analysis, to some extend, to distinguish individual loop
iterations within a targeted code fragment.

The actual abstract loop iterator to be chosen may be customized to
fit the requirements of the analysis to be conducted, e.g. by using some
advanced symbolic representations as an abstract iterator. However, for
simplicity, in the remainder of this chapter we will assume loop iterators

4.4. FLOW-SENSITIVE ANALYSES 201

to be modeled utilizing something similar to the second approach outlined
above with e.g. n = 2.

Based on those we can define node instances as follows:

Definition 4.8 (node instance). A node instance is a term of the grammar

i ::= r | i.x | i.x[j]

where r ∈ E ∪ S is an IR expression or statement, x ∈ N0 is and index and
j ∈ I is an abstract loop iterator of type I. Let the set of all node instances
be denoted by I ′. Also, for all n ∈ E∪S and x ∈ N0 let n[x] denote the child
node of n at index x where indices start at 0. If n has less than x+ 1 child
nodes n[x] is undefined. Then the function node : I ′ → (E∪ S) determines
the IR sub-structure referenced by a node instance i ∈ I ′ and is defined by

node(i) =

{
r if i = r ∈ E ∪ S
node(i′)[x] if i = i′.x or i = i′.x[j]

Furthermore, a node instance i is valid iff node(i) is defined and

• i = r ∈ E ∪ S or

• i = i′.x and i′ is valid and node(i′)[x] is not the body of a while or for
loop construct or

• i = i′.x[j] and i′ is valid and node(i′)[x] is the body of a while or for
loop construct

The set of all valid node instances is denoted by I.

Node instances provide means to address sub-expressions and statements
contained in a given IR code fragment, similar to the labels introduced in
the example covered in the CBA introduction section. By labeling each
sub-structure using the path it can be reached by from a common root
node, all labels are automatically distinct. Also, common sub-expressions
can be distinguished and due to the integration of abstract loop iterators
identical sub-expressions processed within different loop iterations may be
distinguished.

Example 4.7 (node instances). Consider the compound statement c given
by

{
a [0] = 0 ;
for (in t<4> i = 0 . . 10 : 1) {

a [i] := a [i]+10;
}

}

202 CHAPTER 4. ANALYSES

The node instance c ∈ I references the full compound statement, c.0 ∈ I
the first statement a[0] = 0, c.1 the for loop and c.1.4[1] ∈ I the compound
statement of the 2nd iteration of the for loop since the 5th child of the
for loop is its loop body. Also, c.1.4[−2].0 ∈ I references the assignment
a[i] := a[i] + 10 of the second last iteration of the loop. To the contrast,
c.2 ∈ I ′ is not a valid node instance since c does not have a child node with
the index 2.

A side effect of our IR structure is that statically bound functions are
immediately present at the call site. Consequently, since node addresses
and node instances are describing the path from a common root node to
the targeted sub-structures, expressions within bodies of functions directly
bound at some call side are implicitly associated with a call context.

Example 4.8 (implicit call context). Consider the for loop f given by

for (in t<4> i=0 . . 10 : 1) {
a [i] := (in t<4> a)→ in t<4> {

return a + 10 ;
}(a [i]) ;

}

The node instance f.4[0].0.2 ∈ I references the function call on the right-
hand side of the assignment in the first loop iteration, f.4[0].0.2.0.1 ∈ I the
body of the function and f.4[0].0.2.0.1.0.0 ∈ I the return value of the func-
tion invocation in the left hand side of the assignment operation processed
by the first iteration of the loop. The node instance f.4[1].0.2.0.1.0.0 ∈ I
references the same element yet for the second iteration of the loop. The
actual indices utilized to address sub-structures of the involved constructs
are not important for this example. Important is that the address includes
the full call context of the directly invoked function.

However, not all function calls are direct, statically bound function calls
since functions may be recursive – on those cases recursive variables are
utilized – or forwarded as first-class citizens to the call site. For those cases
explicit support for recording call contexts is required.

Example 4.9 (required call context). Consider the compound statement c
given by

{
auto f = (in t<4> a)→ in t<4> {

return a + 10 ;
} ;
for (in t<4> i=0 . . 10 : 1) {

a [i] := f (a [i]) ;
}

}

4.4. FLOW-SENSITIVE ANALYSES 203

Here the function f is not directly called. The address of the return value
of the function is given by c.0.2.1.0.0 addresses the return value where c.0
is the declaration statement and c.0.2 the lambda expression. The invoca-
tion of the function in the first loop iteration, for instance, is referenced by
c.1.4[0].0.2. In this case the context is not implicit and has to be modeled
explicitly.

To record the context of non-statically bound function calls we utilize
an abstract representation of the corresponding call-stack which is simply
recording up to the last n dynamic function call sites passed to reach the
addressed structure.

Definition 4.9 (call context). Let n ∈ N be the maximum number of passed
call sites to be used to distinguish contexts of function calls. Let Idyn call be
the set of node instances referencing call expressions targeting non-statically
bound functions. Then the set of call contexts C is given by⋃

0≤i≤n
(Idyn call)i

Hence, a context c = [c1, . . . , cm] ∈ C is a sequence of up to n node instances
also referred to as a call string. Further, we define the function push :
(C × I)→ C by

push(c, i) =

[] if n = 0

[c2, . . . , cn, i] if c = [c1, . . . , cn]

[c1, . . . , cm, i] if c = [c1, . . . , cm] and m < n

The context cin = push(ccall, i) is the call context reached when a call expres-
sion referenced by i ∈ I is invoking in context ccall a non-statically bound
function. The body of the targeted function is then evaluated utilizing the
call context cin.

The parameter n determines the maximum length of the call stack to
be recorded. If set to 0 every expression will be evaluated in the empty call
context [] – hence no explicit call context is considered, only the implicit
context captured by the addressing utilizing node instances. Larger values
will potentially improve the accuracy of analysis results, yet also increases
the number of variables and hence the run-time complexity of the analysis.

Example 4.10 (call strings). Let c1, c2 ∈ I be two node instances referenc-
ing call expressions targeting non-statically bound functions. Further, let
the maximum length of call contexts n be 2. When analyzing the enclos-
ing code fragment the initial call context for any expression is the empty
context [] ∈ C. When the control flow passes c1, the body of the targeted
function will be analyzed utilizing the call context [c1]. If, while doing so,

204 CHAPTER 4. ANALYSES

c2 is passed, the targeted nested function body will be evaluated using the
context [c1, c2]. However, if in a third nesting level c2 would be reached a
second time, e.g. at a recursive function call site, the new nested context is
[c2, c2] ∈ C instead of the more accurate [c1, c2, c2] /∈ C. This is due to the
restriction on the maximum length of the utilized call strings since unlimited
call strings could lead to an infinite number of variables and constraints.

If c1 and c2 are the only dynamic call sites in the analyzed code fragment,
the only feasible call contexts are [], [c1], [c2], [c1, c1], [c1, c2], [c2, c1] and
[c2, c2] – hence a finite number of contexts. Any function call stack will
be mapped to one of those 7 abstract stack representations. In case of
collisions, analysis results may become less accurate, yet soundness is not
affected. Still, the introduction of call contexts is significantly increasing
the accuracy of program analysis. The effects of collisions in the associated
context may further be reduced by increasing the maximum string length if
required.

Besides the execution of the same expression in the body of a function
in different call contexts it is also required to distinguish instances within
different threads. The Insieme IR features explicit thread support and hence
concurrent control flows need to be covered. We therefore introduce, analo-
gous to call contexts, thread contexts.

To describe the context of a function we have been aggregating strings
of node instances referencing call expressions. To address threads we uti-
lize finite strings of thread-spawn points – hence invocations of the parallel
construct – to identify threads.

Definition 4.10 (thread context). Let m ∈ N be the maximum number of
spawn points to be considered to distinguish thread contexts. Let Ispawn be
the set of node instances referencing call expressions potentially creating a
thread group, hence potential calls to the parallel primitive. Then the set
of thread contexts T is given by⋃

0≤i≤m
(Ispawn × C × N)i

Hence, a thread context t = [(p1, c1, i1), . . . , (pk, ck, ik)] ∈ T is a sequence
of up to m spawn expressions, their thread-local call contexts and the IDs
of the processing threads within their groups. As for the call context, we
further define the function push : (T × I × C × N)→ T by

push(t, s, c, i) =

[] if m = 0

[t2, . . . , tm, (s, c, i)] if t = [t1, . . . , tm]

[t1, . . . , tk, (s, c, i)] if t = [t1, . . . , tk] and k < m

4.4. FLOW-SENSITIVE ANALYSES 205

0-0.1-0.3-0 / [(s1,c1,0),(s3,c3,0)]

0-0.1-0.3-0.4-0 / [(s3,c3,0),(s4,c4,0)]

0-0.1-0 / [(s1,c1,0)]

0-0 / []

0-0.2-0 / [(s2,c2,0)]

s1 s2

s3

s4

0-0.1-0.3-1 / [(s1,c1,0),(s3,c3,1)]

0-0.1-0.3-0.4-1 / [(s3,c3,0),(s4,c4,1)]

IR thread
control dependencies
spawn expr. s1- s4
with call contexts c1- c4

merge expression

<…>.x-y
thread index

group id

parent thread id

thread id

[...] thread context
time

Figure 4.1: Comparison of thread IDs and thread contexts.

The thread context tchild = push(tparent, s, c, 2) is the thread context of the
thread with index 2 created by the thread-spawning expression s processed
in call context c and thread context tparent. The body of the spawned thread
is then evaluated utilizing the thread context tchild.

Example 4.11 (thread contexts). Figure 4.1 visualizes nested groups of
threads. Each thread is labeled by its hierarchical ID, as it has been intro-
duced in Section 3.3.2, and the thread context utilized in the Insieme CBA
framework for addressing and distinguishing those. The maximum length
of thread contexts is limited to m = 2. In the example, the statement
s1 processed by thread 0-0 in the call context c1 spawns thread 0-0.1-0.
Since the thread context of the main 0-0 is the empty sequence [] ∈ T ,
the thread context addressing the spawned thread is push([], s1, c1, 0) =
[(s1, c1, 0)] ∈ T . Similarly, the thread context thread 0-0.2-0 is mapped to
is push([], s2, c2, 0) = [(s2, c2, 0)] ∈ T and the nested threads 0-0.1-0.3-0 and
0-0.1-0.3-1 spawned by thread 0-0.1-0 are addressed by [(s1, c1, 0), (s3, c3, 0)]
and [(s1, c1, 0), (s3, c3, 1)] in the Insieme CBA framework. When reaching
nesting levels greater than m = 2 the length of the thread context se-
quences reaches its limits. Consequently, the threads 0-0.1-0.3-0.4-0 and
0-0.1-0.3-0.4-1 are associated to the thread contexts [(s3, c3, 0), (s4, c4, 0)]
and [(s3, c3, 0), (s4, c4, 1)] referencing only the two innermost passed spawn-
ing points.

As for the call contexts, the set of possible thread contexts is finite
since the set of spawn points in any program is finite and thus the set of call
contexts too. The full list, however would encompass an astronomically high
number of values for every practical example. Fortunately, in meaningful
code fragment only a very small number of contexts are reachable and hence
need to be considered due to the lazy-constraint solver algorithm covered in
the Section 4.4.3.

Note that thread contexts are abstract, finite approximations of the
thread addresses utilized for defining the semantic of IR constructs in Sec-
tion 3.7.1 on page 94.

206 CHAPTER 4. ANALYSES

Finally we can define the format of a label utilized by the Insieme CBA
framework to address expressions within a code fragment.

Definition 4.11 (node labels). An expression or statement of a code frag-
ment to be analyzed is addressed by node label l defined by a tuple

l = (i, c, t)

where i ∈ I is a node instance, c ∈ C a call context in a processing thread
and t ∈ T a thread context describing the processing thread. The set of all
node labels is denoted by L.

Program Points

Another object to be utilized to attach variables to are program points.
Variables attached to labeled expressions are utilized to characterize the
value computed by this expression within its context. However, they can
not be utilized to describe the state of e.g. a mutable value at a given
program point. Fortunately, program points can be directly derived from
node labels.

Definition 4.12 (program points). A program point p is a pair

p = (l, s) ∈ L × {pre, in,post}

where l = (i, c, t) ∈ L is a node label referencing an expression (i ∈ I)
and its call (c ∈ C) and thread (t ∈ T) context, and s ∈ {pre, in, post}
determines whether the program point before (pre), during (in) or after
(post) the processing of the referenced expression is to be addressed. The
set of all program points is denoted by P.

Example 4.12 (program points). Let i ∈ I be some node instance, c ∈ C
a call context and t ∈ T a thread context. The program point ((i, c, t), pre)
references the state before evaluating the expression i in context c of thread
t. The evaluation of the expression may lead to the post state which is
addressed by the program point ((i, c, t), post). If i′ ∈ I is the expression
to be evaluated after expression i than ((i, c, t),post) is the predecessor of
((i′, c, t),pre). For some operations an intermediate step between the pre
and post state is required. For instance, to reference the point in which
arguments of a function have been evaluated yet the call has not yet been
conducted. In those cases in states may be utilized to obtain the processing
order (l,pre), (l, in) and (l,post) for some label l ∈ I.

Global Information

The third and simplest entity to attach values to is the full program. For
this entity we do not have to introduce any constructs. Analysis variables
characterizing the full program are individual variables not to be bound to
any structure by any subscript.

4.4. FLOW-SENSITIVE ANALYSES 207

Program State Graph Nodes

The last type of variables utilized in the Insieme CBA framework are vari-
ables attached to nodes of the program state graph.

A program state graph describes the regions of a program which may
be executed concurrently. It is derived from an execution net, which is
a labeled extension of a Petri net [81] and constructed based on a set of
synchronization points to be derived from the analyzed code segment. In
the following we provide definitions for those entities, along with an example.

Consider the following code fragment including three threads, a mutable
memory location a and a channel c:

auto a = var (0) ;
auto c = channe l . c r e a t e (in t <4>,2) ;
auto t 1 = para l l e l (job [1 , 1] ()⇒ {

a = 1 ;
channe l . send (c , 1) ;

}) ;
auto t 2 = para l l e l (job [1 , 1] ()⇒ {

channe l . r ecv (c) ;
a = 2 ;

}) ;
a = 3 ;
merge(t1) ;
merge(t2) ;

The first thread, the “main” thread A, creates a variable a and a channel
c, spawns two threads, updates a and merges the two previously spawned
thread groups. Each group consisting of a single thread (t1 = B and t2 = C
respectively). Thread B updates a and sends a message through channel c
while the C waits for a message before also updating a. In this code fragment
we could be interested in whether there are race conditions, dead locks, or in
the data that is transferred through the channel. The first step towards an
infrastructure enabling all those analyses is to identify all synchronization
points within the code fragment.

Definition 4.13 (synchronization points). Synchronization points – also
sync points – are program points (see Definition 4.12) referring to one of the
following events:

• the begin / end of a thread

• a call to the parallel or merge operators

• a call to the send or recv channel operators

• a call to the redistribute operator

• the begin / end of the analyzed code fragment

The set of all sync points is denoted by S ⊂ P.

208 CHAPTER 4. ANALYSES

Example 4.13 (sync points). For simplicity, to avoid the cumbersome syn-
tax of node instances and node labels, let the following numerical labels be
assigned to the constructs of the example introduced above:

[
auto a = var (0) ;
auto c = channe l . c r e a t e (in t <4>,2) ;
auto t 1 = [para l l e l (job [1 , 1] ()⇒ [{

a = 1 ;
[channe l . send (c , 1)] 6 ;

}] 2)] 4 ;
auto t 2 = [para l l e l (job [1 , 1] ()⇒ [{

[channe l . r ecv (c)] 7 ;
a = 2 ;

}] 3)] 5 ;
a = 3 ;
[merge(t1)] 8 ;
[merge(t2)] 9 ;

] 1

Further, let those labels include the call and thread contexts according to
the composition of the involved language constructs. Than we have the
following sync points:

• (2,pre) and (2,post) – begin and end of thread 1

• (3,pre) and (3,post) – begin and end of thread 2

• (4, in), (5, in), (8, in) and (9, in) – calls to parallel and merge

• (6, in) and (7, in) – calls to send/recv operations

• (1,pre) and (1,post) – begin and end of code fragment

Note that the labels 1, 4, 5, 8 and 9 exhibit the same thread context, as do
the labels 2 and 6 as well as 3 and 7. However, e.g. 1 and 2 do not.

Next the obtained sync points are combined into thread regions.

Definition 4.14 (thread region). A thread region (a, b) ∈ S2 is a pair of
sync points a ∈ S and b ∈ S such that the program point b can be reached
from program point a without passing any other sync point. The set of
thread regions is denoted by R.

Since the begins and ends of a threads are sync points and are the only
places where thread contexts may change, only sync points referencing labels
including the same thread context may constitute thread regions. Hence,
only sequential control flow between sync points needs to be considered.

4.4. FLOW-SENSITIVE ANALYSES 209

Example 4.14 (thread regions). For our running example we obtain the
following thread regions for thread A

A1 = ((1,pre), (4, in))

A2 = ((4, in), (5, in))

A3 = ((5, in), (8, in))

A4 = ((8, in), (9, in))

A5 = ((9, in), (1, post))

for thread B

B1 = ((2, pre), (6, in))

B2 = ((6, in), (2,post))

and for thread C we have

C1 = ((3, pre), (7, in))

C2 = ((7, in), (3,post))

Note that within a thread region no synchronization event can happen.
Also no channel state could be modified.

In the following step the coordination and relation between thread re-
gions has to be described. The resulting description is a execution net which
is a variant of a Petri net.

Petri nets are bipartite graphs well established for modeling concurrent
and distributed systems [81]. For completeness we provide a formal defini-
tion of such a net.

Definition 4.15 (Petri net graph with place capacities). A Petri net graph
with place capacities is given by a tuple

(P, T,E, cap)

where P is an arbitrary set of places, T a set of transitions such that P ∩T =
∅, E ⊆ (P × T) ∪ (T × P) a set of directed edges connecting places and
transitions and cap : P → N>0 a function assigning each place a capacity.

The general idea is to model the execution of a code fragment utilizing
a Petri net where thread regions are the places and sync points the transi-
tions. Each thread region has a capacity limited to 1. Furthermore, addi-
tional places modeling channel buffers are introduced for individual channel
instances such that their capacity corresponds to the static buffer sizes of
the associated channels. Furthermore, occasionally, auxiliary places and
transitions have to be introduced to model uncertainty in cases where more
accurate information is not available. Auxiliary places also have a fixed
capacity of 1.

210 CHAPTER 4. ANALYSES

Definition 4.16 (execution net). Let C ⊂ P be a set of program points
creating channels, hence calls to the channel.create operator, and Ap and
At be two arbitrary set such that Ap∩R = Ap∩C = ∅ and At∩S = ∅, where
R is the set of thread regions and S the set of sync points. An execution
net is a Petri net graph with place capacities

(P, T,E, cap)

where places
P ⊂ R ∪ C ∪Ap

are program regions (R), channels identified by their creation points (C) or
auxiliary places (Ap) and transitions

T ⊂ S ∪At

are either sync points (S) or auxiliary transitions (At). The function cap is
defined by

cap(p) =

{
1 if p ∈ R
capacity(p) if p ∈ C

where capacity : C → N>0 determines the capacity of a channel which is
statically defined by its type.

Example 4.15 (execution net). The execution net of our running example
can be constructed as follows. We start with the set of thread regions already
obtained from the targeted code fragment. Hence we have obtain

A1

A2

A3

A4

A5

B1

B2

C1

C2

Next, for each sync point in the code fragment that is not the begin or end
of a thread or the analyzed code fragment we add a transition to the graph
connecting adjacent thread regions to obtain

4.4. FLOW-SENSITIVE ANALYSES 211

A1

(4, in)

A2

(5, in)

A3

(8, in)

A4

(9, in)

A5

B1

(6, in)

B2

C1

(7, in)

C2

In a next step we add the place representing the channel and connect it to
send and receive operations. We obtain

A1

A2

A3

A4

A5

B1

B2

C1

C2

2

c

where we dropped the labeling of transitions for clarity. Unlike the other
places, the capacity of the channel state may be bigger than 1. In the given
case its capacity is 2, which corresponds to its buffer size. In a final step

212 CHAPTER 4. ANALYSES

sync points spawning or merging threads are connected to the begin or end
of the corresponding threads. In our example this results in

A1

A2 B1

A3
C1 2c B2

C2 A4

A5

describing the dependencies between the involved thread regions.

Example 4.16 (execution graph with uncertainty). In the previous example
no auxiliary places and transitions have been necessary. However, to provide
a basic idea when those are necessary, consider the following labeled code
fragment:

para l l e l (job [1 , 1] ()⇒ [{
i f (<something>) {

[channe l . send (c , 2)] 2 ;
} e lse {

[channe l . r ecv (c)] 3 ;
}

}] 1) ;

The inner thread constitutes 4 thread regions

R1 = ((1, pre), (2, in))

R2 = ((1,pre), (3, in))

R3 = ((2, in), (1,post))

R4 = ((3, in), (1,post))

since the condition expression can not be determined statically. Besides
others, it can not be determined statically whether R1 or R2 is entered
when entering a thread. In those cases in-deterministic choices are added to
the execution net utilizing auxiliary places and transitions similar to

4.4. FLOW-SENSITIVE ANALYSES 213

X1

tx1 tx2

R1 R2

send recv

R3 R4

tx3 tx4

X2

Here X1,X2,tx1,. . . ,tx4 are auxiliary places and transitions. X1 becomes
the entry point of the thread to be connected to the parallel call of its parent
node and X2 the end point to be connected to a merge call. Other cases
caused by unknown information are covered using similar solutions.

Naturally, the introduction of auxiliary nodes may lead to less accurate
results. However, any program analysis necessarily has to be restricted to
approximations of the actual behavior encountered during the execution of
the analyzed code. The important restriction is that analyses, depending on
their objectives, produce over- or under-approximations of the actual results.
Hence, e.g. value analyses may result in to much possibilities, yet they must
never exclude values which may actually occur (over-approximation). The
approach of dealing with uncertainty in analyses outlined in the example
above is over-approximating the actual observable control flows since in an
actual execution only one of the two alternatives may be followed.

In a final step we obtain the program state graph from the execution graph
by computing the reachability graph according to the rules determined by
the underlying Petri net graph starting from an initial marking covering
only the entry region of the analyzed code fragment.

Definition 4.17 (markings). Let g = (P, T,E, cap) be a Petri net graph.
A valid marking m is a mapping P → N such that

∀p ∈ P . m(p) ≤ cap(p)

Let M be the set of all valid markings of g, p : T → 2P the function
mapping each transition in g to its predecessors and s : T → 2P the function
mapping each transition in g to its successors. Further, let the step relation

214 CHAPTER 4. ANALYSES

S ⊂M × T ×M be defined by

S ={(m, t, n) ∈M × T ×N |
(∀x ∈ p(t) . m(x) > 0) ∧
(∀x ∈ s(t) . m(x) < cap(x) ∨ x ∈ p(t))∧
(∀x ∈ P . n(x) = m(x)− κp(t)(x) + κs(t)(x))

}

where κS(x) is defined by

κS(x) =

{
0 if x /∈ S
1 if x ∈ S

Then the transition relation →g∈M ×M is given by

{(m,n) ∈M ×M | ∃t ∈ T . (m, t, n) ∈ S}

and connecting all markings m with possible markings n that can be reached
by firing a single transition.

In this section we only provided a brief introduction on Petri nets and
the associated semantic definitions. Interested readers may be referred to
the literature [81].

Definition 4.18 (program state graph). A program state graph of a given
execution net g is its transition relation →g restricted to reachable mark-
ings seeded by a marking assigning 1 to the thread region starting at the
beginning of the analyzed code fragment.

The program state graph therefore describes the state space of the exe-
cution net.

Example 4.17 (program state graph). To complete our running example
we obtain the following program state graph from the previously obtained
execution graph

4.4. FLOW-SENSITIVE ANALYSES 215

{A1}, c = 0

{A2, B1}, c = 0

{A3, B1, C1}, c = 0 {A2, B2}, c = 1

{A3, B2, C1}, c = 1

{A4, B2, C1}, c = 1 {A3, B2, C2}, c = 0

{A4, C2}, c = 0

{A5}, c = 0

where e.g. the label “{A3, B3, C1}, c = 0” corresponds to a marking where
thread regions A3,B3 and C1 are mapped to 1, hence processed concurrently,
the remaining regions are mapped to 0 and the place representing the chan-
nel c is mapped to 0 as well, indicating that there are currently no messages
in the channel buffer.

To each node of the state graph CBA analysis variables may be associ-
ated to formulate constraints among those. Those states may, for instance,
be utilized to model the value of a channel buffer before or after apply-
ing channel operations. Note that this kind of information can not, for
instance, be associated to individual program points within a thread since
without any activity within the local thread the buffer state may change
due to concurrent actions.

All those structures, including the set of sync points, the thread regions,
the execution net and the program state graph are intermediate results com-
puted as temporary results while analyzing a given program section utilizing
our CBA framework. They are not provided as an input. Consequently, data
and control flow results covered by the same analysis may influence those
structures and vice versa until a steady-state is reached.

Additional analysis may be built upon those structures. For instance,
potential dead locks can be identified based on the program state graph. An-
other analysis may identify race conditions by computing the set of memory
locations written to in every thread region and search for program state
graph nodes listing active thread regions accessing an overlapping set of lo-
cations. For instance, in our example thread regions A3, B1 and C2 are all

216 CHAPTER 4. ANALYSES

writing to the memory location referenced by the variable a. Since in the
obtained state graph A3 and B1 as well as A3 and C2 are active in the same
state a race condition has been identified.

4.4.3 The Constraint Solver

The foundation of the Insieme CBA framework is its constraint solver. Be-
sides covering the algorithm capable of obtaining least fixpoint solutions for
sets of constraints, its design also determines the shape of the supported
constraints and hence their flexibility and expressiveness for modeling data
and control flows.

In Section 4.4.1 a näıve algorithm for solving CBA constraints has been
presented while in this section the gradual improvements applied on this
algorithm towards the algorithm utilized for the Insieme CBA framework
are presented. Those include:

• utilizing worklists for reduced run-time complexity

• support for lazy generated constraints for reduced run-time complexity

• support for dynamic dependencies for increased flexibility

• support for local restarts for increased accuracy

Those incremental development steps are covered in detail in the following
sub-sections.

Basis: The Näıve Constraint Solver

As covered in the overview section, constraint-based analysis are separating
the extraction of constraints from some given input structure, e.g. a CFG,
an AST or others, from the actual resolution of the obtained constraints.
In the introduced setup constraints are formulas over a set of variables V of
the shape

g ⇒ t v v

where v ∈ V is a variable, g is a monotone guard predicate over the variables
V and t is an monotone term forming a lower boundary for the value to be
assigned to V according to the v relation associated to the property space
of v. A special case are constraints of the form

t v v

which are equivalent to

true⇒ t v v

Examples of constraints have been provided on page 195.

4.4. FLOW-SENSITIVE ANALYSES 217

Algorithm 4.1 A näıve Constraint Solver

Input: C . . . set of constraints of shape g ⇒ t v v
Output: A . . . a least fixpoint assignment satisfying all constraints in C

// Step 1: init A with the property spaces’ ⊥ values
A := ε
for v ∈ V do

A := A[v 7→ ⊥(v)]
end for

// Step 2: gradually fix unsatisfied constraints
while ∃(g ⇒ t v v) ∈ C . A(g) ∧ (A(t) 6v A[v]) do

A := A[v 7→ (A[v] tA(t))]
end while

An assignment A mapping values to the involved variables satisfies a
constraint g ⇒ t v v iff the evaluation of the guard predicate g under A,
denoted by A(g), is either false or the evaluation of t under A is less-or-equal
to the value assigned to the variable v according to its property space, which
is denoted by A(t) v A[v].

The näıve algorithm for obtaining a least fixpoint solution in the form of
a variable assignment A – as it already has been introduced in the overview
section – is summarized by Algorithm 4.1. In a first step the resulting as-
signment is initialized such that all variables are mapped to the ⊥ value of
their property space (see Definition 4.4). In a second step, unsatisfied con-
straints are located and the assignment is gradually updated to satisfy more
and more constraints until all of them are satisfied. Under the assumption
that all guards and lower boundaries are monotone and the property spaces
satisfy the Ascending Chain Condition the algorithm converges at a least
fixpoint solution after a finite number of steps [68].

However, while demonstrating the basic operation of a constraint solver,
the näıve approach suffers from weak performance due to the requirement
of searching for unsatisfied constraints in every iteration of the convergence
step. A deficit that can fortunately be compensated.

Step 1: A Worklist-Based Constraint Solver

Worklist algorithms, as they are well established for constraint solving [68],
exploit the fact that not all constraints are depending on variables constraint
by any other constraint and the fact that the actual dependencies can be

218 CHAPTER 4. ANALYSES

obtained statically. For instance, a constraint

true ∈ v1 ⇒ v2 v v3

constitutes a dependency between the variables v1,v2 and v3 such that when-
ever either v1 or v2 is modified the given constraint needs to be re-evaluated.
However, a modification of a distinct variable v4 would not effect this con-
straint, which therefore does not need to be re-checked.

A worklist algorithm utilizes this relation between constraints to keep
track of constraints that are required to be re-checked. It does so by storing
those into a list which is gradually processed and, in case variables are
updated, extended by depending constraints. Once this worklist reaches
an empty state, all constraints are known to be satisfied by the current
assignment.

The design of the actual worklist data structure and its operations can
have a big influence on the speed of convergence of the resulting algorithm.
FIFO, FILO or concepts focusing on strongly connected components of the
dependency graph formed by the various constraints may be considered [68].
To provide a generic description we utilize an abstract worklist implemen-
tation based on three abstract operators

• empty ∈ W . . . a constant representing an empty worklist

• insert : (W × 2C) → W . . . a function extending a given worklist by a
set of constraints

• extract : W → (C ×W) . . . a function computing the next constraint
to be processed and the worklist reduced by this constraint

where W is the set of all worklist instances and C the set of all constraints.
Algorithm 4.2 utilizes those operators to implement an improved version

of a constraint solver algorithm. The first step, the initialization of the
resulting assignment A, remains the same. However, in the second step, the
worklist is initialized with all constraints, since each constraint needs at least
to be considered once, before step 3 is processing constraints according to the
order determined by the worklist implementation. Whenever the evaluation
of a constraint leads to a modification of a value in the assignment, all
depending constraints are inserted to the worklist. Thereby, the term

{(g ⇒ t v x) ∈ C | v ∈ FV (g) ∪ FV (t)}

obtains those dependent constraints based on the free variables (FV) of the
guard predicates and lower boundary terms. Since the actual dependencies
are assignment-independent, those are typically obtained statically before
reaching the loop of the third step.

An improved variation may replace the static set of depending con-
straints by a dynamically obtained set as it is computed by Algorithm 4.3.

4.4. FLOW-SENSITIVE ANALYSES 219

Algorithm 4.2 A Worklist based Constraint Solver

Input: C . . . set of constraints of shape g ⇒ t v v
Output: A . . . a least fixpoint assignment satisfying all constraints in C

// Step 1: init A with the property spaces’ ⊥ values
A := ε
for v ∈ V do

A := A[v 7→ ⊥(v)]
end for

// Step 2: init worklist
W := insert(empty, C)

// Step 3: process worklist and gradually fix unsatisfied constraints
while W 6= empty do

((g ⇒ t v v),W) := extract(W)
if A(g) ∧A(t) 6v A[v] then

A := A[v 7→ (A[v] tA(t))]
W := insert(W, {(g ⇒ t v x) ∈ C | v ∈ FV (g) ∪ FV (t)})

end if
end while

Unlike the static version the function DEP CNSTR ignores dependencies
constituted by lower-boundary terms in case the associated guard predicate
is not satisfied. This reduces the number of constrains to be checked while
converging to a solution. However, it also increases the effort of obtaining
depending constraints since, due to its utilization of the current assignment,
constraint dependencies have to be re-computed upon every update of A.

The utilization of worklists are crucial for obtaining solvers achieving ac-
ceptable performance. Hence, they are widely utilized in practice. However,
they still depend on the full set of constraints being available as an input.
While for DFA, utilizing constraints not exhibiting guard predicates, all the
constraints typically have an influence on the analysis results, in a CBA
setup it might easily happen that the vast majority of constraints obtain-
able from some input code structure may be separated from the constraints
influencing desired results by unsatisfied predicates – a situation in partic-
ular encountered for context sensitive analysis where the vast majority of
representable program point is not reachable. Depending on the input code,
the fraction of constraints actually influencing desired analysis results can
be easily below 1 : 10.000. The overhead of extracting and processing the re-
maining, effectless constraints is significantly increasing the execution time

220 CHAPTER 4. ANALYSES

Algorithm 4.3 Depending Constraint Collector Function

Globals:
− A . . . current variable assignment

− C . . . current set of known constraints
Input:
− v . . . a variable for which all depending constraints should be obtained

Returns:
− all known constraints depending on the value of v

function DEP CNSTRS(v)
res := ∅
for all c = (g ⇒ t v x) ∈ C do

if v ∈ FV (g) ∨ (A(g) ∧ v ∈ FV (t)) then
res := res ∪ {c} . collect all depending constraints

end if
end for
return res

end function

of analyses by several orders of magnitude resulting in infeasible analyses.
Avoiding those steps is therefore crucial for obtaining a suitable analysis
infrastructure. Unfortunately, the decision on whether a constraint is effect-
ing the result is not a static property like constraint dependencies and may
hence be made only during the actual convergence process. Consequently,
the generation of constraints has to be dynamically incorporated into the
solver algorithm, as it is realized by our next development step – the lazy
constraint solver.

Step 2: A Lazy Constraint Solver

The restructuring of the algorithm to follow a lazy approach which is dy-
namically obtaining constraints upon demand requires to re-design the algo-
rithm’s interface. Instead of the full set of constraints C the lazy-algorithms
interface accepts two parameters: a set of variables Q ⊂ V the analysis is
targeting and a function gen : V → 2C capable of resolving all constraints
restraining the value of a given variable. The resulting assignment will map
the requested variables Q to the values they are assigned to in a least fixpoint
solution of the overall set of constraints.

The resolution of constraints is conducted by the function outlined by
Algorithm 4.4. It utilizes the constraint generator function gen to obtain
constraints for previously unresolved variables, initializes the value those
variables are mapped to by A to their property space’s ⊥ value and keeps

4.4. FLOW-SENSITIVE ANALYSES 221

Algorithm 4.4 Constraint Resolution Function

Globals:
− gen . . . a constraint generator function

− resolved . . . set of variables which have been previously resolved

− A . . . current variable assignment

− C . . . current set of known constraints
Input:
− vars . . . a set of variables for which constraints should be resolved

Returns:
− set of new constraints constraining the variables in vars

function resolve(vars)
c = gen(vars \ resolved) . obtain constraints of unresolved variables
for v ∈ vars \ resolved do

A := A[v 7→ ⊥(v)] . initialize new variables in A
end for
resolved = resolved ∪ vars . mark new variables as resolved
C = C ∪ c . collect all constraints
return c . return new constraints

end function

track of the full set of resolved constraints C.

Algorithm 4.5 summarizes the overall lazy constraint solver algorithm
based on the introduced utilities. In the first step, global values including
the resulting assignment A, the set of known constraints C and the set of
resolved variables are initialized. As for the worklist-based constraint solver
algorithm, the second step is initializing the worklist. However, unlike in
the previous case, the full set of constraints is replaced by the constraints
targeting the value of the queried variables Q. Furthermore, during the
gradual constraint resolution in the last step of the algorithm, additional
constraints for referenced variables are resolved on demand. Thereby the
influence of guard predicates is considered to keep the number of involved
constraints as small as possible.

Step 3: A Lazy Constraint Solver with Dynamic Dependencies

Besides the performance benefits of a lazy constraint solver approach gained
by avoiding the creation and processing of a vast majority of constraints
derivable from a given input code fragment, a lazy constraint solver fur-
thermore provides the opportunity to introduce additional flexibility in the
utilized constraint format.

222 CHAPTER 4. ANALYSES

Algorithm 4.5 A Lazy Constraint Solver

Input:
− Q . . . set of variables for which least fixpoint values are desired

− gen . . . a constraint generation function
Output:
− A . . . a least fixpoint assignment for the variables in Q

// Step 1: initialization
A := ε . init assignment
C := ∅ . init known constraint set
resolved := ∅ . init resolved variables

// Step 2: init worklist
W := insert(empty,resolve(Q)) . init and seed worklist

// Step 3: gradually converge to solution
while W 6= empty do

((g ⇒ t v v),W) := extract(W) . get next constrain

W := insert(W,resolve(FV (g))) . add guard dependencies
if ¬A(g) then continue . check guard

W := insert(W,resolve(FV (t))) . add boundary dependencies
if A[t] v A(v) then continue . check boundary

A := A[v 7→ (A[v] tA(t))] . update assignment
W := insert(W,dep cnstrs(v)}) . schedule dependent constraints

end while

For instance, as has been covered in the introduction to constraint based
analysis, the given constraint format does not support quantification (see
page 196). In the basic CBA setup a quantified constraint of the form

∀f ∈ F . (f ∈ F10 ⇒ {f(a, b) | a ∈ I11 ∧ b ∈ I12} ⊆ I13)

has to be encoded by explicitly enumerating all potential values of f similar
to

+ ∈ F10 ⇒ {a+ b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

− ∈ F10 ⇒ {a− b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

∗ ∈ F10 ⇒ {a ∗ b | a ∈ I11 ∧ b ∈ I12} ⊆ I13

. . .

4.4. FLOW-SENSITIVE ANALYSES 223

extended by constraints of the form

lf1 ∈ F10 ⇒ Ilable of body of f1 when called from expression 13 ⊆ I13

lf2 ∈ F10 ⇒ Ilable of body of f2 when called from expression 13 ⊆ I13

. . .

where lf∗ are the labels of functions of the input program. Those con-
straints model the effects of the evaluation of user defined functions and
closures. Hence, the corresponding list of constraints may quickly become
rather extensive when applying analysis on larger and larger code fragments.
However, by introducing support for assignment-dependent constraint de-
pendencies the quantification over the potential functions can be moved into
the boundary term to form the constraints⋃

f∈F10∩L
{f(a, b) | a ∈ I11 ∧ b ∈ I12} ⊆ I13⋃

f∈F10∩F
Ilable of body of f when called from expression 13 ⊆ I13

where in this context L is representing the set of operator literals and F
the set of user defined IR functions and closures. While, independently of
the assignment A, the set of variables the first constrain is depending on is
limited to {F10, I11, I12}, in the second case the set of variables the boundary
term depends on is depending on the value assigned to F10. The more
functions it may refer to, the more dependencies to different I∗ variables are
created.

However, unlike in the former case, where a large number of constraints
have to be enumerated to model this behavior, the quantification within the
constrain allows to model the same relations utilizing only two constraints.
Consequently, support for such constraints is desirable within our frame-
work.

Fortunately, the modifications to Algorithm 4.5 are small to integrate
dynamic constraint dependencies. Let T be the set of all guard and bound-
ary terms to be encountered within constraints. By adding an additional
function vars such that vars(t, A) ∈ 2V corresponds to the variables refer-
enced by term t ∈ T under an assignment A this additional feature can be
integrated by replacing every call FV (t) by vars(t, A) for every expression
t. In particular, the function obtaining all dependent constraints covered by
Algorithm 4.3 is updated to the version described by Algorithm 4.6.

Besides the increased flexibility and reduced number of constraints in-
volved in an analysis, this modification also introduces the foundation for
the introduction of variables and constraints based on the values assigned
to other variables. For instance, the execution net and program state graph
are values assigned to variables associated to the full program, hence vari-
ables representing global information. However, variables may be attached

224 CHAPTER 4. ANALYSES

Algorithm 4.6 Dynamic Depending Constraint Collector Function

Globals:
− A . . . current variable assignment

− C . . . current set of known constraints

− vars . . . function resolving variable dependencies of terms
Input:
− v . . . a variable for which all depending constraints should be obtained

Returns:
− all known constraints depending on the value of v

function DEP CNSTRS(v)
res := ∅
for all c = (g ⇒ t v x) ∈ C do

if v ∈ vars(g,A) ∨ (A(g) ∧ v ∈ vars(t, A)) then
res := res ∪ {c} . collect all depending constraints

end if
end for
return res

end function

to elements of those structures and constraints may be formulated among
those. Therefore, during the course of it evaluation an analysis may process
variables based on structures not known at the start of the analysis. Among
other consequences, analyses built on top of our CBA framework can be com-
bined into a single set of constraints processed by one instance of the solver
algorithm. In particular, preparation steps obtaining the parallel structure
of a code fragment and the actual analysis of this structure is not required
to be separated into multiple passes as in other approaches [51, 115]. By
combining several analyses utilizing a unified single-stage framework pro-
vides the opportunity of forwarding information between analyses such that
they may mutually benefit from intermediate results. An example situation
benefiting from such a combination is the combination of control and data
flow equations as has been covered in the overview section introducing the
general approach of constraint based analysis.

Final Step: Supporting Local Restarts

The last modification developed for the constraint solver algorithm of the In-
sieme CBA framework is motivated by a more subtle issue encountered when
analyzing parallel applications. Consider the following IR code fragment:

4.4. FLOW-SENSITIVE ANALYSES 225

auto x = var (in t <4>) ;
x := 1 ;
merge(para l l e l (job [1 , 1] ()⇒ {

i f (c) x := 2 ; e lse x := 3 ;
})) ;
∗x ;

It creates a mutable memory location, initializes it with the value 1, spawns
a thread updating the value to 2 or 3 depending on a undetermined condition
c, merges the spawned thread group and obtains the value of the location.
Clearly, the obtained value should be 2 or 3 since the joining thread has been
merged and the inner assignment definitely happened after the initialization.
Definitely 1 should not be included in the set of potential values. A static
code analysis should be capable of determining this situation.

Parallel Data Flow Analysis An analysis capable of obtaining this re-
sult may be design as follows. For each program point and memory location
the set of reachable and killed definitions is obtained. Whenever a value
is read, the set of reachable definitions are queried for the assigned values.
The foundation of the analysis is given by some (implicit) graph structure
similar to

A: x := 1

B: ∅

D: x := 2 E: x := 3

F: ∅

C: ∅

G: ∗x

where the nodes are limited to the relevant parts regarding the data stored
in the location referenced by the variable x. When applying standard data
flow analysis on the given graph structure one would obtain the result that
in block G the value of ∗x is 1, 2 or 3 since this is the result corresponding
to the meet-over-all-paths solution obtained by a DFA analysis. However,
more accurate results can be obtained when distinguishing sequential and
parallel control edges, based on a graph

226 CHAPTER 4. ANALYSES

A: x := 1

B: ∅

D: x := 2 E: x := 3

F: ∅

C: ∅

G: ∗x

where dashed edges are parallel edges and solid lines are sequential edges.
While diverging paths formed by parallel edges are paths followed by concur-
rent execution paths, solid edges are optional paths where only one option
is to be followed by a sequential thread – e.g. either the then or else branch
of a condition.

For determining the value of x in block G we compute the killed defini-
tions and the reaching definitions at the begin and end of every block. For
killed definitions the corresponding constraints for a node x are given by

KDi[x] ⊇
⋃

y∈p-pred(x)

KDo[y] ∪
⋂

y∈s-pred(x)

KDo[y]

and

KDo[x] ⊇ KDi[x] ∪

{
RDi[x] if location is upated in x

∅ otherwise

where KDi[x] is the variable describing the killed definition reaching the
entry of a block x, KDo[x] the killed definitions reaching the end of a block
x, RDi[x] is the set of reaching definitions at the begin of block x, p-pred(x)
lists the predecessors of block x reaching x via a parallel edge and s-pred(x)
the predecessors of block x reaching x via a sequential edge. Reaching
definitions are defined by the constraints

RDi[x] ⊇

 ⋃
y∈p-pred(x)

RDo[y] ∪
⋃

y∈s-pred(x)

RDo[y]

 \KDi[x]

and

RDo[x] ⊇

{
{x} if location is upated in x

RDi[x] otherwise

where RDo[x] represents the definitions reaching the end of block x. Both,
the outlined constraints for killed and reaching definitions are regarding a

4.4. FLOW-SENSITIVE ANALYSES 227

single memory location. In the actual implementation support for multiple
locations needs to be added by tracing the definitions for each location
individually.

The constraints demonstrate how the different kind of edges are utilized
to model the different effects of joining parallel and sequential control flows
in the graph illustrated above. While merging parallel control flows which
are guaranteed to have happened, only one of the reaching sequential control
flow paths is actually processed during the execution of the analyzed code
fragment. Hence killed definitions along parallel edges can be aggregated
using the union operator while killed definitions along sequential edges have
to be intersected.

When solving the given constraints utilizing the algorithms presented so
far, the result for RDi[G] could be either {A,D,E} or {D,E} depending
on the order in which constraints are processed – the corresponding com-
putation is left as an exercise. While both are correct solutions, the latter
is a more desirable solution due to its higher precision. The reason for the
fact that the obtained result is not unique, independent of the order of pro-
cessed constraints, is the fact that the boundary term provided for RDi[x] is
not a monotone expression since the utilized set-difference operation is not
monotone. Consequently, since monotonicity is one of the precondition of
the algorithms to obtain unique least fixpoints, the produced results do not
satisfy those criteria any more.

One option would be to accept the varying quality of solutions. Another
would be to replace the constraint by a weaker, yet monotone version. Yet
another is to introduce limited support for none-monotone constraints like
those into the constraint solver algorithm to ensure that the more accurate
solution is always obtained – which is the option we chose for our framework.

Global Monotonicity Essentially monotonicity is required to guarantee
the confluence of the full system of constraints. Traditionally this is ensured
by restricting all constraints to be monotone. However, this limitation can
be relaxed by demanding that the combination of all constrains have to have
a monotone effect on the evolving solution instead of a monotone effect on
the individual values assigned to analysis variables.

In the traditional interpretation the following restriction has to be valid:
Let A1 and A2 be two assignments such that for every variable x we have

A1[x] v A2[x]

Then, by definition, for all constraints g ⇒ t v v we have

A1(g)⇒ A2(g)

and
A1(t) v A2(t)

228 CHAPTER 4. ANALYSES

due to the monotonicity of the predicate g and term t. Hence, thev relations
of the involved property spaces induce a order on the assignments according
to which a least fixpoint will be obtained by the constraint solver. However,
such an order on variable assignments can still exist even if not all involved
constraints are monotone. And only this order on the assignments is essential
for the existence of a least fixpoint.

Local Restarts In our constraint solver algorithm none-monotone guard
and boundary expressions are supported by tracing their values whenever the
corresponding constraints are evaluated. As long as in every iteration their
value is “larger” than during the last evaluation, the algorithms is behaving
as usual. However, in case a term evaluates to a value that is “less” than
in the previous iteration, the value assigned to the targeted variable of the
currently processed constraint and the assignments of all variables depending
on it are “forgotten” by resetting them to the corresponding ⊥ value iff there
is no circular dependency. This modifications introduces support for none-
monotone constraints like the set-difference based constraint utilized for the
reaching definitions analysis outlined above.

The designed solution corresponds to a trial-and-error approach where
restrictive assumptions may be made, e.g. that no killed definitions reach
a certain block, and if proven wrong during the course of the analysis,
this assumption is dropped and the computation of the depending values
is restarted from the beginning. However, if the assumption is not violated
more accurate results can be obtained.

To integrate this trial-and-error support into our constraint solver al-
gorithm two utility functions are required. The first computes the set of
variables depending on a given variable. A näıve version of such an opera-
tion is given by Algorithm 4.7. The other required utility is conducting the
actual reset of a variable and all elements depending on it and is given by
Algorithm 4.8. Based on those utilities the final version of the constraint
solver algorithm utilized by the Insieme CBA framework is summarized by
Algorithm 4.9.

4.4.4 The Property Space Framework

The aim of the Insieme CBA framework is to provide an infrastructure for
the development of static program analyses based on the Insieme IR. To
specify an analysis three elements are required:

• a identifier for naming associated variables

• a property space determining the domain of associated variables and
corresponding operators and

4.4. FLOW-SENSITIVE ANALYSES 229

Algorithm 4.7 Depending Variable Collector Function

Globals:
− A . . . current variable assignment

− C . . . current set of known constraints

− vars . . . function resolving variable dependencies of terms
Input:
− vs . . . variables for which all depending variables should be obtained

Returns:
− all variables depending on elements of vars

function DEP VARS(vs)
all := vs . computes transitive closure
dep := ∅ . computes depending variables
repeat

tmp := dep
for all c = (g ⇒ t v x) ∈ C do

if all ∩ vars(g,A) 6= ∅ ∨ (A(g) ∧ all ∩ vars(t, A) 6= ∅) then
all := all ∪ {x} . collect transitive closure
dep := dep ∪ {x} . collect all depending variables

end if
end for

until dep = tmp . full closure covered
return dep

end function

• a constraint generator to be utilized by the constraint solver to obtain
constraints on the associated variables on demand

In previous examples identifiers including A, B and F have been utilized for
variables associated to arithmetic, boolean or function value analyses. All
variables associated to a given analysis have the same property space and the
constraints on those are created by a single constraint generator instance.
While the selection of the identifier is left completely to the developer of the
analysis, for the latter two, generic utilities simplifying the corresponding
task are provided.

This section focus on the requirements imposed on property spaces to
be utilized by the Insieme CBA framework as well as a set of generic utili-
ties provided to handle those. The corresponding tool support for defining
constraint generators is covered in the following Section 4.4.5.

230 CHAPTER 4. ANALYSES

Algorithm 4.8 Local Reset Procedure

Globals:
− A . . . current variable assignment

Input:
− v . . . the variable seeding the closure of variables to be reset

function reset(v)
D =DEP VARS({v}) . obtains all depending variables
if v /∈ D then . only reset if there is no cyclic dependency

A := A[v 7→ ⊥(v)] . reset value of v
for all x ∈ D do

A := A[x 7→ ⊥(x)] . reset depending variables
end for

end if
end function

Extended Property Spaces

The foundation of every static program analysis is laid by the design of the
associated property space (L,

⊔
) based on a set of values L and a combination

operator
⊔

. A formal definition for those and derived entities is provided
by Definition 4.4.

The given definition has been introduced in the context of conventional
data flow analysis for sequential programs and inherited by the constraint
based analysis approach. Each variable is mapped to an element of L and,
in case multiple options are possible, e.g. due to converging control flows,
the combination operator

⊔
is utilized to obtain the value to be associated

to the affected variable.

However, as has been covered in the introduction to parallel data flow
analysis on page 225 et seqq., analyses targeting parallel codes may benefit
from the distinction of sequential and parallel control flows. Multiple se-
quential control flow paths reaching or leafing a node in a control flow graph
are indicating uncertainty, e.g. introduced by a conditional statement. To
the contrast, multiple parallel control flow paths reaching or leaving a node
represent a merge or spawn point of concurrent control flows. In the latter
case no uncertainty is involved. Hence, for sequential incoming or outgoing
paths only one of the potential paths is actually followed during the course
of the program execution while in the parallel case all incoming or outgoing
paths are followed. This additional information can be exploited by analyses
to improve the accuracy of results as has been demonstrated earlier.

To enable analyses to provide different means for merging the effects of
sequential and parallel control flow paths we extend the definition of property

4.4. FLOW-SENSITIVE ANALYSES 231

Algorithm 4.9 A Lazy Constraint Solver Algorithm with Local Restarts

Input:
− Q . . . set of variables for which least fixpoint values are desired

− gen . . . a constraint generation function

− vars . . . function resolving variable dependencies of terms
Output:
− A . . . a least fixpoint assignment for the variables in Q

// Step 1: initialization
A := ε . init assignment
C := ∅ . init known constraint set
resolved := ∅ . init resolved variables

// Step 2: init worklist
W := insert(empty,resolve(Q)) . init and seed worklist

// Step 3: gradually converge to solution
while W 6= empty do

((g ⇒ t v v),W) := extract(W) . get next constrain

W := insert(W,resolve(vars(g,A))) . add guard dependencies
if ¬A(g) and A(g) was valid the last time then reset(v)
if ¬A(g) then continue . check guard

W := insert(W,resolve(vars(t, A))) . add boundary dependencies
if last A[t] evaluation 6v A[t] then reset(v)
if A[t] v A(v) then continue . check boundary

A := A[v 7→ (A[v] tA(t))] . update assignment
W := insert(W,dep cnstrs(v)}) . schedule dependent constraints

end while

spaces by an additional component.

Definition 4.19 (extended property space). An extended property space is
given by a triple

(L,
⊔
, ⊔)

where (L,
⊔

) is a property space and ⊔: 2L → L is a second combination
operator such that ⊔∅ = ⊥ and ⊔{l1, . . . , ln,⊥} = ⊔{l1, . . . , ln} for all
l1, . . . , ln ∈ L. Further, let the binary operator u : L×L→ L be defined by
l1 u l2 = ⊔{l1, l2}.

232 CHAPTER 4. ANALYSES

⊔ ⊔

one-of-a-set all-of-a-set
Analysis L combinator combinator

reaching definitions set of program points ∪ ∪
killed definitions set of program points ∩ ∪

Table 4.1: Examples of Extended Property Spaces.

The first combination operator t of an extended property space is uti-
lized to merge the effects of optional paths reaching a given program state,
e.g. the two branches merged after a conditional statement. The second
combination operator u, however, is used to merge the effects of two paths
reaching a program point such that both paths have definitely been exe-
cuted, e.g. when joining threads utilizing a merge operator call. The t is
hence merging paths where only one-of-a-set is actually been followed while
u merges sets of paths where all of them have been processed.

Example 4.18 (extended property spaces). Two extended property spaces
for well known analyses are outlined by Table 4.1. The property space of
reaching definitions consist of a set of program points referencing defini-
tions for which the one-of-a-set combination operator and the all-of-a-set
combination operator corresponds to the union operator since if any of the
joined parallel or sequential control flows contributes a definition it is to be
included in the definitions reaching a program point. To the contrast, an
analysis targeting killed definitions may utilize set intersection for the one-
of-a-set combination operator while using a set union for the all-of-a-set
operator. The former, since it has to assume the most conservative of all
the options and the latter since it can be sure that all paths have actually
been processed.

Both combination operators are utilized by the generic constraint gen-
erators to be covered in the following section, which provide the foundation
for the definition of the corresponding constraint generation components of
an analysis. In particular analysis associating variables to program points
are benefiting from the all-of-a-set combinator (see page 249 et seqq.).

Property Space Constructors for Composed Values

Besides the adaptation of the definition of property spaces for handling
combinations of sequential and parallel control flows, designers of property
spaces for IR based analyses are confronted by another problem. Let’s con-
sider the following code fragment:

auto a = struct { x = 10 , y = 12 } ;

4.4. FLOW-SENSITIVE ANALYSES 233

What is the value of the variable a when applying an arithmetic analysis
trying to obtain a set of potential values for expressions? Should it be {10},
{12} or {10, 12}? Probably the last option, since it summarizes all the values
of the included member fields. However, if we extend it to

auto a = struct { x = 10 , y = 12 } ;
a . x ;

we would like the expression a.x to be associate with the value {10} only.
However, if the variable a is mapped to {10, 12}, how does the analysis know
which value represents the value of the member field x? Also, following this
simple approach, the more complex the type of variable a gets, the more
inaccurate the projection to member fields becomes.

Similar examples can be provided for union, arrays and vectors. All
of those represent constructors for composing values to form more com-
plex structures. In our high-level IR single expressions may represent huge
amounts of composed data, organized into hierarchically structured objects
of types formed by combining various type constructors.

To the contrast, in a low-level IR, variables represent individual registers
of a processor. Hence, each of those may only represent a single machine
word, e.g. a integer value, a memory address or a boolean value. In general,
no structured data is encountered. However, within the Insieme infrastruc-
ture based on its high-level IR the challenge imposed by composed values
has to be faced by developers of analyses. The benefits of preserving high-
level type information and other structures comes at the price of actually
having to deal with those in analyses.

Overview on Modeling Composed Values As has been outlined dur-
ing the introduction of property spaces, structures wrapping given property
spaces can form new property spaces. Examples illustrating the composition
of a list of property spaces as well as an example utilizing a given property
space as the value-set of a partial mapping have been demonstrated. In the
following we will define another, generic way to construct a representation
of hierarchical data based on a given property space.

Let (L,
⊔

) be an arbitrary property space. The basic idea is to trans-
form it into a property space capable of representing values of hierarchically
composed values by constructing a property space where every element is a
tree. The leaf notes of those trees are elements of the value set L while the
inner nodes resemble the structure of the represented, composed values.

For instance, let (L,
⊔

) = (2Z,
⋃

) be a property space utilized for de-
ducing the arithmetic value of variables. The idea is to present the value of
the expression

struct { x = 10 , y = 12 }

by a tree similar to

234 CHAPTER 4. ANALYSES

{10}

x

{12}

y

where the root of the tree models the full structure and the edges describe the
path to sub-structures. The leaf nodes correspond to values of the original
property space.

Consequently, values may also be nested. For instance, the expression

struct { p = struct { x = 10 , y = 12 } , n = 14 }

is represented by the value

p

{10}

x

{12}

y {14}

n

Also, scalar values like the value of the literal 10 can be represented utilizing
the special case of a tree

{10}

consisting only of a root note. Further, the descriptive power of the hierar-
chical composition need not be limited to fields of structs. For instance, the
value of the expression

struct { p = ve c t o r . c r e a t e ([8 , 7] , 8) , n = 14 }

can be modelled by

p

{7}

1

{8}

0

Z

*

{14}

n

where the indices 0 and 1 are utilized to address specific elements of a vector
and ∗ as an index covering all the remaining elements. Since only the first
two of the 8 elements of the constructed array is initialized, the value of the
remaining 6 elements remains undefined and needs therefore be modeled by
the > value of the utilized property space which corresponds to Z.

4.4. FLOW-SENSITIVE ANALYSES 235

A Property Space Constructor for Composed Values In the fol-
lowing a formal definition for a tree-based property space constructor is
provided. In a first step we have to provide a definition for the index sets
to be used for labeling edges in the utilized trees.

Definition 4.20 (data index). A data index is given by a triple

(I,t, π)

where I is an arbitrary set, t : (2I × 2I) → 2I a union operator for sets of
elements of I and π : (2I × I)→ 2I a projection operator.

Based on this abstract data index definition the tree-based property
space constructor is defined as follows:

Definition 4.21 (tree based property space constructor). Let P = (L,
⊔

)
be a property space and Lt(P) be the smallest set such that

• L ⊆ Lt(P), hence every element of L is in Lt(P) and

• for any data index I = (Ix,tx, πx) we have (I, C) ∈ Lt(P) where
C ⊆ (Ix × Lt(P))

Further, let the combination operator
⊔
t(P) : 2Lt(P) → Lt(P) be defined by

⊔
t(P)

T =

{
⊥P if T = ∅
t1 tt(P)

⊔
t(P){t2, . . . , tn} if T = {t1, . . . , tn}

where ⊥P ∈ L is the bottom element of the property space P and the binary
operator tt(P) : (Lt(P) × Lt(P))→ Lt(P) is given by

t1 tt(P) t2 =

t1 if t2 = ⊥P
t2 if t1 = ⊥P
l1 t l2 if t1 = l1 ∈ L and t2 = l2 ∈ L
(I, C1 tIx C2) if t1 = (Ix, C1) and t2 = (Ix, C2)

>P otherwise

where the operator tIx : (2Ix×Lt(P) × 2Ix×Lt(P))→ 2Ix×Lt(P) is given by

C1 tIx C2 =
⋃

i∈(I(C1)txI(C2))

 ⊔
i1∈πx(I(C1),i)

T (C1, i1) t
⊔

i2∈πx(I(C2),i)

T (C2, i2)

where t = tt(P), tx and πx are the operators associated to the data index

Ix, I : 2I×Lt(P) → 2I is defined by

I(C) = {i ∈ I | ∃t ∈ Lt(P).(i, t) ∈ C}

236 CHAPTER 4. ANALYSES

and T : (2I×Lt(P) × I)→ Lt(P) is defined by

T (C, i) =

{
t if (i, t) ∈ C
⊥ otherwise

Then the pair (Lt(P),
⊔
t(P)) is a property space as well.

Every element t ∈ Lt(P) of a tree-value property space derived from
a property space P is a tree where every inner node consists of a list of
sub-trees indexed by some data index Ix and the leaves are elements of the
property space P . The necessary combination operator tt(P) of the com-
posed property space is merging tree instances on a per-node basis utilizing
the union t and projection operators π of the corresponding data indices as
well as the combination operator t of the underlying property space P . Sim-
ilarly, a all-of-a-set combination operator ut(P) can be defined by utilizing
the u operator of the property space P instead, yet its formal introduction
has been skipped for brevity. However, tree-value property space construc-
tors can equally be utilized to obtain extended property spaces based on a
corresponding extended property space P .

Every node within the tree may utilize an individual data index, provid-
ing support for arbitrary compositions of data. For instance, structs may
utilize indices based on names while arrays or vectors may utilize some sort
of numerical indices. To illustrate their utilization, a few examples shall be
provided.

Example 4.19 (nominal data index). Let A be an arbitrary set, e.g. a set
of sequences over an alphabet A. A nominal index is given by

(In,tn, πn)

where the index set In is given by

In = A

the union operator tn : (2In × 2In)→ 2In is given by

tn(i1, i2) = i1 ∪ i2

and the projection operator πn : (2In × In)→ 2In is given by

πn(i, e) = i ∩ {e}

Hence, to obtain the fraction referenced by an name e ∈ In from a set of
partitions addressed by indices i ⊆ In the fraction addressed by e is selected
if present or none otherwise. An example of the utilization of a nominal
index for merging information is given by

4.4. FLOW-SENSITIVE ANALYSES 237

{1}

x

{2}

y t

{3}

x

{4}

z =

{1, 3}

x

{2}
y

{4}

z

where the operator t is the combination operator of the tree value property
space of Definition 4.21. The set of edge labels of the resulting tree value is
computed utilizing the tn operator. The value referenced by a index element
i in the resulting tree is computed by combining the values referenced by the
indices πn({x, y}, i) and πn({x, z}, i) in the first and second tree respectively.

Nominal indices based on identifiers as index set are utilized in the In-
sieme CBA framework to model the fields of structs according to the exam-
ples provided in the motivation above. However, other structures, including
unions, arrays and vectors can not be covered like this. For those other
indices are required.

Within unions all fields are mapped to a common data element. Hence,
a corresponding data index is required.

Example 4.20 (unit data index). Let unit be an arbitrary token. The unit
data index is given by the tuple

(Iu,tu, πu)

where Iu = {unit}, the operation tu : (2Iu × 2Iu)→ 2Iu is defined by

tu(i1, i2) = i1 ∪ i2

and the projection operator πu : (2Iu × Iu)→ 2Iu is given by

πu(i, e) = πu(i,unit) = i

For the projection operator, e ∈ Iu has to be the unit constant, and i ⊆ Iu
can only be the empty set ∅ or {unit}. Hence, the list of fragments to be
inspected when accessing the element unit in a list of alternatives baring
the labels i ⊆ Iu is equivalent to i. Nodes in value trees utilizing the union
data index may at most exhibit a single child node reached through a edge
labeled unit.

The unit index may also be utilized for modeling arrays – an approach
known as array smashing where all elements of an array are considered to
be a single element [16]. While efficient in terms of memory requirements
and computational complexity, more sophisticated indices can increase the
precision of analysis. One of those designed for the Insieme CBA framework
is the single data index.

238 CHAPTER 4. ANALYSES

Example 4.21 (single data index). The single data index is given by the
tuple

(Is,ts, πs)

where Is = Z ∪ {∗}, the union operator ts : (2Is × 2Is)→ 2Is is defined by

t(i1, i2) = i1 ∪ i2

and the projection operator πs : (2Is × Is)→ 2Is is defined by

πs(i, e) =

{e} if e 6= ∗ ∧ e ∈ i
{∗} if e 6= ∗ ∧ e /∈ i
i if e = ∗

For instance, if there are elements referenced by 2, 3 and ∗ and the value
associated to index 2 shall be obtained, the projection operator redirects the
extraction to the element associated to index 2. If the element 1 should be
read, the projection maps the read operation to the element referenced by
the ∗ symbol and in case the unknown index ∗ is read all fragments have to
be considered, as realized by πs({2, 3, ∗}, ∗) = {2, 3, ∗}. An example of the
utilization of the simple data index is given by

{1}

1

{2}
* t

{3}

3

{4}
* =

{1, 4}

1

{3, 2}
3

{2, 4}

*

Note that e.g. the value assigned to the index 1 in the resulting tree value
is the union of the value 1 is mapped to in the first tree and the value ∗ is
mapped to in the second tree. This behavior is specified by the projection
function πs.

The simple data index for arrays and vectors enables the representation
of specific values stored within individual elements of an array as well as
an aggregated representation of the remaining elements referenced by the
∗ index. However, a problem of the simple data index is that in case of a
range of elements sharing a common property the only way to model this is to
explicitly enumerate all involved indices. An alternative potentially utilizing
less memory and associated computational overhead for those situations is
offered by the range-based data index.

Example 4.22 (range based data index). Let

R = {(a, b) ∈ (Z ∪ {−∞})× (Z ∪ {∞}) | a ≤ b}

be a set of ranges such that an element (a, b) ∈ R represents the set of
integers

(a, b) = {x ∈ Z | a ≤ x < b} ⊆ Z

4.4. FLOW-SENSITIVE ANALYSES 239

For instance, (3, 6) ∈ R corresponds to the set {3, 4, 5} ⊂ Z, (−∞, 2) ∈ R
corresponds to the set {x ∈ Z | x < 2} = {. . . ,−1, 0, 1} ⊂ Z and (−∞,∞) ∈
R to Z. Also, for any x ∈ Z we have (x, x) = ∅ ⊂ Z. The intersection
operator ∩ : R×R → R is defined by

r1 ∩ r2 = (a1, b1) ∩ (a2, b2) = (max(a1, a2),max(max(a1, a2),min(b1, b2)))

and extended to sets of ranges by the operator ∩ : 2R×2R → 2R defined by

R1 ∩R2 = {r1 ∩ r2 | r1 ∈ R1 ∧ r2 ∈ R2 ∧ (r1 ∩ r2) 6= ∅}

Also, let the set difference operator \ : R×R → 2R be given by

r1 \ r2 = (a1, b1) \ (a2, b2) =

∅ if a2 ≤ a1 < b1 ≤ b2
{(a1, b1)} if b1 ≤ a2 or b2 ≤ a1

{(a1, a2)} if a1 < a2 < b1 ≤ b2
{(b2, b1)} if a2 ≤ a1 < b2 < b1

{(a1, a2), (b2, b1)} if a1 < a2 < b2 < b1

Note that the set R is not closed under set difference. Hence the result
of r1 \ r2 is of type 2R. Furthermore, let the \ operator be overloaded
to allow sets of ranges to be subtracted from a given range by defining
\ : R× 2R → 2R as

r \R =

{
r if R = ∅⋃
s∈r\r1 s \ {r2, . . . rn} if R = {r1, . . . , rn}

and be further extended to sets of ranges by defining the operator \ : 2R ×
2R → 2R by

R1 \R2 =
⋃
r∈R1

r \R2

The range based data index is given by the tuple

(Ir,tr, πr)

where Ir = R, the union operator tr : (2R × 2R)→ 2R is defined by

tr(r1, r2) = (r1 ∩ r2)] (r1 \ (r1 ∩ r2))] (r2 \ (r1 ∩ r2))

where the operators ∩ and \ are the operators defined above and the operator
] is the union operator for disjoint sets. Finally the projection operator
πr : (2R ×R)→ 2R is defined by

πr(R, r) = {s ∈ R | s ∩ r 6= ∅}

hence, the set of all regions in R ⊆ R intersecting with the given region
r ∈ R. An example application is illustrated by

240 CHAPTER 4. ANALYSES

{1}

(0, 3)

{2}

(3,∞) t

{3}

(0, 5)

{4}

(5,∞) =

{1, 3}

(0, 3)

{2, 3}

(3, 5)

{2, 4}

(5,∞)

which is utilizing the range based data index to model the arithmetic values
of e.g. an array instance of unknown length.

The range-based data index demonstrates how advanced index sets can
be integrated through the abstract index operator interface comprising t
and π. More complex and specialized indices may be integrated through the
given abstract interface, covering e.g. higher-dimensional arrays or high-
level data structures like sets or maps.

Finally, to demonstrate the support for modeling more deeply nested
values, a concluding example combining structs and vectors within a nested
data structure shall be provided.

Example 4.23 (heterogeneous composed values). Consider the code frag-
ment

auto a =
(c) ?
struct { p = ve c t o r . c r e a t e ([1 , 2] , 2) , n = 12 }

:
struct { p = ve c t o r . c r e a t e ([2 , 1] , 2) , n = 12 } ;

where the variable a is, depending on the value of the condition expression
c initialized by one out of two values. The first values is given by

p

{1}

0

{2}

1 {12}

n

and the second by

p

{2}

0

{1}

1 {12}

n

Due to the control constraints determined by the involved control flow the
value assigned to a is the combination of those two values, assuming c can
not be statically determined. Hence, the value of a is given by

4.4. FLOW-SENSITIVE ANALYSES 241

p

{1}

0

{2}

1 {12}

n

t

p

{2}

0

{1}

1 {12}

n

=

p

{1, 2}

0

{1, 2}

1 {12}

n

summarizing the most accurate value that can be obtained for all the in-
volved fields.

Preserving Field Relations The utilized tree-based property space con-
structor is capable of capturing minimal (over-)approximations for the values
of the involved fields. However, relations between potential values are not
preserved. Consider, for instance, the following example:

auto a =
(c) ?

struct { x = 1 ; y = 1 ; }
:

struct { x = 2 ; y = 2 ; } ;

auto b = struct { x = 1 ; y = 2 ; } ;

i f (a == b) { . . . }

Based on the tree-based property space introduced above, the value of vari-
able a is represented by

{1, 2}

x

{1, 2}

y

from which the values of its fields can be extracted. For instance, the value
of a.x is properly obtained to be {1, 2}. However, the value of a itself may be
any of the set {(1, 1), (1, 2), (2, 1), (2, 2)}. Consequently, when comparing it
with the value of b which is fixed to {(1, 2)}, while analyzing the conditional
expression in the last code line, the result will be a maybe since neither
true or false can be excluded. However, by inspecting the given code frag-
ment it can be obtained that the condition a==b can never be satisfied –
independently of the value the expression c evaluates to.

The cause for this over-approximation of the value of the conditional
expression is the fact that the utilized tree-based property space is designed
to cover the value of the involved fields, yet not their relations. A problem
that can be covered by extending the representation of values form individual
trees to forests.

Definition 4.22 (forest based property space constructor). Let P = (L,
⊔

)
be a property space and Lt(P) be the derived set of trees as introduced

242 CHAPTER 4. ANALYSES

in Definition 4.21 and Lf(P) = 2Lt(P) be a set of forests. Further, let the

combination operator
⊔
f(P) : 2Lf(P) → Lf(P) be defined by⊔

f(P)
F =

⋃
f∈F

f

Then the pair (Lf(P),
⊔
f(P)) is a property space as well.

In a forest based property space the value of an expression is represented
by a set of trees (= a forest) instead of an individual tree as utilized by a tree
based property space introduced above. For the example above, the value of
the variable b would be represented by

{1}

x

{2}

y
{ }

and the value of variable a be represented by

{1}

x

{1}

y

{2}

x

{2}

y
{

,

}

from which can be deduced that the value of a will never be equivalent to
the value of b.

Note that that beside the top-level set also the leafs still represent sets
of potential values for the involved fields. Those are still required to model
uncertain values to be assigned to sub-structures.

Also, the definition of forest based property spaces seem simpler than
tree based property spaces since the index operator t and π are not utilized.
However, when those are still required when extracting the value of fields
and elements of a composed structure. Those operations have to be incorpo-
rated into the corresponding value constraints generated by the constraint
generators feeding the constraint solver algorithm covered in the previous
section. The utilities offered by the Insieme CBA framework to support the
implementation of constraint generators are covered next.

4.4.5 The Constraint Generator Framework

The Insieme CBA framework provides a generic tool set for the development
of analyses based on the Insieme IR. Among others it provides generic imple-
mentations of constraint generators – as they are required by the lazy con-
straint solver – for the various types of variables introduced in the overview
section (see page 199). Those included:

• Labeled Expressions with call and thread contexts

4.4. FLOW-SENSITIVE ANALYSES 243

• Program Points addressing states before, during or after the processing
of a labeled expression

• Whole-Program values covering a property that can not be attributed
to a smaller entity and

• Program State Graph Nodes in particular for modeling channel states
which can not be associated with individual threads

This section provides an overview on those generic constraint generators by
outlining the services they are contributing.

Constraint Generators

One of the key components of the CBA framework is a set of generic con-
straint generators to be customized for specific analysis, as they are required
for the lazy constraint solving algorithm developed in Section 4.4.3. The ab-
stract signature of the generator function has been given by

gen : V → 2C

where V is the set of analysis variables and C the set of valid constraints.
In the framework each variable is specified by a pair

(X, id)

which we frequently denote as
Xid

where X determines the analysis the variable has been introduced by and
thus its property space, and the id some structure the variable is associated
to, e.g. a label of an expression including its node instance address, call
context and thread context or a program program point. For instance,
let l = (i, c, t) ∈ I be a node label addressing some expression instance
and context. Then the variable Al may denote the arithmetic value of the
expression addressed by i in call context c and thread t while Rl,in may
denote the analysis variable describing whether the program point (l, in) is
reachable or not.

The set of available analysis, e.g. A or R, is extendable by designers of
analyses utilizing the Insieme CBA framework. For each of those, a property
space implementation, including a value type and a combination operator as
well as a constraint generator for its associated variables has to be provided.
The latter requires the modeling of the semantic of the referenced structures,
which in case of labeled expressions and program points is derived from the
semantic of the corresponding IR language constructs. Fortunately their
treatment is largely identical for all kind of analyses based on the same
structure such that a convenient, generic default behavior for those can be

244 CHAPTER 4. ANALYSES

specified. Thus, a generic constraint generation implementation providing
full, generic default constraint generation capabilities is offered for each kind
of supported structure. Those can be inherited by derived analyzes and
specialized for their specific use case. This essentially reduces the task of
developing a constraint generator for a new analysis to picking a generic
generator from the framework and customizing e.g. the treatment of a few
literals and operators. Examples of analyses developed that way on top of
the Insieme CBA framework are provided in the following Section 4.4.6.

In this section the four basic types of constraint generators, correspond-
ing to the four types of analysis variables, and their responsibilities and
example utilizations are outlined.

The Generic Labeled Expression Constraint Generator The first,
most frequently utilized constraint generator type is handling the model-
ing of values expressions may evaluated to during execution. As has been
covered in the overview section, labels are means to reference instances of ex-
pressions by their node instance address combined with their call and thread
context.

An example is given by the code fragment

7 + 4

which can be annotate with the labels

[[7] 1 + [4] 2] 3

where the utilized labels 1,2 and 3 are abbreviations for the actual node
instance addresses of the corresponding sub-expressions and their contexts,
which in this short example are all identical. Then, for determining poten-
tial arithmetic values Ax of the involved labels x ∈ {1, 2, 3} the following
constraints are extracted:

{7} ⊆ A1

{4} ⊆ A2

{x+ y | x ∈ A1 ∧ y ∈ A2} ⊆ A3

From those constraints the solution A3 = {11} can be obtained. The estab-
lishment of those constraints covering the computation of values by expres-
sions is the main responsibility of the generic labeled expression constraint
generator. However, this task comprises far more than what could be cov-
ered by this simple example. The constructs to cover include:

• the interpretation of literals,

• the evaluation of function calls,

• the support for value composition and access operators,

4.4. FLOW-SENSITIVE ANALYSES 245

• the resolution of the values IR variables have been bound to,

• the handling of bind expressions end resulting closures and

• the handling of call contexts for function calls

The constraints for all those language constructs are generated according to
their semantic elaborated in Section 3.7.

Literals The handling of literals has already been demonstrated in the
example above. To each literal a value is assigned. By default, the assigned
value corresponds to the > element of the processed property space, indicat-
ing that the interpretation of the literal may be anything. Derived analysis,
which are typically implemented based on some language extensions (see
Section 3.8), intercept this default behavior to introduce specific handling
of literals. An example has been shown above by assigning the literals 7 and
4 their corresponding interpretations instead of the default > value which
would, in this example, be equivalent with the full set Z.

Call Expressions The generation of constraints covering the value
of call expressions are considerably more complex. On the one hand the
targeted function may be a literal, a lambda or a closure. Depending on
the actual type, a different treatment is required. On the other hand, the
targeted function itself is provided by an expression whose value has to be
evaluated by an analysis on its own. An example of this approach has been
provided during the introduction of constraint based analysis on page 194
where variables denoted by Fx have been utilized to model the set of targeted
functions. Correspondingly, the generic generator for labeled expressions
utilizes a specialized instance of itself to compute this set for potential target
functions. Based on those, constraints utilizing for-all quantification over
the set of callable targets associated to the Fx variables are generated to
constrain the value the processed call expression may evaluate to.

In case the targeted function turns out to be a literal, the default behav-
ior is to assume an arbitrary result > for the value of the call expression.
However, as for literals themselves, the interpretation of calls to literals may
also be intercepted by derived analyses to model effects of abstract operators.
For instance, in the example above, the interpretation of the + operator was
intercepted and incorporated into the analysis.

If, however, the target function of the processed call expression is a
lambda or closure, the value of the call expression corresponds to the value
obtained by evaluating the corresponding function utilizing the present set
of arguments. The generic constraint generator therefore creates constraints
connecting the value of the processed call expression with the return value
of the potentially targeted functions evaluated in a adjusted call context.

246 CHAPTER 4. ANALYSES

Unfortunately the design and implementation details of the associated
constraints, the call context handling and thread context handling exceeds
the scope of this chapter. For details on those, interested readers may be
referred to the actual framework implementation (see Appendix A).

Composition and Access Operators The constraint generator for
labeled expressions supports the utilization of tree or forest based property
spaces to model the (composed) value of expressions. For those, struct and
union expressions as well as array.create and vector.create operations are
intercepted and interpreted within the resulting constraints correspondingly.
Similarly, access operators, including the access expression construct and
the array.subscript operator are supported as well. While in its current
development state the utilized index sets for the various nesting levels are
predetermined for each type of nesting level – e.g. a nominal index for
structs, a unit index for unions and a single data index for arrays and vectors
– this limitation is a mere implementation detail which is planned to be made
a configurable option in the future.

Variables The following code fragment illustrates an example where
the value of an expression depends on the value of variables:

(in t<4> b)→ in t<4> {
auto a = 5 ;
return a + b ;

}(12) ;

The value of the expression a+b depends on the value of the IR variables
a and b. Let f denote the lambda expression utilized in the given code
fragment. Based on the the annotated version

[[(in t<4> b)→ in t<4> {
auto a = [5] 1 ;
return [[a] 2 + [b] 3] 4 ;

}] 5 ([1 2] 6)] 7 ;

the (simplified) constraints

{5} ⊆ A1

{12} ⊆ A6

A1 ⊆ A2

f ∈ F5 ⇒ A6 ⊆ A3

{x+ y | x ∈ A2 ∧ y ∈ A3} ⊆ A4

f ∈ F5 ⇒ A4 ⊆ A7

{f} ⊆ F5

can be obtained from which the solution A7 = {17} can be derived. The
two constraints A1 ⊆ A2 and f ∈ F5 ⇒ A6 ⊆ A3 are incorporating the

4.4. FLOW-SENSITIVE ANALYSES 247

semantic of variables by linking their usage to their definition points. By
doing so, the fact that IR variables are immutable placeholders for values
computed at a different code location is utilized. Variables may only be
defined in declaration statements, function parameter lists or as iterators in
for loops. Depending on their origin, which can be statically deduced from
the enclosing IR structure, different sources need to be considered and hence
different constraints generated. For declaration statements the initialization
expression is utilized. For function parameters the arguments passed to
(all) potential call sites have to be combined and for iterator variables an
unknown value > has to be assumed due to the fact that the correspond-
ing value is re-bound for every iteration. The same treatment is applied to
free variables not being declared within the analyzed code fragment. Nev-
ertheless, this default behavior of the generic constraint generator may be
overloaded by derived analysis. In particular the handling of loop iterators
may be of interest. For instance, for an arithmetic analysis the utilization
of a symbolic value for a loop iterator variable may be of interest2.

A special case is constituted by variables representing parameters bound
to arguments captured by bind expressions to form closures. In those cases
the evaluation of the arguments may happen in a different call and thread
context than the evaluation of unbound parameters. The handling of this
relations is essential for modeling the semantic of closures. This none-trivial
task is covered as well by the generic generator implementation and is au-
tomatically inherited by all derived analyses.

As for the call expressions, the details of those mechanisms are exceeding
the scope of this overview chapter. Also, the full details are best presented
by the actual implementation (see Appendix A).

Closures and Call Contexts The semantic effects of those two con-
cepts in the Insieme IR are covered implicitly by the handling of call expres-
sions and variables as covered above.

By interpreting literals, call expressions, lambdas and closures, the generic
labeled expression constraint generator covers the functional core of the In-
sieme intermediate representation. However, imperative elements, in partic-
ular mutable memory locations, require a different kind of constraint gener-
ator focusing on program points. Such a generator is provided by the CBA
framework and described next.

The Generic Program Point Constraint Generator A program point
references the progress of a thread processing a given code fragment. It is
defined by a labeled expression or statement (consisting of a node instance

2In deed, in the arithmetic analysis, implemented among the standard set of analysis
of the Insieme CBA framework, loop iterator variables are treated symbolically.

248 CHAPTER 4. ANALYSES

address, a call context and a thread context) and the phase of its execution
(pre, in, post). An analysis based on program points is typically tracing
the state of some environment information over the course of the processed
instruction stream. Examples include the values stored in a given memory
location as well as set of reachable or killed definitions as introduced in
the previous section. Also reachability analyses testing whether the control
flow can reach a given program point are based on this kind of constraint
generator.

The basic task of the generic program point constrain generator is to
determine the succeeding or preceding program points of a given point for
forward and backward analysis respectively. For instance, when considering
the following code fragment

(in t<4> a)→ in t<4> {
return a ∗ 2 ;

}(2 + 3) ;

and its annotated form

[[(in t<4> a)→ in t<4> {
return [[a] 1 [∗] 2 [2] 3] 4 ;

}] 5 ([[2] 6 [+]7 [3] 8] 9)] 10 ;

The sequence of program points processed in order by this code fragment is
determined by the semantic rules specified in Section 3.7 and given by

(10, pre), (5, pre), (5,post), (9,pre), (7,pre), (7,post), (6,pre), (6, post),

(8,pre), (8,post), (9, in), (9, post), (10, in), (4, pre), (2, pre), (2, post),

(1,pre), (1,post), (3,pre), (3, post), (4, in), (4, post), (10,post)

The task of the generic program point constraint generator is to identify
the immediate predecessors / successors of a given point and establish links
between the corresponding variables. For instance, when requested to obtain
all constraints for a backward program-point-based analysis X regarding the
variable X(9,post) the resulting constraint is

X(9,in) v X(9,post)

The actual predecessor of a statement may depend on certain conditions.
For instance, for the annotated code fragment

i f ([c] 1) [{
. . .

}] 2 e lse [{
. . .

}] 3
[s] 4

4.4. FLOW-SENSITIVE ANALYSES 249

the predecessor of the program point (4,pre) depends on the value of the
condition expression c. Those dependencies are encoded by the constraints

true ∈ B1 ⇒ X(2,post) v X(4,pre)

false ∈ B1 ⇒ X(3,post) v X(4,pre)

where Bx is determining the boolean value of the labeled expression x. The
provided constraints model the conditional control flow. In case c may
evaluated to true the then branch is followed and if c may evaluated to
false the else branch is followed. If the value of the conditional expression c
can not be fixed to one of the two values then B1 = {true, false}, resulting
in a case where both branches are followed and joined at the program point
(4,pre).

Similar data dependent control flow decisions are encoded for while and
for loops as well as for call expressions whenever the targeted function is
the subject of a dynamic dispatching process.

Note that for simplicity integer values are utilized in the presented ex-
amples for labeling expressions. In the actual framework, labels consist of a
node instance address, a call context and a thread context. For determining
the pre- and successor of a given program point the call and thread contexts
have to be considered correspondingly.

Parallel Control Flow At program points causing thread synchro-
nization – hence calls to the spawn, merge, channel and collective opera-
tions – parallel control flows are merged. To determine pre- and succeeding
program points, those effects have to be incorporated. The necessary infor-
mation regarding referenced channels and spawned or merged thread bodies
is obtained utilizing analyses based on labeled expressions.

Based on this dynamically obtained information, for each program point
n the generic program point constraint generator produces a constraint of
the form ⊔

s∈s-pred(n)

Xs u ⊔

p∈p-pred(n)

Xp

 v Xn

for backward analysis whereX is the specialized analysis identifier, s-pred(n)
is the set of predecessors of program point n reached over a sequential con-
trol flow step and p-pred(n) is the set of preceding program points reached
over a parallel control flow, e.g. a merged thread. Note the combination of
the one-of-a-set and the all-of-a-set combination operators of the underlying
extended property space. An example of the utilization of this constraint
format has been introduced for the killed definition analysis on page 226.
Forward analysis are treated equivalent by substitution predecessors by suc-
cessors. To introduce conditions on the preceding or succeeding program

250 CHAPTER 4. ANALYSES

points the format is further extended to ⊔
s∈s-pred(n)

(g(s,n) ⇒ Xs) u ⊔

p∈p-pred(n)

(g(p,n) ⇒ Xp)

 v Xn

where g(s,n) and g(p,n) denote predicates determining conditions under which
the corresponding predecessor connection is to be considered and g ⇒ X is
given by

(g ⇒ X) =

{
X if the predicate g is satisfied

⊥ otherwise

to introduce conditional dependencies.

Note that this is a consistent extension of the sequential scheme utilized
so far since in case of pure sequential edges, where p-pred(n) = ∅, the second
term

⊔

p∈p-pred(n)

(g(p,n) ⇒ Xp)

evaluates to ⊥, reducing the full constraint on Xn to⊔
s∈s-pred(n)

(g(s,n) ⇒ Xs) v Xn

which is equivalent to

g(s1,n) ⇒ Xs1 v Xn

. . .

g(sk,n) ⇒ Xsk v Xn

where s-pred(n) = {s1, . . . , sk}. This version corresponds directly to the
input format utilized by the constraint solver and is hence utilized for all
the cases not involving parallel control flows – which constitute the vast
majority of generated constraints. On the other hand, even the full version of
the constraint on Xn presented above fits the input format of the constraint
solver when considering the left hand side as the lower boundary. Due to the
support of dynamic dependencies and non-monotonic boundary expressions
those constrains can be directly integrated into the system of constraints to
be solved by the constraint solver without losing the pruning effect of guard
expressions.

4.4. FLOW-SENSITIVE ANALYSES 251

Derived analyses built upon the basic setup constituted by the program
point constraint generator may arbitrarily intercept the resolution of the pre-
or successor points. In particular bypassing sequences of program points not
effecting the information modeled by the derived analysis can significantly
reduce the number of constraints to be processed. Besides those perfor-
mance improving manipulations, derived analyses are, naturally, required
to incorporate the effect of passed operator applications on the modeled
state.

The Generic Whole Program Constraint Generator Variables de-
scribing properties of the full analyzed code fragment are the easiest to
support from the framework’s perspective. Since only a single variable is
associated to each whole program analysis there is also only a single set of
constraints to be computed by the corresponding constraint generator. And
this set of constraints is depending on the actual analysis and has therefore
to be defined by the derived, concrete analysis. No generic tool support is
required to do so.

Examples of whole program analyses include analyses producing struc-
tures modeling the parallel execution of the analyzed code fragment. In
particular the execution net and the program state graph (see Definitions
4.16 and 4.18) are incorporated based on whole program analyses. Those
also provide the foundation of the last type of variables so far supported by
the constraint generation framework.

The Generic Program State Graph Node Constraint Generator
In its current development state, the last type of structure supported by the
framework for generating constraint on variables is the program state graph
(see Definition 4.18). Each node of this graph describes a possible phase of
the execution of a parallel program involving several threads not processing
any synchronizing operations. Invocations of such operations result in edges
in the program state graph and constitute transitions between execution
phases. An example has been outlined in Example 4.17.

The generic program state graph node constraint generator attaches vari-
ables to the nodes of the program state graph and connects the values of
preceding/succeeding nodes with the values of succeeding/preceding nodes
by considering the effects of the linking edges. The interpretation of those
edges can be customized by the analysis built on top of this generic con-
straint generator implementation. By default the one-of-a-set combination
operator

⊔
of the corresponding property space is utilized.

The essential responsibility of this constraint generator is to obtain the
program state graph in the first place such that it can be utilized for extract-
ing constraints. For this task it relies on a hierarchy of specialized analyses.
At the top, this includes a whole program analysis obtaining the actual pro-

252 CHAPTER 4. ANALYSES

gram state graph, which relies on a whole program analysis obtaining the
execution net, which itself is based on a whole-program analysis obtaining
the full set of present sync points, which relies on a program point based
reaching sync point analysis, which itself depends on labeled expression anal-
ysis covering jobs, potential thread bodies, thread groups and implicitly – due
to their labeled expression nature – on labeled expression analyses determin-
ing callables (=literals, functions or closures) targeted by call expressions,
boolean values of condition expressions and arithmetic values to determine
the value of expressions governing the control flow.

As can be seen, the extraction of the program state graph from a given
code fragment covers a large variety of analyses and framework compo-
nents, turning it into an interesting test case for the CBA infrastructure.
Also, due to the fact that the graph is the value of an analysis variable,
its structure may alter several times before reaching a stable fixpoint solu-
tion. This varying nature of the underlying structure has to be handled by
the associated generic constraint generator by incorporating corresponding
information into the structure utilized to address individual nodes within
program state graphs.

Modeling Channel States The main utilization of the program state
graph based constraint generators, and the driving force behind its devel-
opment, is the requirement to model the state of channels, in particular the
content of their buffers, over the course of the execution of an IR code frag-
ment. Unlike other states, the state of a channel buffer can not be associated
to a single thread by associating it to a program point since even without
any progress in a local thread its content may still change due to concurrent
operations.

The program state graph, on the other hand, provides a proper foundation
for the modeling of channel states, as will be demonstrated by the following
example.

Example 4.24 (modeling channel states). Consider the following IR code
fragment:

l e t i n t = in t <4>;
auto c = channe l . c r e a t e (in t , 2) ;
para l l e l (job [1 , 1] ()⇒ {

channe l . send (c , 1) ;
channe l . send (c , 2) ;

}) ;
i n t a = channe l . r ecv (c) ;
para l l e l (job [1 , 1] ()⇒ {

channe l . send (c , 3) ;
}) ;
i n t b = channe l . r ecv (c) ;

4.4. FLOW-SENSITIVE ANALYSES 253

The program creates a channel, spawns a single thread, waits until a message
is received through the channel, binds the value of the message to the vari-
able a, spawns another thread and extracts a second message to be bound
to the variable b. The first thread produces and submits two messages while
the second sends a single message.

In this example we are interested in the values the variables a and b
get bound to. When closely inspecting the given code fragment it can be
obtained that the second thread is only started after a first message has been
consumed. Hence, a can only get bound to a value produced by the first
thread. Since no other recv operation is processed before the initialization
of a and channels deliver messages in-order, the value a gets bound to is 1.
For b it depends on the interleaving of the involved operations whether it
will be bound to the value 2 or 3. However, it will not be 1.

Note that those results are obtained by the human reader by reasoning
over the parallel structure of the given code fragment. In the Insieme CBA
framework support for similar deduction is offered, as will be outlined next.

In a conventional DFA framework, based on low-level instructions un-
aware of the parallel nature of the processed application, no restrictions on
the values of a and b can be obtained since they are the result of a func-
tion calls, resulting in a potential value range of > = Z ∈ 2Z = L. An
improved approach followed by related work is to produce a more restricted
super-set of the potential values obtained by a recv operation by computing
the union of all the values submitted to a given channel anywhere in the
application code [34] ignoring associated synchronization effects [46]. This
advanced approach may reduce the set of potential values to {1, 2, 3} ⊂ Z for
both variables in our example. While already providing much higher preci-
sion than a conventional approach, our CBA framework, taking the parallel
structure of the application into account, can yield even better results.

In our framework the parallel structure of a code fragment is modeled
utilizing an execution net. It is obtained from the input code by comput-
ing the set of synchronization points (begin/end of threads, spawn, merge,
channel and collective operations) by combining the results of a variety of
label and program point based analyses.

In the given examples we have the begin and end of the three involved
threads, the three send operations, s1, s2 and s3, and the two receive op-
erations r1 and r2 forming the full set of synchronization points. Based on
those, the main thread is partitioned into five thread regions A1 - A5, the
first spawned thread into three regions B1, B2 and B3 and the third thread
into two regions C1 and C2. The resulting execution net is given by

254 CHAPTER 4. ANALYSES

A1

p1

A2 B1

r1 s1

A3 B2

p2 s2

C1

s3

C2

B3

A4

r2

A5

2

c

where all places are labeled by the represented thread region or channel
instance and transitions by the corresponding synchronization point. Note
that the place c representing the channel has a capacity of 2 corresponding
to the buffer size of the represented channel instance.

From the execution graph the following program state graph can be ob-
tained:

4.4. FLOW-SENSITIVE ANALYSES 255

{A1}, |c| = 0

{A2, B1}, |c| = 0

p1

{A2, B2}, |c| = 1

s1

{A3, B2}, |c| = 0

r1

{A2, B3}, |c| = 2

s2

{A4, B2, C1}, |c| = 0

p2

{A3, B3}, |c| = 1

s2
r1

{A4, B2, C2}, |c| = 1

s3

{A4, B3, C1}, |c| = 1

s2
p2

{A5, B2, C2}, |c| = 0

r2

{A4, B3, C2}, |c| = 2

s2 s3

{A5, B3, C1}, |c| = 0

r2

{A5, B3, C2}, |c| = 1

s2 r2 s3

As has been covered previously, the nodes in the program state graph de-
scribe phases of the execution of a parallel program by listing a set of thread
regions being concurrently processed as well as the number of elements
stored within the buffers associated to channels.

As has also been remarked earlier, no channel state changes may happen
while processing a thread region since send and receive operations – the only
operations capable of altering channel states – are constituting boundaries of
those. Hence, the program state graph can be utilized to establish constraints
on the state of channel buffers over the course of a program execution.

To demonstrate this, we identify each of the states of the program state
graph with a letter A-M to obtain

256 CHAPTER 4. ANALYSES

A

B

p1

C

s1

D

r1

E

s2

F

p2

G

s2
r1

H

s3

I

s2
p2

J

r2

K

s2 s3

L

r2

M
s2

r2
s3

Based on this structure we conduct our analysis.

However, before we do so, we need to define our property space3. To
model the state of a channel buffer of capacity n we utilize the property
space (Lc,

⋃
c) where

Lc = 2Z
≤n

and Z≤n is given by

Z≤n =
⋃

0≤i≤n
Zi

and
⋃
c is the set union operator. Hence, the state of a channel buffer of

size n is modeled by a set of tuples up to length n.4 For our example, since
the buffer size is limited to 2, we have L = 2Z

≤2
. We further assume that

integer values are modeled using the property space (2Z,
⋃

). Further, let

the function push : (2Z
≤2 × 2Z)→ 2Z

≤2
be defined by

push(S,A) = {[x] | [] ∈ S ∧ x ∈ A}∪
{[x1, x] | [x1] ∈ S ∧ x ∈ A}∪
{[x2, x] | [x1, x2] ∈ S ∧ x ∈ A}

and the function pop : 2Z
≤2 → 2Z

≤2
be defined by

pop(S) = {[] | ∃x1.[x1] ∈ S} ∪ {[x2] | ∃x1.[x1, x2] ∈ S}
3Since there will only be one-of-a-set edges no extended property space is required.
4Compare with the semantic of channels on page 115 et seqq.

4.4. FLOW-SENSITIVE ANALYSES 257

for modeling the effects of send and receive operations.
Let g = (N,E) be the the graph illustrated above such that N =

{A, . . . ,M} and E is the set of triples e = (n, o,m) ∈ N × O × N such
that e ∈ E whenever there is an edge from node n to m labeled by an oper-
ation o ∈ O. Further, let Cx be the variable describing the channel state of
node x ∈ {A, . . . ,M} of the program state graph illustrate above and As1,
As2 and As3 be the variables describing the values sent into the channel at
the corresponding program points resulting from a labeled expression based
arithmetic analysis. Based on those we establish the constraint

{[]} ⊆ CA
initializing the channel state with an empty buffer state [] ∈ Z≤2, and for
all nodes x 6= A the constraints⋃

(i,o,x)∈E

to(Ci) ⊆ Cx

where the transfer function to : L→ L is defined by

to(S) =

push(S,Ao) if o is a send operation

pop(S) if o is a recv operation

S otherwise

and obtain

{[]} ⊆ CA
CA ⊆ CB

push(CB, As1) ⊆ CC
pop(CC) ⊆ CD

push(CC , As2) ⊆ CE
CD ⊆ CF

push(CD, As2) ∪ pop(CE) ⊆ CG
push(CF , As3) ⊆ CH

push(CF , As2) ∪ CG ⊆ CI
pop(CH) ⊆ CJ

push(CH , As2) ∪ push(CI , As3) ⊆ CK
pop(CI) ⊆ CL

push(CJ , As2) ∪ pop(CK) ∪ push(CL, As3) ⊆ CM
and the constraints

{1} ⊆ As1
{2} ⊆ As2
{3} ⊆ As3

258 CHAPTER 4. ANALYSES

from the arithmetic value analysis. Those constraints can be solved to obtain
the solution

As1 As2 As3 CA CB CC CD CE
{1} {2} {3} {[]} {[]} {[1]} {[]} {[1,2]}

CF CG CH CI CJ CK CL CM
{[]} {[2]} {[3]} {[2]} {[]} {[3, 2], [2, 3]} {[]} {[2],[3]}

describing the state of the buffer associated to channel c during the various
phases of the program execution.

To obtain the values to be retrieved by a recv operation the channel
states associated to preceding program states are examined to obtain the
desired values. In our example, the operation r1 has a single preceding
state C with CC = {[1]} resulting in {1} being the value bound to the
variable a. Similarly, the preceding states of operation r2 are {H,K, I}
with CH = {[3]},CK = {[3, 2], [2, 3]} and CI = {[2]} resulting in {2, 3} to
characterize the value to be bound to the variable b – as desired.

Certainly, considering the increased precision in the demonstrated ex-
ample may hardly justify the increased complexity of the overall framework
since after all we could only narrow down the set of potential values by one
or two elements. However, considering those values to be utilized within
condition expressions those might lead to a increased accuracy of depending
results. Also, since any kind of value, in particular references, channels and
functions, may be forwarded through channels, increased precision regard-
ing relayed data can have a significant impact on the results of analyses. In
particular for references, the popular alias analysis can be effected by this.

The channel state analysis, as illustrated by the covered example, is a
program state node based analysis built based on the corresponding generic
constrain generation utility. However, while the outlined channel state anal-
ysis is limited to integer values of expressions, it demonstrates a pattern
which can be followed by all value analysis to trace the flow of data through
channels and hence the propagation of analysis information throughout a
processed code fragment. It has therefore been implemented itself in a
generic way such that it can be instantiated for arbitrary property spaces.
Furthermore, this generic channel-state constraint generator has been in-
tegrated into the basic labeled expression constraint generator such that
generic support for channel operations is provided out-of-the-box for any
derived analyses. However, its full integration is still pending (July 2014).

Finally, unlike demonstrated in the simple example above, our frame-
work is not restricted to statically bound channels. Hence, as for functions
targeted by call expressions, the channels addressed by a communication op-
eration may be determined by an arbitrary expression of the corresponding
type. For instance, in the code fragment

4.4. FLOW-SENSITIVE ANALYSES 259

channel<boo l ,1> a = . . . some source . . . ;
channel<boo l ,1> b = . . . some source . . . ;
channe l . r ecv ((x < 2) ? a : b) ;

the channel accessed by the conducted recv operation is dynamically selected
based on the value of some expression. Such a case is supported by producing
correspondingly predicated constraints. To determine the addressed chan-
nels, analyses based on labeled expressions are utilized, thereby harnessing
the full power and capabilities of the Insieme CBA framework. In particular,
this step even enables channels to be transferred through (other) channels
to be then utilized for send and receive operations.

While in classical contexts of channels, in particular stream processing,
the dynamic selection of channels in send and receive operations may be of
limit utility since all channels are anyway addressed statically, the modeling
of other program constructs benefits from this capability. For instance, locks
are modeled within our IR utilizing channels. As are futures. Since those are
in general first-class citizens in their host languages, corresponding support
in the underlying analyses is required – and provided.

4.4.6 Example Value Analyses

After introducing all the generic infrastructure offered by the Insieme CBA
framework to implement analyses this section outlines two example analyses
implemented using the available utilities. Those two example analyses cover

• the arithmetic value of an expression and

• the boolean value of an expression

Both of them are based on corresponding language extensions (see Section
3.8). The first obtains a set of potential (symbolic) arithmetic values for
a given expression while the second aims on determining whether a given
expression would evaluate to true or false. The latter is of particular im-
portance since it potentially restricts the value of conditional expressions
governing the control flow of an execution while the former may be utilized
to determine symbolic values of array subscripts for e.g. loop-dependency
analyses. Also, the former is required as a foundation for the latter.

Arithmetic Analysis

To specify an analysis on top of the Insieme CBA framework three things
have to be specified: a name, a property space and a constraint generator.
For our arithmetic analysis we will stick to A as an identifier. The remaining
two elements are covered next.

260 CHAPTER 4. ANALYSES

Property Space Throughout this chapter a property space of (2Z,
⋃

)
has been utilized for analysis focusing on integral values. This simple prop-
erty space has been utilizes for simplicity. Unfortunately it does not sat-
isfy the ascending chain condition [68] since there are infinite sequences of
x0, x1, . . . ∈ 2Z such that ∀i ∈ N . xi ⊂ xi+1. In practice this bears the risk
that a fixpoint computation may follow this sequence without ever termi-
nating. For instance, in the partially annotated code fragment

l e t i n t = in t <4>;
[r e f<in t> a = var (0)] 1 ;
while (c) {

[a := (∗ a) + 1] 2 ;
}
[∗ a] 3 ;

an analysis focusing on the value of the memory location referenced by the
variable a will result in the following (simplified) constraints:

{0} ⊆ A(1,post,l)

A(1,post,l) ⊆ A(2,pre,l)

A(2,post,l) ⊆ A(2,pre,l)

{x+ 1 | x ∈ A(2,pre,l)} ⊆ A(2,post,l)

A(2,post,l) ⊆ A(3,pre,l)

where l identifies the memory location created in the second line. The full
details on how support for mutable state is integrated into the Insieme CBA
framework is covered in the following section. Essentially, the value of each
memory location is modeled at each program point of the execution utilizing
an extended version of a generic program point constraint generator. In the
example, the value stored in memory location l after processing expression
1 contains at least {0}. Before processing expression 2 it may exhibit the
values it has been initialized with or, since expression 2 is in a loop, the value
it had after the last loop iteration. This is covered by the second and third
constraint. The fifth constraint incorporates the effect of the assignment
expression 2. Final, the value of the variable after the loop corresponds to
the value it had after the last assignment operation.

When solving those constraints the following sequence of value assign-
ments will be processed:

Iteration A(1,post,l) A(2,pre,l) A(2,post,l) A(3,pre,l)

init ∅ ∅ ∅ ∅
1 {0} {0} {0, 1} {0, 1}
2 {0} {0, 1} {0, 1, 2} {0, 1, 2}
3 {0} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3}

.
n {0} {0, . . . , n− 1} {0, . . . , n} {0, . . . , n}

4.4. FLOW-SENSITIVE ANALYSES 261

Obviously this will not lead to a fixpoint in a finite number of steps. Hence,
the property space (2Z,

⋃
) to model the value of integral values of an expres-

sion has to be modified to satisfy the ascending chain condition. A simple
way to achieve this is to instate an upper limit on the number of values
within the sets.

Definition 4.23 (limited power-set property space). Let S be an arbitrary
set and n ∈ N be a natural number determining the maximum cardinality
of sets in the resulting property space. Further, let L|S|≤n be the set

{s ∈ 2S | |s| ≤ n} ∪ {S}

and
⋃
|S|≤n : 2L|S|≤n → L|S|≤n be defined by

⋃
|S|≤n

S =

{⋃
S if |

⋃
S| ≤ n

S otherwise

Than (L|S|≤n,
⋃
|S|≤n) is a property space based on subsets of S limited to

a cardinality of n satisfying the ascending chain condition.

We can utilize this property space constructor to define a property space
for our integer value analysis satisfying the ascending chain condition.

Definition 4.24 (integer constant property space). Let n ∈ N be a nat-
ural number determining the maximum number of potential values to be
determined for an expression, Lic-n = L|Z|≤n and

⋃
ic-n =

⋃
|Z|≤n.Then

(Lic-n,
⋃

ic-n
)

is a property space for determining the set of potential integer values of
expressions satisfying the ascending chain condition.

Note that the well known property space utilized for constant folding
introduced by Example 4.5 is a special case of the given property space by
utilizing n = 1. In this case ⊥c = ∅ and >c = Z.

Utilizing e.g. the property space (Lic-3,
⋃

ic-3) for analyzing the loop-
based example above, the solver would iterate through the assignments

Iteration A(1,post,l) A(2,pre,l) A(2,post,l) A(3,pre,l)

init ∅ ∅ ∅ ∅
1 {0} {0} {0, 1} {0, 1}
2 {0} {0, 1} {0, 1, 2} {0, 1, 2}
3 {0} {0, 1, 2} Z Z
4 {0} Z Z Z

and obtain a fixpoint after a finite number of steps. The same modification to
satisfy the ascending chain condition can be applied to all property spaces
based on power-sets of infinite sets. Power-sets of finite sets satisfy the
ascending chain condition innately.

262 CHAPTER 4. ANALYSES

Symbolic Values In many cases sets of potential integer values are of
little use. To determine loop dependencies in the code fragment

l e t i n t = in t <4>;
for (i n t i = 0 . . c) {

a [i] := a [i +1] ;
}

the integer values determined by our integer value analysis for the subscripts
i and i+1 correspond to > = Z since i is a loop iterator variable for which no
preciser value can be obtained. Obviously, for conducting loop dependency
analysis our current integer value property space is not suitable. Symbolic
terms are required.

For our arithmetic analysis we are utilizing polynomials over a set of
symbolic variables to represent the value of expressions.

Definition 4.25 (polynomial). Let X be a set of symbolic indeterminate
(variables). A polynomial in m indeterminates is given by∑

~i∈Nm0

a~i

m∏
j=1

x
ij
j

where a~i ∈ Z are the coefficients of the terms
∏m
j=1 x

ij
j which are composed

of factors x
ij
j based on the indeterminates x1, . . . , xm ∈ X. The set of all

polynomials over a set of indeterminates X is denoted by Poly(X).

Examples of polynomials in a single variable include expressions like

x2 − 3x+ 2

and linear formulas like x + 1 as well as constant values including 3 and 0.
Accordingly, constant values are special cases of polynomials. Polynomials
in multiple variables include expressions like

y4 − 2xy2 + 4x2y − 2x2 + 10

As usual, we omit coefficients with |a~i| = 1, terms with coefficients a~i = 0
and factors with exponents ij = 0.

Polynomials are closed under addition, subtraction, multiplication and
composition. For instance, we have

(x2 − 4) + (y2 − x+ 2) = x2 + y2 − x− 2

and
(x2 − 1) ∗ (y + 2) = x2y − y + 2x2 − 2

The details of those operations are omitted for brevity and may be obtained
from any algebra text book.

We utilize polynomials as the values to be associated to expressions by
defining the following property space for our arithmetic analysis.

4.4. FLOW-SENSITIVE ANALYSES 263

Definition 4.26 (arithmetic property space). The arithmetic property space
is given by the limited power-set property space

(L|Poly(V)|≤n,
⋃
|Poly(V)|≤n

)

where V ⊂ L is a subset of the node labels L (see Definition 4.11) refer-
encing literals, variables utilized as loop iterators or the first occurrence of
free variables within a code fragment and their associated call and thread
context.

The value assigned by the arithmetic analysis to an expression within a
targeted code fragment is hence a limited set of polynomials over a set of
indeterminates constituted by all labels referencing literals, loop iterators
and free variables of the analyzed code fragment.

Finally, to support composed values like structs or vectors of values, the
set based arithmetic property space is used to construct a tree (or forest)
based arithmetic property space using the corresponding constructors of
Definition 4.21 and Definition 4.22. As a result, assuming the tree based
constructor is selected, the finally utilized property space is given by

(Lt(Pa),
⊔

t(Pa)
)

where Pa = (L|Poly(V)|≤n,
⋃
|Poly(V)|≤n). Hence, the arithmetic analysis as-

signs each targeted expression a tree (or forest) whose inner nodes describes
the structure of the represented value and whose leaves are cardinality-
limited sets of polynomials over indeterminates constituted by node labels.

Example 4.25 (arithmetic property space values). In the code fragment

auto a1 = 12 ;
auto a2 = c + 3 ;
auto a3 = a1 ∗ 2 + a2 ;
auto a4 = a3 − a2 ;
for (i n t i = 1 . . 100) {

auto a5 = 2 ∗ i ∗ a2 + i ;
}
auto a6 = (c < 4) ? a1 : a2 ;
auto a7 = struct { x = a3 ; y = a6 ; } ;

the arithmetic analysis would obtain the following values for the involved
variables:

Variable Value

a1 {12}
a2 {c+ 3}
a3 {c+ 27}
a4 {24}
a5 {2ci+ 7i}
a6 {12, c+ 3}
a7 (x = {c+ 27}, y = {12, c+ 3})

264 CHAPTER 4. ANALYSES

Here we are utilize the notation (x = {c+ 27}, y = {12, c+ 3}) to represent
the tree value

{c+ 27}

x

{12, c+ 3}

y

Note that, since c is a literal (or free variable) and i is a loop iterator variable
those values are utilized as indeterminates within the polynomials.

Constraint Generator After defining a proper property space covering
the information to be extracted from a program by our analysis one more
component is required to complete the analysis specification: a constraint
generator.

Since our analysis targets the value expressions get evaluated to within
a code fragment, the constraint generator for our analysis is derived from
the generic labeled expression constraint generator. This generic implemen-
tation deals with all matters related to function calls, composed data types,
variables and parameter passing, closures and call- and thread contexts. All
this can be inherited. The final step to conduct is to specialize the generic
handling of some literals and a few functions to model their effects on the
analyzed values.

The list of literals and operators whose interpretation has to be adapted
is provided by the arithmetic language extension (see page 125 et seqq.). In
particular, those include integer literals and arithmetic operators including
int.add and uint.mul. For instance, for each label l referencing a literal

lit(12 : int 〈4〉)

the generic handler would create a conservative constraint similar to

> vt(Pa) Al

where > = Poly(V). The specialized analysis intercepts the constraint ex-
traction for this kind of literals and generates

{12} vt(Pa) Al

instead. In case l references a literal of shape

lit(c : int 〈4〉)

where c is some identifier not encoding an integral value, a constraint like

{l} vt(Pa) Al

4.4. FLOW-SENSITIVE ANALYSES 265

is produced, where l is utilized as an indeterminate in the polynomial l ∈
Poly(V) – assuming l references the first occurrence of the literal c, other-
wise the label l′ of the corresponding first occurrence. This corresponds to
the interpretation of constants as indeterminates in the polynomials of the
property space of our analysis. Free variables and loop iterators are treated
identically. For labels c referencing function calls targeting e.g. an addition
operator the default handling of the generic labeled expression generator
would produce

> vt(Pa) Ac

while the specialized arithmetic constraint generator produces⋃
t(Pa)
{{x+ y} | x ∈ Aa ∧ y ∈ Ab} vt(Pa) Ac

where a is the label of the first argument of the call expression c, b the sec-
ond argument and + the addition operator for polynomials. Similar, other
operators of the arithmetic language extension are specialized accordingly.

Note that those rules utilize the fact that tree values of a tree-based
property spaces representing scalar values only consist of a root node cor-
responding to an element of the value set of the underlying property space.
In the present case those are sets of polynomials.

That is all that is required in the Insieme CBA framework to build a
constraint generator for a new analysis supporting all the IR constructs
and features including variables, function calls, parameters, return values,
recursions, closures, channels and composed data values including structs,
unions, arrays and vectors.

Example Application: Loop Dependency Tests To conclude this
section on the arithmetic analysis we outline how it can be utilized for loop
dependence tests. Consider the following code fragment where we are inter-
ested in the values of the subscripts x+ j and 2∗y to conduct a dependency
test.

l e t i n t = in t <4>;

l e t f = (re f<array<in t>> d , i n t o)→ un i t {
auto x = o + 1 ;
for (i n t j = 0 . . 10) {

auto y = o + j ;
d [2∗ y+2] := d [x+j] ;

}
} ;

r e f<array<in t>> a = . . . some source . . . ;
for (i n t i = 0 . . 5) {

f (a , 2∗ i +1) ;
}

266 CHAPTER 4. ANALYSES

Let the label l1 reference the first subscript and the label l2 addressing the
second subscript in their respective call and thread contexts. The arithmetic
analysis introduced in this section will yield

Al1 = {4i+ 2j + 4}
Al2 = {2i+ j + 2}

where i and j are the labels referencing the expression declaring the cor-
responding iterator variables. Those symbolic term can then be utilized
to deduce that a true, false and output dependency is present in the given
loop nest. For instance, the memory location a[4] is written in iteration
(i, j) = (0, 0) and read in iteration (0, 2), constituting a true dependency,
while e.g. the memory location a[8] is read in iteration (0, 6) and updated
in iteration (1, 0), constituting a false dependency. Also, e.g. the memory
location a[10] is updated in iteration (0, 3) and (1, 1).

Boolean Analysis

The second analysis to be outlined in this section is the boolean analysis.
Based on the value of boolean expressions branches within application codes
may be followed or skipped. Consequently, integrating an accurate analysis
determining boolean values of expressions can increase the precision of other
analyses. As for the previous analysis, a name, a property space and a
constraint generator is required. To denote analysis variables describing the
boolean value of an expression we utilize the letter B – as it has already
been utilized in several examples throughout this chapter.

Property Space The information we would like to obtain for a boolean
expression is whether it might evaluate to true or false. Correspondingly we
define the property space

Pb = (2B,
⋃

)

where B = {true, false} in a first step. Hence, ⊥ = ∅ and > = {true, false}.
Since B is a finite set, the subset based property space Pb satisfies the

ascending chain condition. Thus we do not have to wrap Pb into a limited
power-set property space as in the arithmetic case. However, since boolean
values may still occur as fields of structs, unions or elements of arrays and
vectors we create a tree (or forest) based property space out of Pb and obtain
the property space

(Lt(Pb),
⊔

t(Pb)
)

for our boolean analysis. Hence, for every expression targeted by the boolean
analysis a tree is obtained where the inner nodes describe the structure of
the modeled value and the leaves are given by a value in

{∅, {true}, {false}, {true, false}} = 2B

4.4. FLOW-SENSITIVE ANALYSES 267

Constraint Generator As for the arithmetic analysis, the constraint gen-
erator for the boolean analysis is based on the generic labeled expression
constraint generator. Also, it is based on a language extensions comprising
literals and operators (see page 123 et seqq.).

The generation of constraints for the two literals true and false is in-
tercepted and substituted by proper constraints. For instance, while the
default handler would generate the constraint

> vt(Pb) Bl

for a label l referencing the true literal, the specialized generator produces
the constraint

{true} vt(Pb) Bl
Unlike the arithmetic operators, which are all abstract operators, all the
operators on the type bool are derived operators. Hence, those are not
required to be intercepted since their interpretation can be obtained by
analyzing their definitions. For instance, the operators bool.and or bool.eq
are defined by a function containing a conditional expression. Hence, no
special handling for those is required. The framework resolves them properly.
So are the operators accepting lazy constructs, including the bool.land and
bool.ite operators. The framework properly handles the lazy evaluation of
the involved functions or closures.

At this point the specification of an analysis benefits from derived op-
erators since those do not have to be handled at all. They are handled
generically by the system. Consequently, less constructs need to be covered
and processed by analyses which reduces the probability of faulty interpreta-
tions. Also, newly introduced derived operators can be handled by analyses
without updating those.

However, one class of operators still has to be handled. Comparison
operators for arithmetic values produce boolean results and are frequently
encountered in conditional expressions. To support those, the boolean anal-
ysis relies on the results of the arithmetic analysis. For instance, in the code
fragment

l e t i n t = in t <4>;
i f (c + 2 < 12) {

. . .
}

the boolean value of the condition expression depends on the arithmetic val-
ues of the operants of the < operator. Those are obtained by the arithmetic
analysis in the form of sets of polynomials. To determine the value of a
comparison operation we utilize the following observation:

Let p1, p2 ∈ Poly(V) be two polynomials as they are utilized in the
property space of the arithmetic analysis. The value p1 may evaluate to is

268 CHAPTER 4. ANALYSES

less than p2 for all potential values of the involved indeterminates, denoted
by p1 < p2, if

p1 − p2 < 0

This is for sure the case if the polynomial p1 − p2 is a negative constant.
For instance, (c+ 2) < (c+ 3) since (c+ 2)− (c+ 3) = −1 < 0. In this case
the boolean value to be assigned by the analysis to the targeted expression
is {true}. In case p1 − p2 is zero or a positive constant the analysis assigns
{false} to the targeted expression and in any other case {true, false} = >.
Similar rules are implemented for all comparison operators.

Consequently, the boolean analysis can handle numerical symbols in-
troduced by constants, free variables or loop iterators. Similar, equality
operators for references and other language extensions have been integrated
by utilizing analyses characterizing the values represented by the abstract
types of those extensions.

Other Analyses

The boolean and arithmetic analysis demonstrate the integration of abstract
and derived types and operators into the analysis framework and how various
analyses may interact to benefit from each other. However, besides those, a
variety of additional analyses have been implemented on top of the Insieme
CBA framework – partially also to realize advanced framework features like
the construction of the program state graph. We conclude this section by
enumerating the most essential of those:

• C . . . control flow analysis – determines a set of functions and/or clo-
sures targeted by call expressions

• Ch . . . channel analysis – determines a set of channel references to be
utilized by send / recv operations

• DP . . . data paths – values describing data paths utilized to navigate
composed data values (see page 133)

• R . . . references – values describing memory locations to be potentially
referenced by the value expressions evaluate to (see page 130 et seqq.)

• F . . . functions – obtains a set of potential lambdas, closures or literals
an expression may be reduced to without the creation context; a faster
alternative to C utilized for pruning constraints

• J . . . jobs – determines a set of jobs an expression may be reduced to;
required to determine which job may be spawned by a parallel call

• U . . . uninterpreted symbols – a generic, type-independent constant
propagation analysis based on a Herbrand structure

4.4. FLOW-SENSITIVE ANALYSES 269

• TB . . . thread bodies – determines the set of bodies potentially spawned
by a parallel call

• TG . . . thread groups – traces thread groups being created by parallel
calls and consumed by merge calls

In addition to those labeled expression based analyses the following program
point based analyses are included in the current infrastructure:

• RE . . . reachability – determines whether a given program can be
reached from the start of the analyzed code fragment; in particular
utilized to prune the number of generated constraints

• RSP . . . reaching sync points – the set of sync points that may have
preceded a given program point; utilized to build execution nets

• RSWP . . . reaching spawn points – the set of spawn points that may
have preceded a given program point; utilized to compute the set of
threads merged by merge calls merging all spawned thread groups

And finally, the following whole program analyses are offered as a foundation
for the realization of framework features as well as future analyses:

• SP . . . sync points – collects a list of all sync-points in a program
comprising their labels and contexts; see Definition 4.13

• TR . . . thread regions – lists all thread regions the execution of a code
fragment can be separated in; derived from the set of sync points; see
Definition 4.14

• TL . . . thread list – a list of threads involved in the processing of a
code fragment;

• EN . . . execution net – the execution net describing the parallel struc-
ture of a code fragment; see Definition 4.16;

• PS . . . program state graph – the program state graph describing the
interaction of thread regions in the execution net; see Definition 4.18

Beside those analyses, support for one crucial language extension is still
missing – mutable memory locations. The following section will cover the
support for those in detail.

4.4.7 Mutable State Extension

So far all the infrastructure focused on the core of the Insieme IR. This
core does not comprise mutable memory locations. IR variables are bound
to values that can not be altered afterwards. To model mutable memory
locations the Mutable State language extension has been introduced (see
page 130 et seqq.). An example utilization is given by

270 CHAPTER 4. ANALYSES

1 l e t i n t = in t <4>;
2 re f<in t> a = var (8) ;
3 i f (∗ a < 10) {
4 a := 12 ;
5 }
6 ∗a ;

where in the second line a memory location is created, initialized and a
reference to it assigned to the IR variable a. In the third line the content of
the memory location referenced by a is read and utilized for a comparison
operation. The fourth line is updating the content of the memory location
under the condition that the previous comparison evaluated to true and
the sixth line is reading the value from the location after processing the
conditional statement.

Unlike any example covered so far, this code fragment utilizes memory
locations to forward data throughout the program execution. Values are
stored into memory locations at some program points and obtained or up-
dated at others. Tracing values stored in memory locations is an essential
requirement when analyzing IR code fragments. It is also a capability cov-
ered generically be the Insieme CBA framework. And it is the topic of this
section.

The foundation of this section is laid by the Mutable State extension,
the included abstract data type ref 〈α〉, the operators defined on top of it
and the semantic specification determining their behavior.

To support mutable memory locations solutions for the following prob-
lems have to be provided:

• means for addressing memory locations

• tracing values referencing memory locations

• tracing the values stored in memory locations

• handling those in a parallel context

Within this section solutions for those problems will be elaborated.

Addressing Memory Locations

As a first step, to be capable of incorporating the values stored in memory
locations into analyses, means to address them are required. Since memory
locations, as channels or threads, are created over the course of the execu-
tion of a code fragment and forwarded as first-class citizens, they can not
be addressed by any node in the IR tree itself. For instance, in the code
fragment

4.4. FLOW-SENSITIVE ANALYSES 271

l e t i n t = in t <4>;
r e f<in t> a = var (8) ;
r e f<in t> b = a ;
b := 12 ;

the IR variable a and b are two different variables, yet both reference the
same memory location. The write operation in the last line effects this
location such that after its execution the result of ∗a and ∗b would be 12.
Thus, addressing memory locations by the variables referring to them is no
promising approach. Also, memory locations may survive the life time of
the variable they get first bound to. For instance, in the code fragment

l e t i n t = in t <4>;
l e t f = () → re f<in t> {

re f<in t> r = new (0) ;
r := . . some procedure . . ;
return r ;

}
re f<in t> a = f () ;

a memory location created on the heap is bound to the variable r, updated
and the reference to the location is returned to the call site where it is bound
to the variable a. Now a references the memory location and r does not exist
any more.

Within the Insieme CBA framework memory locations are addressed by
the label of the expression they have been created by.

Definition 4.27 (memory location addresses). In the Insieme CBA frame-
work a memory location is addressed by the node label l ∈ L (see Defi-
nition 4.11) referencing the call expression instance creating the memory
location. The set of all memory locations is denoted by M⊂ L.

Such a label l = (i, c, t) ∈M contains the node instance i ∈ I of the call
to the ref.alloc operator – which is the only operator capable of creating
memory locations – as well as the call and thread contexts c ∈ C and t ∈ T
the memory location creation has occurred in. This approach constitutes an
abstract way of addressing all memory locations accessed and manipulated
by a code fragment.

Note that the var and new operators utilized in the code examples are
actually composed operators comprising an internal utilization of the ab-
stract ref.alloc operator (see page 132). Thus they are not required to be
treated separately.

Tracing References

In a second step, an analysis capable of tracing references to memory lo-
cations is developed. This is the foundation for determining the memory

272 CHAPTER 4. ANALYSES

location to be read or written by corresponding operations. Obtaining the
memory location a reference is targeting is a value analysis similar to the
arithmetic or boolean analysis covered in the previous section. However,
unlike utilizing polynomials or truth values as the foundation of the prop-
erty space, structures modeling memory references are required. One option
would be to simply utilize the memory locations directly, hence elements of
the set M. However, the mutable state extension supports an additional
feature: sub-references (see page 133)

Sub-references allow to reference nested parts of a memory location, e.g.
a field x of the struct stored at position 5 of an array stored in a location
m ∈ M. To provide full support for this feature a corresponding property
space is required. As usual, a good start for the development of such a
property space is the semantic specification determining the behavior of the
feature to be modeled.

Designing a Property Space Definition 3.54 provides a formal defini-
tion of the domain of reference values. Each reference value is an element
of the set R = (L×P) ∪ {η} where, in this context, L is the set of (actual)
memory locations, P a set of data paths and η the constant utilized for the
null reference. For the analysis an abstract interpretation R̂ = (L̂×P̂)∪{η̂}
is required.

For the first component, the abstract memory locations L̂, the labels
used to abstract memory locations can be utilized. Thus, L̂ = M. For
the data path we combine the concrete Definition 3.54 with the abstract
data indices introduced by Definition 4.20. While the concrete data path
definition contributes the structure to build paths, the abstract data indices
provide means to deal with uncertainty along the path. Let P̂ bet the set
of all terms generated by the grammar

p ::= u | d
u ::= ⊥ | i.u
d ::= ⊥ | d.i

where p is the starting symbol and i ∈ I an index value of some abstract data
index (I,t, π). Finally, η̂ is an arbitrary constant such that η̂ /∈ (L̂ × P̂).

Thus, elements of R̂ provide abstract means to model the memory lo-
cations reference values in an IR code fragment can reference. However, to
deal with the inherent uncertainty of static program analyses, sets of such
reference values need to be assigned to variables modeling the value of IR
references. Furthermore, to support composed values, those sets need to
be extended to trees or forests utilizing the corresponding property space
constructors of Definitions 4.21 and Definition 4.22.

4.4. FLOW-SENSITIVE ANALYSES 273

Definition 4.28 (reference property space). Let Pr = (2R̂,
⋃

) be a prop-
erty space over sets of abstract references. The property space for tracing
references in the Insieme CBA framework is given by

(Lt(Pr),
⊔

t(Pr)
)

based on a tree-value based property space.

Note that since the set of memory locations in a program as well as the
nesting level of composed values in a program is finite, the set R̂ is finite
too. Hence, the property space Pr is not required to be a limited power-set
property space to satisfy the ascending chain condition.

Obtaining a Constraint Generator As the foundation for the reference
analysis the generic labeled expression constraint generator is utilized. It is
specialized for the operators ref.alloc, ref.narrow and ref.expand – which
are the only operations manipulating references (see page 133). To support
the computation of the resulting reference values an additional analysis tar-
geting the value of data paths is utilized. Its property space is based on trees
of subsets of the set of abstract data paths P̂ and the results obtained from
it are used to model the effects of the ref.narrow and ref.expand operators.

Examples and Applications Consider the following code fragment:

// some type d e f i n i t i o n s
l e t i n t = in t <4>;
l e t A = struct {

a : i n t ; b : vec tor<in t ,4>;
} ;
l e t B = struct { x : r e f<in t >; y : r e f<in t >; } ;

// demonstrate a l i a s i n g v a r i a b l e s
re f<in t> a = var (8) ;
r e f<in t> b = a ;

// demons t ra t ing sub−r e f e r e n c i n g
re f<A> c = var (struct {

a = 12 ;
b = ve c t o r . c r e a t e ([1 , 2] , 4) ;

}) ;

r e f<in t> ca = c . a ;
r e f<vec tor<in t ,4>> cb = c . b ;
r e f<in t> cb2 = c . b [2] ;

// demons t ra t ing unc e r t a i n t y
re f<in t> d = (. . .) ? b : cb2 ;

// demons t ra t ing composed v a l u e s
B e = struct { x = b ; y = d ; } ;

274 CHAPTER 4. ANALYSES

Let la, lc ∈ L be the labels referencing the ref.alloc calls within the defini-
tions of the var operators utilized for the initialization of the variables a and
c. Then the reference analysis obtains the following values for the involved
variables:

Variable Value

a {(l1,⊥)}
b {(l1,⊥)}
c {(l2,⊥)}
ca {(l2,⊥.a)}
cb {(l2,⊥.b)}
cb2 {(l2,⊥.b.2)}
d {(l1,⊥), (l2,⊥.b.2)}
e (x = {(l1,⊥)}, y = {(l1,⊥), (l2,⊥.b.2)})

Note that the reference analysis, as a side effect, constitutes an alias anal-
ysis. For instance, based on the results we obtain that variables a and b as
well as the expression e.x are referencing the same memory location, cb2 is
referencing a fraction of the memory location referenced by cb and e.y may
reference the same location as cb2. The result also shows that e.g. variables
a and cb2 are definitely not referencing overlapping memory locations.

Tracing the Value of Memory Locations

The third step is to trace the values stored in the memory locations. Upon
creation the values stored in a memory location are undefined. A call to the
abstract ref.assign operator is the only operation that may alter the state
of a memory location and a call to the abstract operator ref.deref is the
only way to retrieve values.

The basic idea is to follow the stream of program points processed during
the course of a program execution for each individual memory location start-
ing from its creation point. If a ref.assign operator is encountered which is
potentially referencing the investigated memory location or a part of it, the
effects of the assignment are incorporated into the maintained value. Also,
whenever a ref.deref operation is encountered, the currently maintained
value is retrieved. In the following the corresponding location state analysis
utilizing the analysis variable name S is developed.

Property Space Unlike the arithmetic, boolean or reference analysis and
similar to the channel state analysis covered so far, the location state analysis
to be developed in this section is a generic analysis. It describes a pattern to
be followed, yet still exposes some parameters to be specialized for specific
use cases. In particular the property space is left as a parameter.

For instance, when applying an analysis aiming for determining the arith-
metic value of an expression, the property space of the corresponding anal-

4.4. FLOW-SENSITIVE ANALYSES 275

ysis shall be utilized for modeling the states of all involved memory loca-
tions. Similar, when focusing on boolean values, references, data paths,
jobs or thread groups the property spaces of the corresponding analysis are
utilized. In particular this enables the transition between the values of ex-
pressions and the values of memory locations when processing ref.assign
and ref.deref operations.

Hence, the utilized property space remains a parameter of this generic
analysis. However, for the following development of the constraint generator
we introduce the abstract property space

Pv = (Lv,
⊔

v
)

to reference to the property space utilized for describing the values stored
in memory locations by an instance of the generic location state analysis.

Constraint Generator The foundation for the constraint generator for
the location state analysis is provided by the generic program point con-
straint generator. However, we extend the labeling of analysis variables by
two additional components. The first covers the type of value we are trac-
ing and the second the memory location it is referring to. For instance,
whenever the standard program point constraint generator would utilized a
variable

Sl,pre

where l ∈ L is some node label, the customized, yet still generic location
state analysis references a variable

Sl,pre,a,m

where a is some analysis, e.g. the arithmetic (A) or boolean (B) analysis,
and m ∈M an identifier for the traced memory location.

In addition, the resolution of constraints for variables Sl,post,a,m refer-
encing calls to the following operators are intercepted:

• ref.alloc . . . if the label of the invocation of this operator is equivalent
to the label addressing the memory location to be traced, its creation
point has been encountered. Hence a simple constraint

>v vv Sl,post,a,m

is created to where >v is the top element of the abstract property space
Pv. This corresponds to the initialization of them memory location
utilizing an undefined value.

• ref.assign . . . upon encountering an update operation the reference
analysis is utilized to determine whether the memory location tar-
geted by the first parameter may reference the memory location m.

276 CHAPTER 4. ANALYSES

If so, the effect of the update operation is incorporated accordingly.
This is realized by constraints of the following shape: Let l1, l2 be the
labels of the two arguments of the ref.assign call. Further, let X be
the identifier for the variables of analysis a. Then the constraints

⊔
v

 ⋃
d∈{x|(m,x)∈Rl1}

{update (Sl,in,a,m, d,Xl2)}

 vv Sl,post,a,m

and

|Rl1 | > 1⇒ Sl,in,a,m vv Sl,post,a,m

are generated where Rl1 is the analysis variable representing the set
of potentially targeted memory location fractions, Xl2 the value to be
assigned and update : (Lv, P̂, Lv) → Lv a function updating the tree
or forest based value passed as the first parameter by exchanging the
sub-tree(s) addressed by the data path given by the second parameter
by the value of the third parameter. The second constraint is only
enabled in case the targeted reference can not be uniquely determined.
In this case it has to be assumed that the update is not addressing
the traced memory location and may hence not affect its value. This
is modeled by forwarding the state after processing the arguments yet
before processing the assignment operation (Sl,in,a,m) to the state after
processing the assignment (Sl,post,a,m).

No additional operators or constants have to be considered. However, for
performance reasons the resolution of proceeding program points is spe-
cialized. For once, whenever resolving a predecessor of a label addressing
a program point before the creation point m ∈ M ⊂ L the resolution is
skipped and a constraint assigning >v to the corresponding analysis vari-
able is created – since the value stored in a memory location is undefined
before its creation. Also, various techniques to skip sequences of program
points not including ref.assign calls are employed. Thus, while the basic
generic program point constraint generator would follow the program point
sequence

. . . , pn, pn+1, . . . , pn+k−1, pn+k, . . .

and it can be determined that none of the program points pn+1, . . . , pn+k−1

is referencing a call to a ref.assign operator those are skipped and the
location state constraint generator shortcuts the sequence of program points
by following

. . . , pn, pn+k, . . .

which reduces the number of variables and constraints to be processed by
the constraint solver.

4.4. FLOW-SENSITIVE ANALYSES 277

Integration into the CBA Framework Finally, to enable a wide uti-
lization of the location state analysis it is integrated into the basic generic
labeled expression constraint generator. Whenever resolving the value of a
call expression labeled by l ∈ L targeting the abstract operator ref.deref
for an analysis X with a tree or forest based property space Px = (Lx,

⊔
x)

a constraint of the form

⊔
x

 ⋃
(m,d)∈Rl1

{project (Sl,in,x,m, d)}

 vx Xl

is generated where Rl1 is the analysis variable covering the set of potential
references addressed by the ref.deref operation and project : (Lx, P̂)→ Lx
is a function extracting the value addressed by the second parameter from
the tree / forest value passed as the first argument.

This way the connection between memory locations and labeled expres-
sion based value analyses is integrated generically. All value analyses based
on labeled expressions are implicitly extended with the capability of sup-
porting the tracing of values of memory locations. Thus, this capability is
supported out-of-the-box by the constraint generators offered by the Insieme
CBA framework.

In particular, also the reference analysis covered above benefits from this
effect. References may be stored in memory locations or sub-structures of
memory locations and retrieved accordingly. Pointers, modeled by memory
locations storing reference values correspond to this kind of use case. By
closing the loop between value and location state analyses, the previously
presented alias analysis has been extended to arbitrarily nested pointers.

Examples To demonstrate the tracing of the value of memory locations
a few examples shall be provided.

A Simple Write/Read Case Consider the following code fragment

l e t i n t = in t <4>;
r e f<in t> a = var (i n t) ;
a := 1 ;
a := ∗a + 2 ;
∗a ;

which is an abbreviated version of

l e t i n t = in t <4>;
r e f<in t> a = (type <’a> t) → re f <’a> {

return r e f . a l l o c (’ a , memloc . s t a c k) ;
}) (i n t) ;
r e f . a s s i g n (a , 1) ;
r e f . a s s i g n (a , i n t . add (r e f . d e r e f (a) ,2)) ;
r e f . d e r e f (a) ;

278 CHAPTER 4. ANALYSES

and its labeled version

l e t i n t = in t <4>;
[r e f<in t> [a] 1 = [(type <’a> t) → re f <’a> {

return [r e f . a l l o c (’ a , memloc . s t a c k)] 2 ;
}) (i n t)] 3 ;
[r e f . a s s i g n ([a] 4 , [1] 5)] 6 ;
[r e f . a s s i g n ([a] 7 , [i n t . add ([r e f . d e r e f ([a] 8)] 9 , [2] 10)] 11)] 12 ;
[r e f . d e r e f ([a] 13)] 14 ;

where the labels for some expressions, e.g. all function literals, have been
omitted for brevity. The goal is to obtain the value of the last expression ∗a
utilizing the arithmetic analysis covered in the previous section.

The following constraints are generated – omitting details covering dy-
namic dispatching issues and constraints not affecting the requested value
and hence skipped by the lazy-solver. First, the constraint generator of the
arithmetic analysis creates the constraints

{1} vt(Pa) A5⊔
t(Pa)

 ⋃
(m,d)∈R8

{project (S9,in,a,m, d)}

 vt(Pa) A9

{2} vt(Pa) A10

{x+ y | x ∈ A9 ∧ y ∈ A10} vt(Pa) A11⊔
t(Pa)

 ⋃
(m,d)∈R13

{project (S14,in,a,m, d)}

 vt(Pa) A14

where the constraints on A5 and A10 are based on the interpretation of lit-
erals, the constraint on A11 is based on the effect of an arithmetic operation
and the constraints on A9 and A14 are created by the generic interpretation
of ref.deref operations. Those constraints reference the variables R8, R13,
S9,in,a,m and S14,in,a,m. Hence, constraints for those need to be obtained as
well. The reference analysis yields the constraints

R3 vt(Pr) R1

{(2,⊥)} vt(Pr) R2

R2 vt(Pr) R3

R1 vt(Pr) R4

R1 vt(Pr) R7

R1 vt(Pr) R8

R1 vt(Pr) R13

where the constraints on R1 are based on the initialization of the IR variable
a, R2 is based on the interpretation of the ref.alloc call, R3 is based on the

4.4. FLOW-SENSITIVE ANALYSES 279

generic handling of a call expression (omitting dynamic dispatching issues)
and the remaining are based on the handling of IR variables. Finally, the
constraint generator of the location state analysis yields the constraints

>t(Pa) vt(Pa) S2,post,a,2

S2,post,a,2 vt(Pa) S3,post,a,2

S3,post,a,2 vt(Pa) S6,pre,a,2

S6,pre,a,2 vt(Pa) S4,pre,a,2

S4,pre,a,2 vt(Pa) S4,post,a,2

S4,post,a,2 vt(Pa) S5,pre,a,2

S5,pre,a,2 vt(Pa) S5,post,a,2

S5,post,a,2 vt(Pa) S6,in,a,2⊔
t(Pa)

 ⋃
d∈{x|(m,x)∈R4}

{update (S6,in,a,2, d, A5)}

 vt(Pa) S6,post,a,2

|R4| > 1⇒ S6,in,a,2 vt(Pa) S6,post,a,2

S6,post,a,2 vt(Pa) S12,pre,a,2

S12,pre,a,2 vt(Pa) S7,pre,a,2

S7,pre,a,2 vt(Pa) S7,post,a,2

S7,post,a,2 vt(Pa) S11,pre,a,2

S11,pre,a,2 vt(Pa) S11,post,a,2

S11,post,a,2 vt(Pa) S12,in,a,2⊔
t(Pa)

 ⋃
d∈{x|(m,x)∈R7}

{update (S12,in,a,2, d, A11)}

 vt(Pa) S12,post,a,2

|R7| > 1⇒ S12,in,a,2 vt(Pa) S12,post,a,2

S12,post,a,2 vt(Pa) S14,pre,a,2

S14,pre,a,2 vt(Pa) S13,pre,a,2

S13,pre,a,2 vt(Pa) S13,post,a,2

S13,post,a,2 vt(Pa) S14,in,a,2

where the constraint for S2,post,a,2 is based on the interception of the creation
point, the constraints on S6,post,a,2 and S12,post,a,2 are based on the interpre-
tation of the assignment operator and the rest is produced by the generic
program point constraint generator. Note that between the program point
(11, pre) and (11,post) several steps have been skipped by the location state
constraint generator since no assignment operation can be encountered while
processing expression 11. Also note that, as usual, the numerical labels are

280 CHAPTER 4. ANALYSES

utilized in this example for simplicity and real labels are combinations of
node instance addresses, call- and thread-contexts.

Algorithm 4.9 is gradually obtaining those constraints and computing a
smallest fixpoint assignment ass for the involved variables. Among others,
the assignment contains the values

ass[S2,post,a,2] = >t(Pa)

ass[S6,in,a,2] = >t(Pa)

ass[S6,post,a,2] = {1}
ass[S12,in,a,2] = {1}

ass[S12,post,a,2] = {3}
ass[R4] = {(2,⊥)}
ass[R7] = {(2,⊥)}
ass[A9] = {1}

ass[A10] = {2}
ass[A11] = {3}
ass[A14] = {3}

where ass[A14] = {3} corresponds to the desired result of our analysis.

The presented example demonstrates the interaction between the vari-
ous analyses and generic constraint generation utilities to obtain values for
expressions depending on data and control flow covering functional IR core
features and mutable memory locations introduced by a language extension.

Multiple Analysis and Multiple Memory Locations The fact
that variables referencing memory locations have been extended by two ad-
ditional subscript elements – an analysis and a memory location – in addi-
tion to the program point it is referring to enables the system to handle an
arbitrary number of locations and analyses. Furthermore, by representing
the values of memory locations based on tree or forest values, data struc-
tures may be arbitrarily nested. For instance, consider the following code
fragment:

l e t i n t = in t <4>;
l e t po in t = struct { x : i n t ; y : i n t } ;
l e t mark = struct { p : po in t ; b : b oo l ; } ;

r e f<mark> a = var (mark) ;
r e f<mark> b = var (mark) ;
r e f<mark> c = (. . some cond i t i on . .) ? a : b ;

a . p . x := 1 ;
b . p := struct { x = 0 ; y = 2 } ;
c . b := t rue ;

4.4. FLOW-SENSITIVE ANALYSES 281

In this code fragment two memory locations are created. The first is refer-
enced by the IR variable a and the second by the IR variable b. The variable c
may reference the first or the second memory location. Let m1,m2 ∈M ⊂ L
be the labels addressing those memory locations, lc ∈ L be the label of the
declaration statement of the IR variable c and la1, la2, la3 ∈ L be the labels
of the three assignments. After the declaration block the value of those is
undefined. Hence, for any assignment ass obtained by an analysis instance
it follows that

ass[Slc,post,a,m1] = >t(Pa)

ass[Slc,post,b,m1] = >t(Pb)
ass[Slc,post,r,m1] = >t(Pr)
ass[Slc,post,a,m2] = >t(Pa)

ass[Slc,post,b,m2] = >t(Pb)
ass[Slc,post,r,m2] = >t(Pr)

where a,b and r are tokens to identify and distinguish arithmetic, boolean
and reference analysis.

The reference targeted by the first assignment is given by (m1,⊥.p.x) ∈
R̂. Hence, it references a sub-structure of the memory location m1 only.
After the assignment operation the states have altered to

ass[Sla1,post,a,m1] = (p = (x = {1}))
ass[Sla1,post,b,m1] = (p = (x = {true}))
ass[Sla1,post,r,m1] = (p = (x = >Pr))
ass[Sla1,post,a,m2] = >t(Pa)

ass[Sla1,post,b,m2] = >t(Pb)
ass[Sla1,post,r,m2] = >t(Pr)

Note that, while the arithmetic and the boolean analyses are capable of
providing an interpretation for the literal 1, the reference analysis is unable
to associate a valid interpretation and therefore defaults to the value >Pr .
After the second assignment targeting the location referenced by

ass[Rlb.p] = {(m2,⊥.p)}

282 CHAPTER 4. ANALYSES

the state

ass[Sla2,post,a,m1] = (p = (x = {1}))
ass[Sla2,post,b,m1] = (p = (x = {true}))
ass[Sla2,post,r,m1] = (p = (x = >Pr))
ass[Sla2,post,a,m2] = (p = (x = {0}, y = {2}))
ass[Sla2,post,b,m2] = (p = (x = {false}, y = {true}))
ass[Sla2,post,r,m2] = (p = (x = >Pr , y = >Pr))

is reached and after the last assignment targeting

ass[Rlc.b] = {(m1,⊥.b), (m2,⊥.b)}

the state

ass[Sla2,post,a,m1] = (p = (x = {1}), b = >Pa)

ass[Sla2,post,b,m1] = (p = (x = {true}), b = {true, false})
ass[Sla2,post,r,m1] = (p = (x = >Pr), b = >Pr)
ass[Sla2,post,a,m2] = (p = (x = {0}, y = {2}), b = >Pa)

ass[Sla2,post,b,m2] = (p = (x = {false}, y = {true}), b = {true, false})
ass[Sla2,post,r,m2] = (p = (x = >Pr , y = >Pr), b = >Pr)

is reached. Note that since c is not uniquely identifying a single potential
target the value of addressed sub-structures of the referenced memory loca-
tions can not be overridden but have to be merged with the previous values.
However, since no explicit values have been present before, the previous
values all correspond to the > elements of the various property spaces.

Nested Pointers and Alias Analysis In a final, short example, the
support for pointer and associated pointer alias analysis shall be covered.
Consider the following code fragment

l e t i n t = in t <4>;

r e f<in t> a = var (1) ; // a s c a l a r
re f<in t> b = var (2) ; // another s c a l a r
re f<in t> c = a ; // an a l i a s o f a
re f<re f<in t>> p = var (b) ; // a po i n t e r on b

∗a ; // = { 1 }
∗b ; // = { 2 }
∗c ; // = { 1 }
∗∗p ; // = { 2 }

4.4. FLOW-SENSITIVE ANALYSES 283

a := 3 ;

∗a ; // = { 3 }
∗b ; // = { 2 }
∗c ; // = { 3 }
∗∗p ; // = { 2 }

p := c ;

∗a ; // = { 3 }
∗b ; // = { 2 }
∗c ; // = { 3 }
∗∗p ; // = { 3 }

∗p := 4 ;

∗a ; // = { 4 }
∗b ; // = { 2 }
∗c ; // = { 4 }
∗∗p ; // = { 4 }

The comments outline the results that are obtained when applying the arith-
metic analysis on the associated expressions. Since pointers are mere mem-
ory locations containing references of other memory locations, and since
all value analyses are implicitly extended to memory locations, arbitrarily
nested pointers can be accurately analyzed using the given infrastructure.
No additional or explicit treatment of those is required.

Parallel Control Flow

So far, memory locations are properly handled for sequential control flows.
In this fourth, final step, support for parallel control flows is integrated. The
basic idea is to integrate the affects of parallel control flows on the state of
memory locations by tracing lists of reaching and killed definitions (see page
225 et seqq.).

Reaching and Killed Definition Analysis A definition is referenced
by the node instance address, call and thread context of the expression
conducting it, hence a label l ∈ L referencing a call expression targeting the
abstract ref.assign operator.

Definition 4.29 (reaching definition property space). Let D ⊂ L denote
the set of definition points. Then

PRD = (2D,
⋃
,
⋃

)

is the extend property space for the reaching definition analysis.

284 CHAPTER 4. ANALYSES

Definition 4.30 (killed definition property space). Let D ⊂ L denote the
set of definition points. Then

PKD = (2D,
⋂
,
⋃

)

is the extend property space for the killed definition analysis.

Since those analyzes are not targeting the value of expression in a code
fragment, their property spaces are not required to be wrapped into a tree
structure. Also, since the number of definition points is finite, no limitation
on the cardinality of the utilized sets is required to satisfy the ascending
chain condition.

Constraint Generators For both analyzes constraints are generated by
specialized versions of the generic program point constraint generator. The
associated variables are identified by the names RD and KD and their
subscript is extended by the targeted memory location. For instance, the
analysis variable

RDl,in,m

determines the set of definitions potentially targeting the memory location
m reaching the program point (l, in). Thus, for every memory location,
individual reaching and killed definitions are computed.

Furthermore calls targeting the abstract operator ref.assign are inter-
cepted. Let l ∈ D ⊂ L be the label of such a call expression and l1 ∈ L the
label of the first argument targeting the referenced memory location. Then
for a memory location m ∈M the reaching definition analysis generates the
constraints

∃d . (m, d) ∈ Rl1 ⇒ {l} ⊆ RDl,post,m

|Rl1 \ {(m,⊥)}| > 1⇒ RDl,in,m ⊆ RDl,post,m

and the killed definition analysis produces the two non-monotonic con-
straints

Rl1 6= {(m,⊥)} ⇒ KDl,in,m ⊇ KDl,post,m

Rl1 = {(m,⊥)} ⇒ KDl,in,m ∪RDl,in,m ⊇ KDl,post,m

In all cases the set of potentially referenced memory locations Rl1 is in-
spected to determine how the processing of the assignment might affect the
sets of reaching and killed definitions regarding the memory location m. For
instance, if the assignment target is {(m,⊥)}, hence it can be proven that
the reference is targeting the memory location m, then all former definitions
are killed and the current assignment becomes the only reaching definition
for the subsequent program points. However, if the targeted memory loca-
tion is uncertain, e.g. by having Rl1 = {(m,⊥), (m′,⊥)} for some m′ 6= m,

4.4. FLOW-SENSITIVE ANALYSES 285

then the possibility that this assignment might not kill former definitions
has to be considered. Correspondingly, former definitions may reach sub-
sequent program points and the definitions reaching the assignment might
not get killed. The constraints provided above cover this behavior.

Note that since for the property space of the killed definition analysis the
intersection operator

⋂
is utilized as the one-of-a-set combination operator,

the abstract operator v corresponds to ⊇, ⊥ = D and > = ∅.
The other abstract operator that has to be considered are merge op-

erators. While killed definitions are properly aggregated by the generic
implementation of the underlying constraint generator by computing the
union of the killed definitions of all merged threads using the all-of-a-set
combination operator, the handling of reaching definitions has to be further
adapted. While the generic generator would create a constraint similar to ⋃

(l,s)∈{end point of joined thread}

RDl,s,m

 ⊆ RDlm,post,m

where lm ∈ L is the label of the merge operation, the reaching definition
constraint generator is customized to produce ⋃

(l,s)∈{end point of joined thread}

RDl,s,m

 \KDlm,post,m ⊆ RDlm,post,m

instead. Hence, all reaching points are collected and reduced by the set of
definitely killed definitions contributed by the joined threads. Note that this
is another non-monotonic constraint.

Finally, to reduce the number of analysis variables and constraints, for
any program point (l, p) ∈ P preceding the creation point of the memory
location m constraints of the shape

∅ ⊆ RDl,p,m

∅ ⊇ KDl,p,m

are created. Also, as for the location state analysis, steps along sequences
of program points not including assignment operations are skipped.

Integration into the Location State Analysis To integrate the effects
of parallel control flows on the memory locations the reaching definitions at
each merge point are utilized to compute the state of each memory location
after the merge.

For each memory location m, analysis X with property space Px =
(Lx,

⊔
x) and program point (l,post) ∈ P referencing a point after a call to

a merge operator, the location state generator produces a constraint⊔
x
{Sd,post,x,m | d ∈ RDl,post,m} vx Sl,post,x,m

286 CHAPTER 4. ANALYSES

combining the values of all reaching definitions at the merge point. This
way the affects of relevant assignment operations are combined at the merge
point.

A more refined approach may furthermore respect the sub-structure of
the handled memory location targeted by the definition points to increase the
accuracy when updating independent sub-structures in concurrent threads.
However, the necessary details are omitted for simplicity.

Example To demonstrate the handling of parallel control flows and their
affects on the values associated to memory locations consider the following
code fragment:

l e t i n t = in t <4>;
r e f<in t> x = var (i n t) ;
x := 1 ;
merge(para l l e l (job [1 , 1] ()⇒ {

x := 2 ;
})) ;
∗x ;

Clearly, since the contained thread is spawned and merged before the final
expression is evaluated, the value of ∗x is 2.

Based on the (partially) annotated version

l e t i n t = in t <4>;
[r e f<in t> x = var (i n t)] 1 ;
[x := 1] 2 ;
[merge(para l l e l (job [1 , 1] ()⇒ {

[x := 2] 3 ;
}))] 4 ;
[∗ x] 5 ;

the following simplified constraints are obtained by the analysis framework.
Let m ∈ M be the label addressing the memory location created in the
initialization of the variable x. From the arithmetic analysis the constraint

S5,in,a,m vt(Pa) A5

is obtained. It reflects the fact that the value of the expression bearing
the label 5 is the result of a read operation targeting memory location m.
The details regarding the identification of the addressed memory location by
resolving the value of x are omitted for brevity. When resolving constraints
for the variable S5,in,a,m the location state constraint generator yields

S5,pre,a,m vt(Pa) S5,in,a,m

for S5,pre,a,m the constraint

S4,post,a,m vt(Pa) S5,pre,a,m

4.4. FLOW-SENSITIVE ANALYSES 287

and for S4,post,a,m the constraint⊔
x
{Sd,post,a,m | d ∈ RD4,post,m} vt(Pa) S4,post,a,m

merging the values of all reaching definitions. The constraints for reaching
definitions are given by

∅ ⊆ RD1,pre,m

RD1,pre,m ⊆ RD1,post,m

RD1,post,m ⊆ RD2,pre,m

RD2,pre,m ⊆ RD2,in,m

{2} ⊆ RD2,post,m

RD2,post,m ⊆ RD3,pre,m

RD3,pre,m ⊆ RD3,in,m

{3} ⊆ RD3,post,m

RD2,post,m ⊆ RD4,pre,m

RD4,pre,m ⊆ RD4,in,m

(RD4,in,m ∪RD3,post,m) \KD4,post,m ⊆ RD4,post,m

and for killed definitions by

∅ ⊇ KD1,pre,m

KD1,pre,m ⊇ KD1,post,m

KD1,post,m ⊇ KD2,pre,m

KD2,pre,m ⊇ KD2,in,m

KD2,in,m ∪RD2,in,m ⊇ KD2,post,m

KD2,post,m ⊇ KD3,pre,m

KD3,pre,m ⊇ KD3,in,m

KD3,in,m ∪RD3,in,m ⊇ KD3,post,m

KD2,post,m ⊇ KD4,pre,m

KD4,pre,m ⊇ KD4,in,m

KD4,in,m ∪KD3,post,m ⊇ KD4,post,m

respectively. In both cases details dealing with restrictions on the referenced
memory locations are omitted for clarity.

From those constraints Algorithm 4.9 computes (with potential local
restarts) an assignment ass containing

ass[RD4,post,m] = {3}

such that, due to the constraint on S4,post,a,m, constraints on S3,post,a,m are
required. Those are produced by the location state constraint generator

288 CHAPTER 4. ANALYSES

resulting in the (simplified) constraint

{2} vt(Pa) S3,post,a,m

covering the result of the assignment operation bearing the label 3. Based
on this constraint Algorithm 4.9 is capable to reach a fixpoint solution ass
for the given set of constraints such that

ass[A5] = {2}

as desired.

4.4.8 Summary of the Insieme CBA Framework

In this section the Insieme CBA framework has been covered. After pro-
viding a basic introduction into program analysis gradually developing the
concept of constraint based analysis based on the more widely known data
flow analysis an overview on the Insieme CBA framework has been provided
in Section 4.4.2. It has been followed by sections elaborating details regard-
ing the underlying constraint solver (4.4.3), utilities offered for constructing
property spaces (4.4.4) and the framework provided for the implementation
of constraint generators (4.4.5). Furthermore, the design of various analyses
built on top of the Insieme CBA framework (4.4.6) and a set of analyses
supporting the integration of the mutable state language extension (4.4.7)
have been covered in detail.

The resulting framework offers:

• A lazy constraint solver capable of dealing with dynamic constraint
dependencies and non-monotonic constraints

• A set of generic utilities to construct property spaces covering arbitrary
composed data values based on an extensible set of type constructors;
current support covers structs, unions, tuples5, vectors and arrays;

• A comprehensive set of generic constraint generators based on various
types of data structures providing implicit support for all Insieme IR
language features and several extensions; Those include: handling of
variables, (recursive) functions, closures, dynamic dispatching issues,
imperative control flow constructs, jobs, thread groups, concurrent
control flows, spawn and merge operations, collective operations and
channels; Furthermore support for the arithmetic, boolean, array, vec-
tor and mutable state language extensions is included out-of-the-box.

• A collection of basic analyses to be utilized and combined to build
advanced analyses and/or analyses based utilities

5Tuples have been omitted within this section for brevity but may be considered equiv-
alent to structs with numerical field names.

4.5. POLYHEDRAL ANALYSES 289

Altogether those utilities provide a comprehensive toolbox for analyzing IR
based parallel codes. The design of new analysis is reduced to the tasks of

• picking a name

• designing a property space

• customizing a generic constraint generator

The full framework has been implemented as part of the Insieme Compiler
project [29]. The sources and a comprehensive list of test cases demonstrat-
ing various examples are available online (see Appendix A).

4.5 Polyhedral Analyses

The polyhedral model (PM) is a widely utilized and powerful approach for
analyzing code sections, in particular focusing on loop nests and loop depen-
dencies [22, 12]. It is based on an algebraic description of a code fragment
based on a decidable formalism. Consequently, it imposes restrictions on the
supported input codes since in the general case decision problems on pro-
gram codes are undecidable. However, a large variety of (scientific) codes
fulfill this requirement [35].

Due to the restriction to a decidable subset of input codes, (most) anal-
ysis based on the polyhedral model yield accurate results. On the contrary,
DFA and CFA based approaches covered so far are capable of handling ar-
bitrary input codes, yet necessarily produce over- or under-approximations
of the desired information.

4.5.1 Overview on the Polyhedral Model

The polyhedral model has been extensively covered in the literature [22, 12,
35] such that this section just briefly outlines the basic concepts based on
an example analysis.

Consider the following code fragment consisting of two nested loops and
two array accesses:

l e t i n t = in t <4>;
for (i n t i = 0 . . N) { // 0 ≤ i < N

for (i n t j = i . . N) { // i ≤ j < N
. . . = a [i] [j −1] ; // S1
a [i] [j] := . . . ; // S2

}
}

The goal of the example should be to determine whether there are dependen-
cies between various iterations of the loops that might, for instance, prevent
those loops from being parallelized.

290 CHAPTER 4. ANALYSES

To obtain this information two steps have to be conducted. In a first
step a polyhedral model based description of the given code fragment has
to be extracted and in a second step this representation has to be utilized
to deduce the desired information.

Polyhedral Model Extraction

In the polyhedral model every statement of a code fragment is represented
by a triple consisting of an iteration domain, an affine schedule function
and a list of access functions. The first of those, the iteration domain, is
specified by a convex polytope which has to be defined first.

Definition 4.31 (convex polytope). Let A ∈ Zm×n be an integer matrix
and ~b ∈ Zm an integer vector. The set of solutions ~x ∈ Zn of the inequality

A~x+~b ≥ ~0

is a n-dimensional convex polytope.

Every convex polytope is specified by an integer matrix A and a vector
b. However, conventionally the inequation

A~x+~b ≥ ~0

is re-written into a homogeneous form[
A ~b

](~x
1

)
≥ ~0

such that a single matrix A′ =
[
A ~b

]
suffices for the definition of a convex

polytope.
Convex polytopes exhibit various useful properties. In particular, the

intersection of two convex polytopes, which is equivalent to the conjunction
of the defining inequalities, is again a convex polytope and the problem of
deciding whether a polytope is empty is NP-hard, and hence decidable.

Iteration Vector The polytopes utilized for modeling the iteration do-
mains of statements in a given code fragment all exhibit the same dimen-
sionality. Furthermore, the interpretation of each dimension is consistent
throughout all polytopes. This interpretation is fixed by the so-called iter-
ation vector. In the given example the iteration vector ~I is given by

~I =
(
i j N 1

)T
where the first two elements i and j are the loop iterators, N is a global
parameter and the constant 1 is included to fit the homogeneous form.

4.5. POLYHEDRAL ANALYSES 291

Iteration Domain The Iteration domain associated with a statement
models the individual instances of the corresponding statement within a
program execution. In our example, the iterator domain DS1 for the first
statement is given by the convex polytope specified by

DS1 =

1 0 0 0
−1 0 1 −1
−1 1 0 0
0 −1 1 −1

which corresponds to the solution set of DS1

~i ≥ ~0 which is equivalent to the
set of solutions of the constraints

i ≥ 0

−i+N − 1 ≥ 0

−i+ j ≥ 0

−j +N − 1 ≥ 0

which are equivalent to

i ≥ 0

i ≤ N − 1

j ≥ i
j ≤ N − 1

which correspond to the boundary conditions of the enclosing loops. Each
point in the polytope represents an instance of statement S1. For instance,
the point (3, 8, N, 1) ∈ DS1 corresponds to the execution of the statement
S1 when i = 3 and j = 8 assuming N > 8. Since statement S2 is enclosed
by the same loops as S1, it follows that DS2 = DS1.

Schedule Function The iterator domain models the instances of a state-
ment, yet does not define their execution order. This is covered by the
schedule function. The schedule function maps each instance of a statement,
modeled implicitly by a point of the iterator domain, to a logical execution
time consisting of an integer vector. The various instances of the involved
statements are then processed according to the lexicographical order of those
logical timestamps.

Formally, the schedule function is specified for each statement S by an
integer matrix TS ∈ Zk×n, where n is the length of the iteration vector and
k the length of the vector representing the logical time, such that fore every
statement instance i in the convex polytope defined by DS of a statement
S the vector TSi corresponds to the associated logical timestamp.

292 CHAPTER 4. ANALYSES

In our example, we have to ensure that every instance of statement S1
and S2 of the loop iteration (x, y) is processed before the corresponding
instances of iteration (x, y+ 1) which themselves are to be processed before
the instances of the iteration (x + 1, y). Furthermore, every instance of
statement S1 has to be processed before the corresponding instance of S2
of the same loop iteration.

An instance of a statement is given by an element of its associated it-
erator domain. In our example, (x, y,N, 1)T is the vector describing the
instance of a statement in loop iteration (x, y). By mapping this value to
the logical timestamp

(x, y, 0)T

for all instances of statement S1 and to the timestamp

(x, y, 1)T

for all instances of statement S2 we obtain the desired lexicographical order.
Thus, we have to find matrices TS1 and TS2 such that

TS1

x
y
N
1

 =

xy
0

 and TS2

x
y
N
1

 =

xy
1

hold. Hence, the schedule function for statement S1 is given by the matrix

TS1 =

1 0 0 0
0 1 0 0
0 0 0 0

 ∈ Zk×n

and for statement S2 by the matrix

TS2 =

1 0 0 0
0 1 0 0
0 0 0 1

 ∈ Zk×n

satisfying the constraints defined above. However, alternative formats of log-
ical timestamps yield different matrices. The important thing is that those
are indeed integer matrices and the resulting logical timestamps accurately
describe the execution order of the instances of the involved statements.

Access Functions The third component for modeling statements in the
polyhedral model are lists of access functions. Access functions map the
instance of a statement to the accessed elements of an array. Thereby, read
and write accesses are distinguished.

As for the schedule function, access functions are specified by an in-
teger matrix A(s,m,d) ∈ Zk×n where s is the associated statement, m ∈

4.5. POLYHEDRAL ANALYSES 293

{USE,DEF} is the access mode, d identifies the accessed array, k corre-
sponds to the number of dimensions of d and n to the length of the iteration
vector.

In our example the statement S1 is associated with the access function

A(S1,USE,a) =

[
1 0 0 0
0 1 0 −1

]
Hence, an instance of S1 in iteration (x, y), addressed by the vector ~i =
(x, y,N, 1)T is reading the element

A(S1,USE,a)
~i = (x, y − 1)T

of array a. Similarly, S2 is associated with the access function

A(S2,DEF,a) =

[
1 0 0 0
0 1 0 0

]
describing the write access on element a[x][y] in iteration (x, y).

Full Representation The full polyhedral representation of the given code
fragment is given by(

~I,
{(
DS1, TS1,

{
A(S1,USE,a)

})
,
(
DS2, TS2,

{
A(S2,DEF,a)

})})
consisting of the global iteration vector ~I and a set of two tuples containing
the iteration domains, affine schedule and access functions describing the
two statements S1 and S2.

Polyhedral Model based Dependency Analysis

Based on the polyhedral representation a dependency test for the given loop
nest can be conducted as follows [14]. To constitute a true dependency a
write operation has to be conducted on some array element before a read
operation is targeting the same element. In our example only one read in-
struction and one write instruction is present. Hence, only this combination
has to be tested.

Lets assume instance ~r = (ir, jr, N, 1)T is the instance of statement S1
reading the element written by instance ~w = (iw, jw, N, 1)T of statement S2.
To constitute a dependency, both instances have to exist. Hence, ~r ∈ DS1

and ~w ∈ DS2 which is checked by the constraint

DS1~r ≥ ~0

and
DS2 ~w ≥ ~0

294 CHAPTER 4. ANALYSES

Also they have to access the same array element, hence

A(S1,USE,a)~r = A(S2,DEF,a) ~w

has to be satisfied which is equivalent to

A(S1,USE,a)~r −A(S2,DEF,a) ~w ≥ ~0
−A(S1,USE,a)~r +A(S2,DEF,a) ~w ≥ ~0

Also, the read operation has to happen after the write operation. Thus

TS1~r � TS2 ~w

has to be satisfied, where � compares the two logic timestamps lexicograph-
ically. This is the case if up to a given level l it holds that

(TS1~r)1:l−1 = (TS2 ~w)1:l−1

and for the level l
(TS1~r)l > (TS2 ~w)l

where e.g. (TS1~r)1:l−1 denotes the first l − 1 elements of the vector TS1~r
and (TS1~r)l its l-th element. Those constraints can be written using linear
inequalities of the shape

A~x+~b ≥ 0

using TS1,[1−(l−1):] −TS2,[1−(l−1):]

−TS1,[1−(l−1):] TS2,[1−(l−1):]

TS1,[l:] −TS2,[l:]

(~r
~w

)
+

(
~0
−1

)
≥ ~0

where e.g. TS1,[1−(l−1):] denotes the first l − 1 rows of matrix TS1. Let

PS1,l =

 TS1,[1−(l−1):]

−TS1,[1−(l−1):]

TS1,[l:]

and

PS2,l =

 −TS2,[1−(l−1):]

TS2,[1−(l−1):]

−TS2,[l:]

Then all those constraints can be combined into the inequation

DS1 0
0 DS2

A(S1,USE,a) −A(S2,DEF,a)

−A(S1,USE,a) A(S2,DEF,a)

PS1,l PS2,l

(
~r
~w

)
+

(
~0
−1

)
≥ ~0

4.5. POLYHEDRAL ANALYSES 295

which specifies a convex polytope summarizing accurately all dependencies
on a per-instance level between the read operation in S1 and the write op-
eration in S2 for level l (∼ loop level). A dependency exists iff the polytope
is not empty.

For example, let l = 2. Then the dependency polytope is given by

1 0 0 0 0 0 0 0
−1 0 1 −1 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 −1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 −1 0 1 −1
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 −1

1 0 0 0 −1 0 0 0
0 1 0 −1 0 −1 0 0

−1 0 0 0 1 0 0 0
0 −1 0 1 0 1 0 0

1 0 0 0 −1 0 0 0
−1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0

ir
jr
N
1
iw
jw
N
1

+

(
~0
−1

)
≥ ~0

which corresponds to the constraints

ir ≥ 0

−ir +N − 1 ≥ 0

−ir + jr ≥ 0

−jr +N − 1 ≥ 0

iw ≥ 0

−iw +N − 1 ≥ 0

−iw + jw ≥ 0

−jw +N − 1 ≥ 0

ir − iw ≥ 0

jr − 1− jw ≥ 0

−ir + iw ≥ 0

−jr + 1 + jw ≥ 0

ir − iw ≥ 0

−ir + iw ≥ 0

jr − jw − 1 ≥ 0

which can be rewritten and reduced to

0 ≤ ir < N

ir ≤ jr < N

0 ≤ iw < N

iw ≤ jw < N

ir = iw

jr = jw + 1

The first four constraints limit the ranges of the parameters of the read and
write instances while the last two fix their relation. Clearly, for any N > 1
the corresponding polytope is not empty.

For a full coverage of the read-after-write dependencies between S1 and
S2 all levels 1 ≤ l < k where k is the length of the logical time stamp have
to be considered independently. Also, other kind of dependencies need to
be considered as well.

296 CHAPTER 4. ANALYSES

Limitations

A polyhedral representation of a code fragment can only be obtained for
cases where the control flow is determined by affine constraints on loop
iterators or global (constant) parameters. Hence, e.g. all for-loop boundaries
and conditionals in the targeted code are limited by this restriction. A
code fragment fulfilling this criteria is referred to as a Static Control Part
(SCoP). Constructs violating this restriction may be over-approximated,
resulting in reduced accuracy. Also, to accurately model array accesses,
the corresponding subscripts are equally restricted to affine expressions or
required to be over-approximated. Nevertheless, it has been found that a
large portion of computation time, in particular in scientific applications,
is spent in SCoPs [15]. Together with its precision, this circumstance lays
the foundation for the great success of the polyhedral model in the field of
program analysis and optimizations.

4.5.2 Integration of Polyhedral Analyses

The only component required to support polyhedral model based analysis
on top of the Insieme IR is a utility capable of extracting a polyhedral rep-
resentation from a given IR code fragment. Thereby, compared to low-level
IRs, the high level nature of INSPIRE eliminates the requirement of identi-
fying loops, arrays, boundary and subscript expressions. Also, compared to
C/C++ input code, the fact that for -loops are always representing count-
controlled loops simplifies the task. The coverage of the polyhedral model
can be further extended by (implicitly) inlining statically bound function
calls, constant propagation and the symbolic evaluation of arithmetic values
provided by the corresponding constraint-based analysis.

To conduct analyses, the extracted polyhedral representation, referenc-
ing statements in the IR DAG, is exported into a format accepted by some
third-party library, specifically the integer set library isl [105]. Based on
this, arbitrary PM based analyses may be realized.

4.6 Dynamic Analyses

Beside static analyses, which try to deduce properties of a program from
its representation, dynamic analyses target features observed during the
execution of a program itself. In particular, those include non-functional
properties like the execution time or power consumption of a program. In
the Insieme infrastructure dynamic analyses are supported utilizing a com-
bination of compiler and runtime features.

4.6. DYNAMIC ANALYSES 297

IR
code

IR’
code

C/C++
code

binary raw
dateresults

instrumentation compiler
backend

backend
compiler

execution on
target system

data
aggregation

Dynamic Program Analysis System

IN

OUT

Figure 4.2: Overview on a system for dynamic program analyses.

4.6.1 Overview on Dynamic Analyses

Figure 4.2 illustrates the basic architecture of a dynamic program analy-
sis system. A program within the compiler, represented in its IR form, is
passed to the dynamic analysis system together with a list of metrics to be
obtained (not shown in the picture). Within the system, an instrumented
version of the program is created, converted into target code, compiled by
a backend compiler, e.g. GCC or icc, and executed on the target system.
The instrumentation code, combined with corresponding runtime support
is collecting information regarding the execution which is further processed
and aggregated and returned to the user of the dynamic analysis.

To realize dynamic analyses, support of the runtime system to conduct
the actual measurements is required. Therefore, an interface enabling the
compiler to address code regions and metrics of interest is needed as well as
a specification of the data format utilized to return obtained results.

Depending on the runtime support, dynamic analyses may cover various
aspects of a program execution. Those may include

• execution times

• power consumption

• maximum / average energy dissipation

• parallel efficiency and load balancing information

• data dependencies

• statistics on the actual control flow of a code fragment

298 CHAPTER 4. ANALYSES

• statistics on data transfers

• hardware or software stack events

• values expressions within the code fragment are evaluated to

Some of the data to be obtained may be simply counted, others measured
or derived through a model based approach.

Limitation

The major limitation of dynamic analyses is based on the fact that actual
input is required for analyzing a given code fragment. Depending on the
application and the observed metric, the selection of the input may have
a significant impact on the obtained results. Also, several repetitions of
measurements may have to be conducted to obtain significant results.

4.6.2 Integration of Dynamic Analyses

Due to the architecture of the Insieme infrastructure support for dynamic
analysis can be realized by utilizing the various components of the Insieme
Runtime System, in particular the monitoring and event system (see page
34). An example interface for obtaining non-functional measurements, in-
cluding time, power, energy and parallel efficiency metrics, is given by a
function

measure : (2A, 2M,N, C)→ (2A ⇀ (2M ⇀ Q∗))∗

where A is the set of node addresses, M is the set of metrics, C is an
(optional) configuration determining options for the backend compiler, the
runtime system and the selection of the target machine, and Q a set of quan-
tities, hence the results to be obtained. Let a1, a2 ∈ A be node addresses
targeting statement or expressions within an IR fragment, m1,m2,m3 ∈M
be metrics, n ∈ N the number of desired repetitions and c ∈ C a configura-
tion for the backend compiler, the runtime system and the target machine.
Then a call

measure({a1, a2}, {m1,m2,m3}, n, c)

yields a list of n mappings – one entry for each of the execution – where
each mapping assigns to each combination of an address and metric a list
of quantities enumerating the corresponding measurement results collected
during the corresponding execution. For instance, let res be obtained by the
given function call, a1 be a reference to the body of a loop and m1 a metric
representing the execution time. Then the value

res2[a1][m1] ∈ Q∗

is a list of the execution times of each iteration of the corresponding loop
encountered during the second execution of the code fragment.

4.7. SUMMARY 299

The necessary instrumentation, compilation, execution and data aggre-
gation steps are covered generically by the implementation of the dynamic
analysis system. At its current development state, support for the measure-
ment of execution time, energy, power and parallel efficiency in addition to
a plethora of hardware counters is offered. Furthermore, derived metrics, in
particular including ratios and aggregates of other metrics, may be defined
by composing existing metrics. The resulting quantities Q are equipped
with units, e.g. joule or nano-seconds, such that those may be safely uti-
lized within arithmetic operations.

Among the options offered for the backend compiler, the runtime system
and the target machine, are compiler flags, runtime thread management and
scheduling policies, environment variable options and the possibility of pro-
viding an executor handling the actual program execution. In the default
setup processes are executed locally, on the same machine the Insieme com-
piler instance is running on, while alternative implementations provide the
possibility of processing codes on remote machines utilizing ssh sessions or
even job submission systems as they are encountered on clusters.

With its ability to obtain non-functional parameters of application codes,
the dynamic program analysis system within the Insieme Compiler consti-
tutes one of the foundations of iterative optimization approaches where in-
put codes are gradually adjusted and evaluated during the course of their
compilation.

4.7 Summary

In this chapter techniques for analyzing programs encoded utilizing the In-
sieme IR have been presented. It started by introducing rudimentary tech-
niques, covering e.g. feature extraction facilities, in Section 4.3.2. Those
facilities have, for instance, been utilized by Insieme based utilities for char-
acterizing codes [56].

The chapter continued with more sophisticated techniques. A flow-,
thread- and call-context-sensitive program analysis framework based on a
constraint based analysis approach [68] has been developed and presented
by Section 4.4. Its central component, an advanced lazy constraint solver
algorithm supporting local restarts for increased performance, flexibility and
precision, has been developed as part of this thesis (Section 4.4.3). Unlike
conventional CBA frameworks operating on sequential code, the framework
has been adapted to consider the parallel nature of the processed program
description. Existing related work targeting parallel codes is based on the
less flexible, yet conventional, data flow analysis approach and hence depend-
ing on a static knowledge about the parallel structure of the targeted code
[108, 40] or its extraction using preprocessing steps [51, 115]. Unlike those,
the framework developed in this chapter is deducing this information from

300 CHAPTER 4. ANALYSES

the input program directly utilizing a combination of analyses contributing
constraints to a single analysis problem instance (see Section 4.4). This can
lead to precision increasing, mutual interactions between e.g. data- and (par-
allel) control-flow analyses. Also, exceeding the capabilities of related work
[34, 46], the synchronizing and ordering effects of channel communication
are properly respected (see Example 4.24). Furthermore, generic utilities
for modeling composed values – as they are encountered in high-level IRs –
have been developed in Section 4.4.4.

Section 4.5 outlined the integration of polyhedral model based analy-
ses into the Insieme compiler infrastructure. The high-level nature of our
IR, in particular the preservation of information regarding loop and array
constructs, eases the integration of PM based techniques. Among others,
this techniques have been utilized within Insieme based applications for de-
termining loop dependencies to check the validity of transformations, for
instance for the application covered in Section 6.2, as well as to estimate the
computational complexity of loop nests as described in Section 6.3.2.

Finally, Section 4.6 covered means developed for the Insieme infrastruc-
ture to utilize the monitoring capabilities of the runtime system to obtain
non-functional properties from a code fragment by observing its execution.
This support for dynamic analyses has, for instance, been utilized for real-
izing the iterative compilation schema outlined in Section 6.2.2.

Chapter 5

Transformations

After introducing the Insieme IR in Chapter 3 and developing a tool set for
analyzing it in Chapter 4, the final step in establishing an infrastructure for
optimizing parallel programs is to provide utilities for actually manipulating
processed codes. This is the topic of this chapter.

Section 5.2 starts by covering the basic mechanisms and a set of rudi-
mentary utilities for transforming IR codes as well as the interfaces allowing
arbitrary transformations to be implemented. It is followed by a description
of a higher-level, pattern based rewriting system developed for the Insieme
Compiler to abstract the specification of code transformations in Section 5.3.
After this, means to incorporate transformations utilizing the powerful ca-
pabilities of the polyhedral model are covered in Section 5.4. Finally, Sec-
tion 5.5 covers utilities to compose individual transformation steps imple-
mented utilizing arbitrary techniques to establish transformation scripts to
be applied on IR codes. The result is an infrastructure providing an exten-
sible list of parametrized transformations that can be flexibly composed to
conduct arbitrary manipulations on programs encoded utilizing the Insieme
intermediate representation.

5.1 Contributions

The major contributions of this chapter are:

• a rudimentary framework for conducting arbitrary code manipulations
on the Insieme compiler IR preserving invariants (Section 5.2)

• the development of a novel, pattern matching based transformation in-
frastructure utilizing the high-level, term like structure of the Insieme
IR for specifying code manipulations (Section 5.3)

• the demonstration of the integration of polyhedral model based loop
transformations into the Insieme compiler infrastructure (Section 5.4)

301

302 CHAPTER 5. TRANSFORMATIONS

• the development of a framework for the structured composition and
orchestration of code manipulations (Section 5.5)

In the context of this thesis, this chapter demonstrates that the increased
complexity of a high-level compiler IR, compared to the simple structure of
a low-level IR, can still be adequately handled when conducting code manip-
ulations. Even more, the presents of high-level information in the IR enables
the specification of code transformation on a higher level of abstraction, and
hence in a more natural and/or efficient way.

5.2 Transforming the IR

One of the design concepts of the data structure constituting the Insieme
IR is the sharing of nodes and, as a consequence, the immutability of IR
structures as outlined in Section 3.10. Thus, an IR code fragment can not
be transformed by navigating to a node utilizing the IR navigation utilities
and altering member fields of the node. Instead, a modified copy has to be
created. This, most basic transformation step, is supported by node mappers
as they are covered in the following sub-sections as well as a set of derived
utilities. Those utilities provide the foundation for building operations con-
ducting arbitrary code manipulations on the Insieme IR.

5.2.1 Node Mappers

The foundation of all program analyses has been laid by visitors – one cen-
tral, generic piece of infrastructure to navigate the IR. The counterpart for
transforming IR constructs is provided by the node mapper infrastructure.

However, first, as a foundation of all transformations within this chapter,
a formal definition of the transformed data structure is required.

Definition 5.1 (IR structure). The set T ∪ E ∪ S being the union of all IR
types T, expressions E and statements S, hence all IR structures, is denoted
by IR. Furthermore, let the pair

n = (k, c) = (k, [c1, . . . , cn]) ∈ K × IR∗

denote a node n ∈ IR where k ∈ K with

K = {abstract type, struct type, variable, lambda, if, . . .}

denotes the kind of the node and c ∈ IR∗ the list of child nodes.

Note that this definition implicitly defines the (logical) tree shape of IR
structures. It further provides formal means for inspecting and constructing
IR structures in the following definitions.

5.2. TRANSFORMING THE IR 303

A very direct approach to implement code transformations on the im-
mutable Insieme IR would be navigate through the IR structures and to
simply create modified versions of the nodes to be altered. However, this
requires to consider and respect the restrictions on the structure of all the
individual node kinds – a process that is generalized by the node mapper
infrastructure.

The node mapper infrastructure, forming the foundation of all structured
IR transformations, is constituted by two elements – an abstract definition
of a node mapper that can be freely concretized to implement transformation
operations and a map function conducting the actual manipulations based
on a concrete definition of a mapper.

Definition 5.2 (node mapper). A node mapper is a function

m : IR∗ → IR∗

mapping a sequence of IR structures to a sequence of (different) IR struc-
tures. The set of all node mappers is denoted by M.

Based on the definition of a node mapper, the map function conducting
the actual transformation can be defined as follows.

Definition 5.3 (node transformation). The function map : (IR×M)→ IR
defined by

map(n,m) = map((k, c),m) =

{
(k,m(c)) if (k,m(c)) ∈ IR
undefined otherwise

obtains for a given node n = (k, c) ∈ IR a transformed version n′ =
(k,m(c)) ∈ IR in case the modified child list m(c) ∈ IR∗ is a valid child
list for the node kind k ∈ K, hence n′ ∈ IR.

By properly defining mapper functions, any transformation may be con-
ducted on a given code fragment.

Example 5.1 (node mapper). Let s = ’if (c1) then s1 else s2’ ∈ S ⊂ IR be
a statement represented by the IR node

(if, [c1, s1, s2]) ∈ IR

To transform s into s′ = ’if (c2) then s2 else s1’ a mapper m ∈M such that

m([c1, s2, s1]) = [c2, s2, s1]

304 CHAPTER 5. TRANSFORMATIONS

is created such that

map(s,m) = map(’if (c1) then s1 else s2’,m)

= map((if, [c1, s1, s2]),m)

= (if,m([c1, s1, s2]))

= (if, [c2, s2, s1])

= ’if (c2) then s2 else s1’

= s′

assuming s′ ∈ IR.

The true capabilities of the node mapper infrastructure are only revealed
when utilizing recursive node mapper definitions.

Example 5.2 (recursive node mapper). Consider the problem of defining
a function

substitute : (IR× IR× IR)→ IR

such that substitute(x, y, z) transforms x ∈ IR by replacing all occurrences
of y ∈ IR by z ∈ IR. Such a function can be defined utilizing the map
function by

substitute(n, a, b) = map(n,mab)

where mab ∈M is a node mapper defined by

mab([c1, . . . , cn]) = [sab(c1), . . . , sab(cn)]

based on the function sab : IR→ IR defined by

sab(n) =

{
b if n = a

substitute(n, a, b) otherwise

In this (mutual) recursive definition the node mapper utilizes the function to
be defined to conduct modifications inductively over the recursive definition
of the underlying IR structure.

5.2.2 Manipulation Toolbox

While providing a universal utility for transforming IR structures, imple-
menting node mappers for each individual manipulation step can be a cum-
bersome task – in particular since similar operations are frequently required.

Thus, to simplify manipulating operations on the IR, a variety of higher
level transformation primitives have been implemented, utilizing the node
mapper as their foundation. Those include:

5.2. TRANSFORMING THE IR 305

• substitution operations – replacing all occurrences of a given node by
another in a given code fragment, a list of nodes by a list of other
nodes, an individual node addressed by a node address by another
node, or a list of individual nodes addressed by node addresses by
other nodes

• variable handling – replacing a variable by another variable or expres-
sion of the same type or replacing a variable by a variable or expression
of another type; In the latter case, occurring typing issues, like e.g. the
altered type of a function in case the modified variable has been one of
the parameters, are automatically corrected – if possible. Also, those
operations may be limited to the scope of a local function or recursively
decent into any reachable function.

• statement handling – operations to insert, remove or move statements
within a given code fragment

• function handling – operations to inline function calls to expressions
(for simple functions bodies) or statements (more complex function
bodies) and the reverse operation outlining expressions or statements
to function calls – optionally by capturing data of the current scope
utilizing a bind expression to obtain a desired signature for the re-
sulting function. The later is, for instance, utilized to created thread
bodies or pfor bodies when transforming sequential code into parallel
code.

• recursive function and type handling – operations for unfolding and
unrolling recursive function and type definitions. Those operations
are the recursive equivalents to loop-peeling and loop-unrolling. For
instance, consider the recursive type

rec α. {α = struct{v : bool;n : ref 〈rec α〉}}

An unfolding operation yields the type

struct{v : bool;n : ref 〈rec α. {α = struct{v : bool;n : ref 〈rec α〉}}〉}

while an unrolling operation yields the type

rec α. {α = struct{v : bool;n : ref 〈struct{v : bool;n : ref 〈rec α〉}}〉}

Those operations also handle mutual recursive types and functions.
While the unfolding operations are utilized e.g. during the code gener-
ation in the backend or type checks to handle recursive structures, the
unrolling operations are used, for instance, in combination with func-
tion inlining by code optimizations targeting the reduction of function
call overheads in recursive codes (see Section 6.4).

306 CHAPTER 5. TRANSFORMATIONS

• instantiation of generic types and functions – creating versions of types
and functions by substituting type variables by (concrete) types. Re-
quired, e.g. in the backend, to create code for generic structures.

• data propagation – a transformation capable of providing access to
data of a surrounding scope in a nested function body by forwarding a
reference or copy as an additional parameter through all intermediate
function calls; This way information can be made available within a
nested function without the unfavorable utilization of global variables.

Each of those transformation primitives is implemented as a single func-
tion and can thus be flexibly combined with other manipulation steps to
realize desired actions on an IR code fragment.

Furthermore, the implementation of those primitives is tuned for effi-
ciency utilizing in particular memoization whenever possible. Also, steps
descending into sub-trees, for which it can safely be assumed that they are
unaffected by a given manipulation, are skipped. Finally, utilities ensuring
valid code fragments are employed implicitly, freeing the user of those prim-
itives from taking care of several side-effects of their transformations. For
instance, given the code fragment

l e t f = (struct { a : in t<4> } x) ⇒ in t<4> {
return x . a ;

} ;

struct { a : in t<4> } y ;
f (y) ;

If the type of y is altered to

struct { a : u int<8> }

and the proper transformation primitive is utilized, then this step also up-
dates the parameter type of the function f and its return type accordingly,
such that the resulting code fragment corresponds to

l e t f = (struct { a : u int<8> } x) ⇒ uint<8> {
return x . a ;

} ;

struct { a : u int<8> } y ;
f (y) ;

Those implicit aids in code transformation utilities enable the efficient de-
velopment of more complex code manipulation operations.

5.2.3 Handling Annotations

As introduced in Section 3.10.1, the data structures utilized to represent
the Insieme IR are exclusively covering the IR constructs. However, addi-
tional, generic information may be annotated to each node instance. Those

5.2. TRANSFORMING THE IR 307

annotations may, for instance, contain cached analysis results. Unlike the
IR structures itself, those annotations are mutable and may hence be freely
modified. Thus, to alter annotations it is sufficient to obtain a reference to
them, e.g. by utilizing a visitor or some derived utility to obtain the node
the targeted annotation is attached to. Once access to a node has been
obtained, annotations may be freely added, updated or removed – without
the requirement of altering the IR structure.

One problem of annotations is that they are bound to a single node
instance. If a modified version of this node is created, annotations are not
automatically migrated and the contained information would be lost for the
new version. For instance, given a node n ∈ IR with an annotation a. If
n is transformed into n′ ∈ IR, hence n′ is a modified copy of n, then the
annotation a will still remain with n and not with n′. However, sometimes
the conducted operation may not have influenced the information stored in
a, thus having a also attached to n′ would be desirable.

In general, due to the versatile nature of annotations, no universal regu-
lation on when annotations should be preserved upon modifications can be
established. Hence, this decision is left to the annotations themselves.

Definition 5.4 (annotation migration). Let A be the set of annotations.
For each annotation a ∈ A there is a function

ma : (IR× IR)→ 2A

that determines for a node n ∈ IR and its transformed copy n′ ∈ IR the set
of annotations ma(n, n

′) to be attached to node n′ if a ∈ A was attached
to n. Let A : IR ⇀ 2A a partial mapping associating IR nodes with their
attached annotations. Then the function

migrate : (IR× IR× (IR⇀ 2A))→ (IR⇀ 2A)

defined by

migrate(n, n′, A) = A

n′ 7→ A[n′] ∪
⋃

a∈A[n]

ma(n, n
′)

obtains the updated annotation assignment after transforming n into n′.

By individually defining ma each annotation a can independently decide
on whether to be migrated to a transformed version of a node it is attached
to or not. It may also decide to alter the contained information and to
attach a transformed version of itself to the resulting node. Even multiple
annotations may be attached.

308 CHAPTER 5. TRANSFORMATIONS

Example 5.3 (annotation migrations). If an annotation a ∈ A desires to
be preserved upon any manipulation it defines its migration function ma by

ma(n, n
′) = {a}

In case the annotation shall not be preserved upon manipulations ma can
be defined by

ma(n, n
′) = ∅

and in case a modified version f(n′, a) ∈ A shall be attached, the definition
could be equal to

ma(n, n
′) = {f(n′, a)}

which will result in the desired behavior.

The migrate function of Definition 5.4 may be explicitly called after
constructing a modified version of a given node. It is also implicitly invoked
by all transformations conducted by the primitives outlined above by its
integration into the node transformation function map.

Definition 5.5 (annotated node transformation). Let IRa = IR × (IR ⇀
2A) denote the set of annotated IR structures where each element (i, A) ∈
IRa consists of an IR structure i ∈ IR and an annotation mapping A ∈ IR⇀
2A. Then the function

map : (IRa ×M)→ IRa

defined by

map((n,A),m) = (map(n,m),migrate(n,map(n,m), A))

extends the function map of Definition 5.3 by annotation migration capa-
bilities.

This concludes the infrastructure available for handling IR node annota-
tions. For simplicity, annotations and their handling within transformations
are omitted throughout the rest of this chapter. However, the utilization of
the available utilities can be assumed.

5.3 Pattern Based Transformations

Even based on the available manipulation primitives, code transformations
are still implemented by a (long) hand-coded sequence of operations in-
specting and manipulating the utilized internal IR – a situation to be faced
by any high-level source-to-source compiler infrastructure. This approach
is not only labor-intensive and error-prone, thus limiting productivity, but
even more crucially, it also reduces maintainability due to its tendency to

5.3. PATTERN BASED TRANSFORMATIONS 309

result in obscure code [106]. A more structured and concise approach is
desired.

Although rarely encountered within widely utilized compiler infrastruc-
tures, transformation systems tackle this issue by offering a declarative, rule
based interface for the definition of transformations [107, 24, 4]. Fundamen-
tally, each rule consists of a pattern and a replacement template. Any term
matching the pattern is replaced by an instantiation of the template. In
general, the pattern matching is based on unification, resulting in two re-
strictions. On the one hand, unification can only impose limited constraints
on the matched terms. For instance, it can not check whether within an ar-
bitrary nesting level of a term a given sub-term occurs. On the other hand,
unification builds upon an algebraic structure, hence terms of the targeted
structure are restricted to a fixed arity [107, 24]. Yet, within AST-like IRs
like our own, constructs which do not naturally exhibit a fixed arity (e.g.
compound statements or argument lists) are omnipresent. Frequently this
issue is circumvented by representing variable-sized lists using artificial func-
tion symbols (or grammar rules) linking individual elements to recursively
composed lists. However, not only does this approach conceal the structure
of the internal representation, it also increases the complexity of defining
patterns and rewrite rules.

Within this section we present a novel combination of unification-based
term rewriting rules and regular expressions allowing the concise declarative
description of complex transformations for arbitrary tree structures – in
particular high-level compiler IRs like our own. The content of this section
has been published [50].

5.3.1 Design Goals

This section provides an informal overview of the intended capabilities of our
pattern matching and rewriting system by discussing a list of example use
cases. A simple case, which is already not (directly) supported by unification
based approaches, is to check whether a given variable v1 is present within
some code fragment. We would like to write a pattern similar to

aT (v1) (5.1)

where the construct aT denotes “anywhere in the tree”. A more extended
case would be the requirement to check whether the expression exp1 is
present as a full expression within a given compound statement. In this
case we would like to write something similar to

{ ∗, exp1, ∗} (5.2)

where denotes a wildcard, ∗ the Kleene operator (any number of repetitions,
including none) and the brackets {} the enclosing compound statement.

310 CHAPTER 5. TRANSFORMATIONS

In many cases patterns will be defined not only to constrain the struc-
ture of some term but also to extract information. For instance, it might be
necessary to obtain the variable being declared by some declaration state-
ment. In this case we would like to use a pattern involving a variable $x
similar to

decl($x) (5.3)

to obtain the requested information. Matched against the input declaration

int a = 5 (5.4)

pattern (5.3) should yield the variable mapping [x 7→ a]. Furthermore, in a
case where all variables declared within a compound statement should be
obtained, the pattern

{(¬decl())∗, (decl($x), (¬decl())∗)∗} (5.5)

matched against

{int a = 5; f(a); bool b = true; int c = 7; } (5.6)

should yield [x 7→ [a, b, c]]. It should also be possible to constrain the values
pattern variables are bound to. For instance, if the selection should be
limited to declarations of integer variables we would like to use a pattern
similar to

{(¬decl(var(int,))∗, (decl($x : var(int,)), (¬decl(var(int,))∗)∗} (5.7)

Here, var(t, n) is a pattern construct matching an IR variable n of type t and
the construct $x : y defines a pattern variable x matching every structure
satisfying the pattern y. Applying this pattern to fragment (5.6) should
result in [x 7→ [a, c]].

In some cases we want more. For instance, we might require a pattern
identifying variables being declared but never used. This should be covered
by

{decl($x), (¬aT ($x))∗} (5.8)

Hence, a declaration of some IR variable captured by the pattern variable $x
followed by a sequence of statements not including this particular variable.
Note the difference to the previous examples. In pattern (5.5) the pattern
variable $x is bound to a list of sub-trees, once for each declaration in the
list, while in the current example $x should be bound only once to the
variable being declared at the beginning of the compound statement. In the
subsequent repetition (¬aT ($x))∗ the variable is supposed to be the fixed
to the value previously bound to $x.

5.3. PATTERN BASED TRANSFORMATIONS 311

From this observation we derived the following desirable rule for variable
bindings: within every iteration of a repeating sub-pattern p, variables may
be re-bound to new values, unless already bound before entering p the first
time. If they were already bound, then, within all repetitions, previously
bound variables remain bound to the value determined before entering p.

Of course, pattern (5.8) is limited to situations where the unused variable
is declared by the first statement in a compound. This restriction is lifted
by using

aT (decl($x)) ∧ {(¬aT (¬decl($x) ∧ (∗, $x, ∗)))∗} (5.9)

where ∧ is the conjunction of patterns and (∗, p, ∗) matches any node
with a child matching the pattern p. The pattern searches for any sub-tree
declaring a variable $x which is never referenced outside the declaration.

As a final challenge for the pattern syntax we would like to define a
pattern capable of listing all for loops within a perfectly nested loop nest.
The problem here is that the loop nest might be arbitrarily deep. The
Kleene operator is limited to horizontal matching, along the list of children
of a single node. For this class of use cases an operator defining a recursively
nested tree structure is required. We define an additional primitive rT.x(p)
which is equivalent to p with the additional effect of binding the pattern
p to the recursive variable x. Within p the term rec.x can be used as a
placeholder for the full pattern p. Based on this operators we can define a
pattern for a for-loop nest using

rT.x($l : forStmt(¬forStmt() ∨ rec.x)) (5.10)

where forStmt(b) matches any for-loop with a body matching the pattern
b. The variable $l will be bound to a list of all loops of the matched loop
nest.

Finally, patterns should provide means to match the input for transfor-
mation rules. For instance, the rule

{$xs, {}, $ys} → {$xs, $ys} (5.11)

is designed to match any compound statement which includes an empty
compound statement and to eliminate this inner statement. On the right
hand side of the rule the replacement is specified by a template utilizing
the variables of the left hand side. Also, unlike all previous examples, in
this case the pattern variables $xs and $ys match lists of trees instead of
individual trees.

5.3.2 Patterns and Replacements

Based on this desired properties of the IR tree pattern matcher and rewriting
system the necessary formalism satisfying those requirements is developed
within this section.

312 CHAPTER 5. TRANSFORMATIONS

The approach is divided into two layers – the core primitives, defining its
expressive power and a variety of derived constructs created by composing
core primitives to provide more user-friendly, domain-specific connectors.
This separation enables essential algorithms including the pattern matching
to focus on a minimal set of constructs while the developers utilizing the
system can define patterns and rules using constructs customized for their
specific domain, in particular our IR.

Within this sections the formal foundation and the core primitives of our
patterns and replacements are specified while derived constructs are covered
within the following two sections.

Tree Structure

Before defining a grammar for patterns and replacements a definition of the
structures to be operated on has to be provided.

Definition 5.6 (universal tree structure). Let A be a set of atomic values
(e.g. the union of integers, names and booleans) and K be a set of the node
types to be distinguished. Any tree generated by the production

T ::= a | k(T ∗)

where a ∈ A and k ∈ K is a valid input for our infrastructure.

This definition is generic enough to cover arbitrary trees including the
structure of the Insieme IR (see Definition 5.1). In particular it does not
depend on a fixed arity for any node type k ∈ K. For the remainder of this
section, let T be the set of all trees generated by the production rule given
above for suitable sets A and K.

Patterns

Within our framework we distinguish two kinds of patterns – tree and list
patterns. While tree patterns describe the structure of individual trees, list
patterns cover the composition of lists of trees (=forests).

Definition 5.7 (tree and list pattern syntax). Let V be a set of variable
identifiers. Tree patterns φ and list patterns ψ are generated by the following
pair of mutually recursive production rules

φ ::= | t | ¬φ | φ ∧ φ | φ ∨ φ | (ψ) | k(ψ) | x : φ | aT (φ) | rT.x(φ) | rec.x
ψ ::= ε | φ | ψ,ψ | ψ ∨ ψ | x : ψ | ψ∗

where t ∈ T, k ∈ K, x ∈ V and ε is the empty list. Furthermore, let Φ be
the set of all possible tree patterns and Ψ be the set of all list patterns.

The semantic of patterns is defined based on the sets of trees and forests
matched by those, as defined in the following section.

5.3. PATTERN BASED TRANSFORMATIONS 313

Semantics The semantics of patterns is specified by defining the sets Tφ ⊆
T and Tψ ⊆ T∗, matched by a tree pattern φ ∈ Φ and a list pattern ψ ∈ Ψ
respectively.

Definition 5.8 (tree and list pattern semantic). Let t,m, n, r ` φ denote
the fact that the tree t ∈ T matches the tree pattern φ, and s,m, n, r ` ψ
denote the fact that the sequence s ∈ T∗ matches the list pattern ψ, based on
the tree variable mapping m : V⇀ T, the list variable mapping n : V⇀ T∗,
and the recursive context map r : V ⇀ (Φ × (V⇀ T) × (V⇀ T∗)). The
following rules provide a inductive definition of the relation ` based on the
structure of a tree pattern φ

t,m, n, r ` iff true (wildcard)

t,m, n, r ` t iff t = t (constant)

t,m, n, r ` ¬φ iff not t,m′, n′, r ` φ and m v m′ and n v n′ (negation)

t,m, n, r ` φ1 ∧ φ2 iff t,m′, n′, r ` φ1 and t,m, n, r ` φ2 (and)
and m′ v m and n′ v n

t,m, n, r ` φ1 ∨ φ2 iff t,m, n, r ` φ1 or t,m, n, r ` φ2 (or)

t,m, n, r ` (ψ) iff t = k(t1, . . . , tl) and [t1, . . . , tl],m, n, r ` ψ (any node)

t,m, n, r ` k(ψ) iff t = k(t1, . . . , tl) and [t1, . . . , tl],m, n, r ` ψ (node)

t,m, n, r ` x : φ iff t,m \ {x} , n, r ` φ and m[x] = t (var)

t,m, n, r ` aT (φ) iff t,m, n, r ` φ or t,m, n, r ` (∗, aT (φ), ∗) (any tree)

t,m, n, r ` rT.x(φ) iff t,m′, n′, r [x 7→ (φ,m, n)] ` φ
(recursion)

and m v m′ and n v n′
t,m, n, r ` rec.x iff r[x] = (φ,m′, n′) and t,m′′, n′′, r ` φ

(rec. end)
and m′ v m′′ and n′ v n′′

and a list pattern ψ

s,m, n, r ` ε iff s = ε (empty)

s,m, n, r ` φ iff s = [t] and t,m, n, r ` φ (single)

s,m, n, r ` ψ1, ψ2 iff s = s1, s2 and
(sequence)

s1,m, n, r ` ψ1 and s2,m, n, r ` ψ2

s,m, n, r ` ψ1 ∨ ψ2 iff s,m, n, r ` ψ1 or s,m, n, r ` ψ2 (or)

s,m, n, r ` x : ψ iff s,m, n \ {x} , r ` ψ and m[x] = s (var)

s,m, n, r ` ψ∗ iff s = ε or

(repetition)
s = s1, s2 and s1,m1, n1, r ` ψ and
s2,m2, n2, r ` ψ∗ and m v m1 and
m v m2 and n v n1 and n v n2

where all free variables are existentially quantified, s1, s2 denotes the con-
catenation of two sequences s1 and s2, and a v b for two mappings a and b
holds whenever ∀x ∈ dom(a) . a[x] = b[x].

A tree t ∈ T is an element of Tφ if there are mappings m and n such
that t,m, n, ∅ ` φ holds. Correspondingly, a sequence s ∈ T∗ is an element
of Tψ if there are mappings m and n such that s,m, n, ∅ ` ψ holds.

314 CHAPTER 5. TRANSFORMATIONS

Example 5.4 (tree and list patterns). A tree

t = a(b, c(d, e))

is matched by the tree pattern ∈ Φ since any tree is matched by the
wildcard pattern. It is also matched by e.g. the pattern

a(b ∨ c,¬d) ∈ Φ

since all of

a(b, c(d, e)), ε, ε, ε ` a(b ∨ c,¬d) (node)

[b, c(d, e)], ε, ε, ε ` b ∨ c,¬d (sequence)

[b], ε, ε, ε ` b ∨ c (single)

b, ε, ε, ε ` b ∨ c (or)

b, ε, ε, ε ` b (constant)

[c(d, e)], ε, ε, ε ` ¬d (single)

c(d, e), ε, ε, ε ` ¬d (negation)

hold and
c(d, e),m, n, r ` d

does not hold for any mappings m,n or r. The tree t is also matched by the
pattern

a($x, $y) ∈ Φ

since
a(b, c(d, e)), [x 7→ b, y 7→ c(d, e)], ε, ε ` a($x, $y)

holds and the pattern
a($xs) ∈ Φ

since
a(b, c(d, e)), ε, [xs 7→ [b, c(d, e)]], ε ` a($xs)

holds. Note that in the later case the variable $xs is a placeholder for a
forest while in the former case the variables $x and $y are placeholders for
individual trees. Furthermore, there is no mapping m such that

a(b, c(d, e)),m, ε, ε ` a($x, $x)

would hold since the (sequence) rule demands equivalent variable bindings
among its inductive steps. Hence, the pattern a($x, $x) ∈ Φ does not match
the given tree.

More advanced patterns can be constructed utilizing the rules regarding
the binding of variables.

5.3. PATTERN BASED TRANSFORMATIONS 315

Example 5.5 (advanced tree and list patterns). A pattern ($a∗) where $a
is a tree pattern variable is matching any term by mapping the variable $a
to every individual sub-term of the input term. For instance, it matches the
term

a(b, c, d)

since (among others)

a(b, c, d), ε, ε, ε ` ($a∗) (any node)

[b, c, d], ε, ε, ε ` $a∗ (repetition)

[c, d], ε, ε, ε ` $a∗ (repetition)

[b], [a 7→ b], ε, ε ` $a (single)

[c], [a 7→ c], ε, ε ` $a (single)

[d], [a 7→ d], ε, ε ` $a (single)

b, [a 7→ b], ε, ε ` $a (var)

c, [a 7→ c], ε, ε ` $a (var)

d, [a 7→ d], ε, ε ` $a (var)

and

ε v [a 7→ b]

ε v [a 7→ c]

ε v [a 7→ d]

hold. Hence, a(b, c, d) is matched by the pattern ($a∗). However, it is
not matched by the almost identical pattern ($a, $a∗) since the variable
$a is bound to the term b and is then required to be consistent among the
succeeding repetitions. When trying to prove a match utilizing

a(b, c, d),m, ε, ε ` ($a, $a∗) (any node)

[b, c, d],m, ε, ε ` $a, $a∗ (repetition)

[b],m[a 7→ b], ε, ε ` $a (single)

[c, d],m[a 7→ b], ε, ε ` $a∗ (repetition)

[c],m[a 7→ b], ε, ε ` $a (single)

[d],m[a 7→ b], ε, ε ` $a (single)

c,m[a 7→ b], ε, ε ` $a (var)

d,m[a 7→ b], ε, ε ` $a (var)

the last two, and hence all statements, do not hold for any variable mapping
m. Hence, although ($a, $a∗) seems to be an unrolled version of ($a∗), it
does not match the same set of trees. Also since the latter accepts nodes
with an empty child list and the former does not.

316 CHAPTER 5. TRANSFORMATIONS

Finally, the semantic of the recursive pattern constructor shall be illus-
trated by an example.

Example 5.6 (recursive tree patterns). Let t = a(a(b)) ∈ T be a tree. It is
matched by the pattern

rT.x(b ∨ a(rec.x)) ∈ Φ

since the statements

a(a(b)), ε, ε, ε ` rT.x(b ∨ a(rec.x)) (recursion)

a(a(b)), ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` b ∨ a(rec.x) (or)

a(a(b)), ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` a(rec.x) (node)

a(b), ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` rec.x (rec. end)

a(b), ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` b ∨ a(rec.x) (or)

a(b), ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` a(rec.x) (node)

b, ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` rec.x (rec. end)

b, ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` b ∨ a(rec.x) (or)

b, ε, ε, [x 7→ (b ∨ a(rec.x), ε, ε)] ` b (constant)

hold. A similar prove can not be constructed for e.g. the trees a(b(a)) or
a(a(c)). The tree a(a(b)) is also matched by the pattern

rT.x($y : b ∨ a(rec.x)) ∈ Φ

where each recursively nested sub-tree is bound to the pattern variable $y.
Let c = ($y : b ∨ a(rec.x), ε, ε). The validity of

a(a(b)), ε, ε, ε ` rT.x($y : (b ∨ a(rec.x)))

is demonstrated by the list of valid statements

a(a(b)), ε, ε, ε ` rT.x($y : (b ∨ a(rec.x))) (recursion)

a(a(b)), [y 7→ a(a(b))], ε, [x 7→ c] ` $y : (b ∨ a(rec.x)) (var)

a(a(b)), [y 7→ a(a(b))], ε, [x 7→ c] ` b ∨ a(rec.x) (or)

a(a(b)), [y 7→ a(a(b))], ε, [x 7→ c] ` a(rec.x) (node)

a(b), [y 7→ a(a(b))], ε, [x 7→ c] ` rec.x (rec. end)

a(b), [y 7→ a(b)], ε, [x 7→ c] ` $y : (b ∨ a(rec.x)) (var)

a(b), [y 7→ a(b)], ε, [x 7→ c] ` b ∨ a(rec.x) (or)

a(b), [y 7→ a(b)], ε, [x 7→ c] ` a(rec.x) (node)

b, [y 7→ a(b)], ε, [x 7→ c] ` rec.x (rec. end)

b, [y 7→ b], ε, [x 7→ c] ` $y : (b ∨ a(rec.x)) (var)

b, [y 7→ b], ε, [x 7→ c] ` b ∨ a(rec.x) (or)

b, [y 7→ b], ε, [x 7→ c] ` b (constant)

5.3. PATTERN BASED TRANSFORMATIONS 317

Variables which have not been bound before entering the processing of the
recursive pattern constructor rT are reset upon every recursive instantiation
and may therefore be bound to multiple different values. However, within
every recursive iteration, the variable binding has to be consistent.

Matches

Besides determining whether a given pattern matches a tree, the list of re-
quired variable bindings is equally important for the utilization of patterns
within rewriting rules. The structure recording the necessary variable in-
stantiations to make a pattern fit a given tree is referred to as a variable
match.

Definition 5.9 (variable match). Let U0 = T] {⊥} where ⊥ is the value
assigned to unbound variables. Let Un+1 = U∗n for all n ∈ N. The set U of
potential values assigned to variables is given by

U =
⋃
0≤i

Ui

A variable match is a partial mapping V⇀ U assigning values to variables.
The set of all variable matches is denoted by M. Furthermore, let dφ : V→
N0 be the function assigning every variable x ∈ V the repetition depth of
its leftmost, outermost occurrence within a pattern φ. Hence, whenever
encountering a repetition (ψ∗) or a recursion (rT.x(φ)) along the path from
the root of the parse tree of pattern φ to the first occurrence of x, the depth
is increased by one. Then a variable match m ∈ M is valid for a pattern φ
iff it assigns each variable x ∈ V within φ an element of Udφ(x) ∪ {⊥} if x is
a tree variable and an element of Udφ(x)+1 ∪ {⊥} if x is a list variable.

Variable matches are obtained from a pattern being matched against a
given tree by the match function. The match function is a function

match : (T× Φ)→ (M ∪ {⊥})

such that match(t, φ) = ⊥ in case the given tree t ∈ T does not match the
pattern φ ∈ Φ and match(t, φ) = m ∈ M otherwise. In the latter case m is
a valid variable match of the pattern φ summarizing the necessary variable
bindings to prove t ∈ Tφ.

Thus, the match function needs to verify whether a given tree t matches
a pattern φ and compute a variable match m ∈ M recording the neces-
sary instantiations of the involved variables. For the examples above, the

318 CHAPTER 5. TRANSFORMATIONS

following results need to be obtained:

match(a(b, c(d, e)) ,) = ε

match(a(b, c(d, e)) , a(b ∨ c,¬d)) = ε

match(a(b, c(d, e)) , a($x, $y)) = [x 7→ b, y 7→ c(d, e)]

match(a(b, c(d, e)) , a($x, $x)) = ⊥
match(a(b, c(d, e)) , a($xs)) = [xs 7→ [b, c(d, e)]]

match(a(b, c, d) , ($a∗)) = [a 7→ [b, c, d]]

match(a(a(b)) , rT.x(b ∨ a(rec.x))) = ε

match(a(a(b)) , rT.x($y : (b ∨ a(rec.x)))) = [y 7→ [a(a(b)), a(b), b]]

Furthermore, higher dimensional results are obtained for instance by

match(a(b(c), b(), b(d, e)) , a((b($x∗))∗)) = [x 7→ [[c], [], [d, e]]]

where the value [[c], [], [d, e]] ∈ U2 summarizes the order and the number of
times the variable x with repetition depth 2 has to be instantiated to prove
that the given tree matches the given pattern.

In the following steps a definition for the match function is developed.
A first class of required ingredients are variable match paths.

Definition 5.10 (variable match path). A variable match path is a value
of the set P = N∗, hence, a sequence of natural numbers. Further, let the
functions inc : P → P defined by

inc(p) =

{
[] if p = []

[n1, . . . , nk + 1] if p = [n1, . . . , nk]

and the function push : P → P defined by

push(p) = push([n1, . . . , nk]) = [n1, . . . , nk, 1]

be available for manipulating data paths.

Match paths are utilized to address individual values within variable
matches. The corresponding operations are to be defined next.

Definition 5.11 (variable match operations). Let m ∈ M be a variable
match, p ∈ P be a variable match path and x ∈ V be a pattern variable.
Then the value mp[x] ∈ U shall be defined by

mp[x] = get(m[x], p)

where the function get : (U× P)→ U is given by

get(u, p) =

u if p = []

get(un1 , [n2, . . . , nk]) if p = [n1, . . . , nk] and |u| ≤ n1

⊥ otherwise

5.3. PATTERN BASED TRANSFORMATIONS 319

Furthermore, let v ∈ U be a value. Then, the mp[x] := v denotes a modified
variable mapping defined by

(mp[x] := v) = m[x 7→ set(m[x], p, v)]

where the function set : (U× P × U)→ U is given by

set(u, p, v) =

v if p = []
[set′(u, 1, n1, v

′), . . . , set′(u,max(k, l), n1, v
′)]

if u = [u1, . . . , uk] and p = [n1, . . . , nl]
and v′ = set(un1 , [n2, . . . , nl], v)

and the function set′ : (U∗ × N× N× U)→ U by

set′(u, i, n, v) =

ui if i 6= n and |u| ≤ i
v if i = n

⊥ otherwise

Hence, mp[x] := v is the mapping where the element addressed by p within
the value assigned by m to x is replaced by the value v.

To illustrate the utilization of match paths and match operations a few
examples shall be provided.

Example 5.7 (match operations). Let

m = [x 7→ a, y 7→ [b, c]] ∈M

be a variable mapping. Then m[][x] = a, m[][y] = [b, c], m[1][y] = b, m[2][y] =
c and m[3][y] = ⊥. Hence, the data path in the subscript can be utilized
to address and obtain an element of the nested value assigned to a given
variable. Furthermore, the term m[2][y] := d corresponds to the mapping

[x 7→ a, y 7→ [b, d]] ∈M

m[][y] := d to
[x 7→ a, y 7→ d] ∈M

m[5][y] := d to
[x 7→ a, y 7→ [b, c,⊥,⊥, d]] ∈M

and m[][z] := d to
[x 7→ a, y 7→ [b, c], z 7→ d] ∈M

Thus, this construct can be utilized to modify and extend variable matches.

Based on match paths and operators the match function can be defined
as follows.

320 CHAPTER 5. TRANSFORMATIONS

Definition 5.12 (match function). Let M⊥ = M] {⊥}. Further, let

D = (Φ× T× P)] (Ψ× T∗ × P)

be a set of pattern/structure/path triples and

R = V⇀ (Φ× P)

the set of partial mappings mapping variables to pairs of tree patterns and
match paths. Then the function

match : (T× Φ)→M⊥

is defined by

match(t, φ) = match′([(φ, t, [])], ε)

where the function match′ : (D∗ ×M⊥)→M⊥ is defined by

match′(~d,m) =

⊥ if m = ⊥
m if ~d = []

mΦ(φ, t, p, ~r,m) if ~d = [(φ, t, p), ~r] ∧ φ ∈ Φ

mΨ(ψ,~s, p, ~r,m) if ~d = [(ψ,~s, p), ~r] ∧ ψ ∈ Ψ

where the function mΦ : (Φ× T× P ×D∗ ×M⊥ ×R)→M⊥ is given by

mΦ(φ, t, p, ~d,m, r) =

5.3. PATTERN BASED TRANSFORMATIONS 321

⊥ if m = ⊥
match′(~d,m) if φ =

match′(~d,m) if φ = t ∈ T
m if φ = ¬φ1 and mΦ(φ1, t, p, ~d,m, r) = ⊥
⊥ if φ = ¬φ1 and mΦ(φ1, t, p, ~d,m, r) 6= ⊥
mΦ(φ1, t, p, [(φ2, t, p), ~d],m, r)

if φ = φ1 ∧ φ2

mΦ(φ1, t, p, ~d,m, r) if φ = φ1 ∨ φ2 and mΦ(φ1, t, p, ~d,m, r) 6= ⊥
mΦ(φ2, t, p, ~d,m, r) if φ = φ1 ∨ φ2 and mΦ(φ1, t, p, ~d,m, r) = ⊥
mΨ(ψ,~s, p, ~d,m, r) if φ = (ψ) and t = k(~s)

mΨ(ψ,~s, p, ~d,m, r) if φ = k(ψ) and t = k(~s)
⊥ if φ = k(ψ) and t = k′(~s) and k 6= k′

mΦ(φ1, t, p, ~d,mp[x] := t, r)
if φ = x : φ1 and mp[x] = ⊥

match′(~d,m) if φ = x : φ1 and mp[x] = t
⊥ if φ = x : φ1 and mp[x] /∈ {⊥, t}
mΦ(φ1 ∨ (∗, φ, ∗), t, p, ~d,m, r)

if φ = aT (φ1)

mΦ(φ1, t,push(p), ~d,m, r[x 7→ (φ1,push(p))])
if φ = rT.x(φ1)

mΦ(φ1, t, inc(p1), ~d,m, r[x 7→ (φ1, inc(p1))])
if φ = rec.x and r[x] = (φ1, p1)

⊥ otherwise

and the function mΨ : (Ψ× T∗ × P ×D∗ ×M⊥ ×R)→M⊥ is given by

mΨ(ψ,~s, p, ~d,m, r) =

⊥ if m = ⊥
match′(~d,m) if ψ = ε and ~s = []

mΦ(φ, t, p, ~d,m, r) if ψ = φ ∈ Φ and ~s = [t]
m′ if ψ = ψ1, ψ2 and ∃~s1, ~s2 ∈ T∗ . (~s = [~s1, ~s2] ∧

mΨ(ψ1, ~s1, p, [(ψ2, ~s2, p), ~d],m, r) = m′ 6= ⊥)
⊥ if ψ = ψ1, ψ2 and @~s1, ~s2 ∈ T∗ . (~s = [~s1, ~s2] ∧

mΨ(ψ1, ~s1, p, [(ψ2, ~s2, p), ~d],m, r) 6= ⊥)

mΨ(ψ1, ~s, p, ~d,m, r) if ψ = ψ1 ∨ ψ2 and mΨ(ψ1, ~s, p, ~d,m, r) 6= ⊥
mΨ(ψ2, ~s, p, ~d,m, r) if ψ = ψ1 ∨ ψ2 and mΨ(ψ1, ~s, p, ~d,m, r) = ⊥
mΨ(ψ1, ~s, p, ~d,mp[x] := ~s, r)

if ψ = x : ψ1 and mp[x] = ⊥
match′(~d,m) if φ = x : ψ1 and mp[x] = ~s
⊥ if φ = x : ψ1 and mp[x] /∈ {⊥, ~s}
m∗(ψ1, ~s,push(p), ~d,m, r)

if ψ = ψ∗1
⊥ otherwise

322 CHAPTER 5. TRANSFORMATIONS

and the function m∗ : (Ψ× T∗ × P ×D∗ ×M⊥ ×R)→M⊥ is defined by

m∗(ψ,~s, p, ~d,m, r) =

⊥ if m = ⊥
match′(~d,m) if ~s = []

m′ if ∃l1, l2 ∈ T∗ . (~s = [~s1, ~s2]∧
m∗(ψ, ~s2, inc(p), ~d,mΨ(ψ, ~s1, p, [],m, r), r) = m′ 6= ⊥)

⊥ otherwise

where inc and push are the operators defined on match paths.

The basic idea of the given match function definition is to gradually
match sub-patterns against sub-structures of the matched tree. This list of
pending match operations is forwarded through the computation utilizing
the parameter ~d ∈ D∗, extended if required, and stepwise consumed by
the definition of the function match′. During the course of processing sub-
problems by the functions mΦ and mΨ, variable bindings are accumulated
by the match result passed along as the parameter m ∈M⊥. The parameter
p ∈ P is utilized to keep track of the repetition-depth and the number of
repetitions on the various levels. Finally, the parameter r ∈ R is utilized to
maintain recursive variable bindings.

An implementation of the presented match function and a variety of
examples in the form of test cases are included in the Insieme sources (see
Appendix A).

Replacements

A replacement expression is a term representing a script turning a matched
tree tm ∈ T and a variable matching m ∈ M into a new tree to be utilized
to substitute tm.

Definition 5.13 (generator syntax). For the definition of replacement ex-
pressions three types of generator expressions are distinguished: expressions
producing results of type T (tree generators, τ), results of type T∗ (list gen-
erators, σ), and results of type U (value generators, υ). Their structure is
defined by the three production rules

τ ::= υ | k (σ) | τ [τ/τ]

σ ::= υ | ε | [τ] | σ, σ
υ ::= λc | λt (υ) | τ | σ | let x = υ in υ | ∀x ∈ υ . υ

where k ∈ K is a node type, λc : (T×M)→ U is a function creating values,
λt : U → U is a function transforming values and x ∈ V is a variable. Let
∆, Σ and Υ denote the set of expressions being generated by τ , σ and υ
respectively.

5.3. PATTERN BASED TRANSFORMATIONS 323

Definition 5.14 (generator semantic). The semantics of our generator ex-
pressions are given by the three functions

Γ∆ : T×M×∆→ T
ΓΣ : T×M× Σ→ T∗

ΓΥ : T×M×Υ→ U

defined by

Γ∆ (t,m, τ) =

ΓΥ(t,m, υ) if τ is υ and ΓΥ(t,m, υ) ∈ T (expr)
k (ΓΣ(t,m, σ)) if τ is k (σ) (node)
let t1 = Γ∆ (t,m, τ1) in
let t2 = Γ∆ (t,m, τ2) in
let t3 = Γ∆ (t,m, τ3) in
t1[t2/t3] if τ is τ1 [τ2/τ3] (substitution)

ΓΣ (t,m, σ) =

ΓΥ(t,m, υ) if σ is υ and ΓΥ(t,m, υ) ∈ T∗ (expr)
ε if σ is ε (empty)
[Γ∆ (t,m, τ)] if σ is [τ] (single)
ΓΣ (t,m, σ1) ,ΓΣ (t,m, σ2) if σ is σ1, σ2 (sequence)

ΓΥ (t,m, υ) =

λc (t,m) if υ is λc (ctor)
λt (ΓΥ(t,m, υ′)) if υ is λt (υ′) (transform)
Γ∆ (t,m, τ) if υ is τ (tree)
ΓΣ (t,m, σ) if υ is σ (list)
ΓΥ (t,m[x 7→ ΓΥ(t,m, υ1)], υ2) if υ is let x = υ1 in υ2 (let)
let [u1, . . . , un] = ΓΥ (t,m, υ1) in
let f = λy.ΓΥ (t,m[x 7→ y], υ2)
in [f (u1) , . . . , f (un)] if υ is ∀x ∈ υ1 . υ2 (foreach)

where t1[t2/t3] ∈ T denotes the tree obtained by replacing all occurrences of
t3 ∈ T within t1 ∈ T by t2 ∈ T.

Example 5.8 (generators). Let m = [x 7→ [a, b, c]] ∈ M be the result of
matching a pattern on a given tree t. We would like to produce a tree with
a root node of kind r and the elements mapped to x forming the child list.
Such a tree generator expression can be represented by

r(λx) ∈ ∆

utilizing the production rules τ ::= k(σ), σ ::= υ and υ ::= λc where k = r,
λc = λx and λx is defined by

λx(t,m) = m[x]

Based on those we obtain

Γ∆(t,m, r(λx)) = r(ΓΣ(t,m, λx))

= r(ΓΥ(t,m, λx))

= r(λx(t,m))

= r(m[x])

= r(a, b, c) ∈ T

324 CHAPTER 5. TRANSFORMATIONS

as desired. If, for instance, r(s(a, a), s(b, b), s(c, c)) shall be produced in-
stead, the tree generator expression

r(∀y ∈ λx . s([λy], [λy])) ∈ ∆

can be utilized where λy(t,m) = m[y]. Computing

Γ∆(t,m, r(∀y ∈ λx . s([λy], [λy])))
= r(ΓΣ(t,m,∀y ∈ λx . s([λy], [λy])))
= r([

ΓΥ(t,m[y 7→ a], s([λy], [λy])),

ΓΥ(t,m[y 7→ b], s([λy], [λy])),

ΓΥ(t,m[y 7→ c], s([λy], [λy]))

])

= r([

s(ΓΣ(t,m[y 7→ a], [λy]),ΓΣ(t,m[y 7→ a], [λy])),

s(ΓΣ(t,m[y 7→ b], [λy]),ΓΣ(t,m[y 7→ b], [λy])),

s(ΓΣ(t,m[y 7→ c], [λy]),ΓΣ(t,m[y 7→ c], [λy]))

])

= r([

s([Γ∆(t,m[y 7→ a], λy)], [Γ∆(t,m[y 7→ a], λy)]),

s([Γ∆(t,m[y 7→ b], λy)], [Γ∆(t,m[y 7→ b], λy)]),

s([Γ∆(t,m[y 7→ c], λy)], [Γ∆(t,m[y 7→ c], λy)])

])

= r(s(a, a), s(b, b), s(c, c)) ∈ T

yields the desired result. Note that in this calculation several steps, in
particular those switching between the functions Γ∆, ΓΣ and ΓΥ, have been
omitted for brevity.

Bringing it all together: Rules

Finally, pattern and generator expression can be combined into rules repre-
senting high-level descriptions of code transformations.

Definition 5.15 (rule). A rule is a pair (φ, τ) ∈ Φ×∆, denoted by φ→ τ ,
where φ ∈ Φ is a tree pattern and τ ∈ ∆ is a tree generator expression.

When applying a rule on a tree t ∈ T it is determined whether there
are mappings m and n such that t,m, n, ∅ ` φ. If so, a variable match
match(t, φ) = m′ ∈M is computed and utilized to generate the replacement
Γ∆(t,m′, τ) ∈ T.

5.3. PATTERN BASED TRANSFORMATIONS 325

Example 5.9 (rules). Let us consider a rule removing all immediate sub-
terms of the shape a(∗) from a given term of kind r. For instance,

r(a(), b, c(d, e), a(c), d)

should become
r(b, c(d, e), d)

A pair of adequate pattern and generator expressions has to be devised such
that all the necessary information to construct the result is captured. An
example solution would be

φ = r($xs : (¬a(∗))∗, (a(∗), $ys : (¬a(∗))∗)∗)

τ = r($xs, (∀y ∈ λys . $y))

where λys(t,m) = m[ys]. The pattern φ identifies sequences of sub-terms in
the root-term r(. . .) not containing any element of the shape a(∗) utilizing
the pattern (¬a(∗))∗. The sequence before the first occurrence of an a-
term is recorded by the list variable xs, sequences between a-terms and
between the last a-term and the end by the variable ys. Note that while
xs is a list variable with repetition-depth dφ(xs) = 0 the variable ys has
repetition-depth dφ(ys) = 1. Hence, within matches, xs will be associated
to list of trees while ys is associated to lists of lists of trees. The generator
pattern τ is simply composing the obtained fragments to the desired result
by concatenating the elements marked by xs with the concatenation of the
elements associated to ys. When applying the rule φ→ τ on the term

t = r(a(), b, c(d, e), a(c), d)

we obtain

m = match(t, φ) = [xs 7→ [], ys 7→ [[b, c(d, e)], [d]]] ∈M

and
Γ∆(t,m, τ) = r(b, c(d, e), d) ∈ T

as desired. Applied to t2 = r(a, b, c) it yields

m2 = match(t2, φ) = [xs 7→ [a, b, c], ys 7→ []] ∈M

and Γ∆(t2,m2, τ) = r(a, b, c) ∈ T and on t3 = r(a(a, b, c)) we obtain

m3 = match(t3, φ) = [xs 7→ [], ys 7→ []] ∈M

and Γ∆(t3,m3, τ) = r() ∈ T.

For both, the pattern and the generator constructs, the presented con-
structs merely present the core structures establishing the formal foundation
for the pattern matching and replacement generation processes. Those core
constructs are wrapped up into domain specific derived constructs before be-
ing utilized by the end user. Examples of those are covered in the following
section.

326 CHAPTER 5. TRANSFORMATIONS

5.3.3 Implementation

Like the rest of the Insieme Compiler infrastructure, the implementation of
the pattern based transformation toolbox is based on C++11. It represents
patterns and replacements as objects, with common connectors mapped to
overloaded C++ operators. This approach has multiple advantages: com-
posability (simple pattern composition using C++ variables, operators and
functions), extensibility (new user-defined constructs may be added), reli-
ability (pattern fragments can be tested independently using common unit
testing frameworks, and their types and arities are checked at compile time),
and productivity (all integrated development environment features including
code completion apply to patterns, and users are not required to learn a new
language syntax). The examples in Section 5.3.4 illustrate some of these ad-
vantages.

Due to overloading, multiple variations of the same pattern construct
can be offered, which is particularly useful when defining derived constructs
dealing with IR primitives. For instance, there might be two overloaded
functions

TreePattern forStmt () {
return /∗ some k (. .) p r im i t i v e wi th w i l d ca rd s ∗/

}
TreePattern forStmt (const TreePattern& body) {

return /∗ some k (. .) p r im i t i v e i n c l u d i n g body ∗/
}

where the first creates a pattern matching any for loop while the latter allows
the user to constrain the body of a matched loop. Both utilize the φ ::= k(ψ)
production rule where k is replaced by the token identifying for-statement
nodes and ψ by a correspondingly composed child-node list pattern. Based
on those, the statements

auto noFor = ! forStmt () ;
auto p = forStmt (noFor) | forStmt (forStmt (noFor)) ;

create a pattern p matching a single for loop or two perfectly nested loops.
Note the utilization of C++ variables, the derived, domain specific con-
structs forStmt and the overloaded C++ negation operator ! and disjunc-
tion operator | for composing the desired pattern in a comprehensible and
concise way. Like for the forStmt, similar, partially overloaded constructors
are offered for all kind of IR nodes.

The Matching Algorithm

The centerpiece of our system is the pattern matching algorithm. In our
implementation it is based on a back-tracking approach following Defini-
tion 5.12. While for most primitives the check whether a given tree matches
the corresponding pattern is straightforward (e.g. the constant t, wildcards,

5.3. PATTERN BASED TRANSFORMATIONS 327

negations and conjunctions) the processing of a few primitives requires more
sophisticated steps. For instance, to determine whether a forest s satisfies
a pattern ψ1, ψ2 the sequence s needs to be split up into two sub-sequences
s1 and s2 (see Definition 5.12). However, the splitting point can only be
guessed at this point – and in case it was wrong altered in a back-tracking
step.

To increase the probability of guessing right as soon as possible we em-
ploy several pruning heuristics. For instance, if a sequence pattern of the
shape ψ1, ψ2, . . . , ψn contains constant tree patterns (ψi = t) or patterns
demanding a fixed node type (e.g. ψi = k(. . .)) these elements are identified
within a potential candidate list t1, . . . , tm before the remaining, potentially
more complex patterns are matched against the interjacent sub-sequences.
Also, memoization is utilized to avoid resolving identical sub-problems mul-
tiple times.

Nevertheless, the worst case complexity of our matching algorithm is
exponential. However, so far, for real-world patterns encountered within
our daily interaction with the system the search space pruning heuristics
are effective enough to not impose a substantial performance issue. Also,
the system benefits from the limited average length of sequences encountered
within ASTs.

5.3.4 Examples

In general, when defining sophisticated patterns the definition of auxiliary
connectors is beneficial. Therefore, in addition to the constants any (),
anyList (∗), the primitive connector node (...) matching any node with a given
child list and the derived connector step(a), which is equivalent to node(∗
any << a << ∗any) where the << operator is the sequence connector of list
patterns, we have defined the following constructs

TreePattern a l l (const TreePattern& a) {
return rT ((a & node (∗ r e c)) | (! a & node (∗ r e c))) ;

}
TreePattern outermost (const TreePattern& a) {

return rT(a | (! a & node (∗ r e c))) ;
}
TreePattern innermost (const TreePattern& a) {

return rT ((! s tep (aT(a)) & a) | node (∗ r e c)) ;
}

The derived constructs all , outermost and innermost collect all / the outermost
/ the innermost sub-trees matching a given input pattern. Based on those,
patterns locating loops at corresponding positions can be constructed by

auto a = a l l (var (”x” , forStmt ())) ;
auto b = outermost (var (”x” , forStmt ())) ;
auto c = innermost (var (”x” , forStmt ())) ;

328 CHAPTER 5. TRANSFORMATIONS

Also, a pattern identifying a used variable and all its accesses is created by

auto x = var (”x”) ;
auto use = ! declStmt () & step (x) ;
auto p = aT(declStmt (x)) & aT(use)

& a l l (var (”y” , use)) ;

The resulting pattern p checks for the presence of a declaration defining a
utilized variable x and collects all its uses within the pattern variable y.

Aggregating Operators

As an example seen from the developer’s perspective, let us consider the
design of a transformation converting the consecutive application of a mul-
tiplication and an addition into a single application of a combined multiply-
and-add operator. Hence, the expressions

a ∗ b + c ;
4 ∗ (2−c) + d ;
12 ∗ (2∗ a+1) + (a∗b+3) ;

shall be transformed into

mad(a , b , c) ;
mad(4 ,2−c , d) ;
mad(12 ,mad(2 , a , 1) ,mad(a , b , 3)) ;

Let call be an overloaded C++ function creating patterns for call ex-
pression nodes and the constants mul, add and mad be constants for the mul-
tiplication, addition and multiply-and-add operators. The corresponding
transformation rule is created by

Var iab le t = ” t ” ;
Var iab le a = ”a” ;
Var iab le b = ”b” ;
Var iab le c = ”c” ;

auto p = c a l l (t , add , c a l l (mul , a << b) << c) ;
auto g = c a l l (t , mad , a << b << c) ;
auto r = Rule (p , g) ;

where the variable t is utilized to capture the type of the expression and the
variables a, b and c the sub-trees constituting the operands. The resulting
rule r can be applied directly on an expression and, if matching, would
conduct the desired transformation. However, it does not handle cases in
which the targeted case is nested within another term. To add support for
nested cases the given pattern can be extended by

Var iab le t rg (” i ” ,p) ;
auto p2 = aT(t rg) ;
auto g2 = s u b s t i t u t e (root , trg , g) ;
auto r2 = Rule (p2 , g2) ;

5.3. PATTERN BASED TRANSFORMATIONS 329

such that p2 is searching for a term matching p within a given tree and g2
replaces the located sub-term marked by the variable trg by the replace-
ment produced by the generator expression g. Thus, the resulting rule r2 is
capable of locating a nested term fitting the pattern a ∗ b+ c and replacing
it by an application of the multiply-and-add operator. Each application of
the rule on a code fragment in using

auto out = r2 (in) ;

conducts a single replacement. Repeatedly applying the rule r2 until no
more modifications are conducted, hence until a fixpoint is reached, using

auto out = r2 . f i x p o i n t (in) ;

results in a code fragment out where all fitting sub-expressions have been
substituted by an application of the mad operator.

By utilizing C++ facilities including overloaded functions and operators
as well as a functional programming style, the complex, yet concise nature
of the core primitives of the pattern matcher and generator utilities are
effectively concealed without losing expressiveness nor flexibility.

A Real-World Transformation

To demonstrate the applicability of the pattern based transformation system
to more complex tasks, a transformation designed to eliminate redundant
sync calls within Cilk applications, which was used in the context of research
conducted based on the Insieme infrastructure [99], shall be presented. A
sync is deemed redundant if there has not been any spawn invocation since
the last sync.

Let spawn and sync be constants representing patterns matching applica-
tions of the corresponding operators. In a first step the pattern

auto unsynced =
rT(spawn | node (∗ any << aT(rec) << ∗ ! sync)) ;

matching code fragments potentially resulting in an unsynchronized state
is defined. This is the case for a plain spawn statement or whenever an
arbitrarily nested spawn is not followed by a sync on the same or an enclos-
ing scope. In the next step the predicate unsynced is utilized to define the
predicate synced as well as the desired pattern p identifying redundant sync

statements:

auto synced = ! unsynced ;
auto p = compound (

opt (∗ any << sync) << ∗ synced << var (”x” , sync) << ∗any
) ;

The pattern p searches code fragments in which an optional (opt (..)) safe
sequence of explicitly (on the same scope) or implicitly (nested) synchronized

330 CHAPTER 5. TRANSFORMATIONS

statements is followed by a sync call, which gets bound to variable x. The
replacement expression

auto r = s u b s t i t u t e (root , var (”x”) , noop) ;

can be utilized to generate a proper substitute for any matched statement.
Here root is the root of the matched sub-tree, var(”x”) extracts the value
bound to variable x and noop is a constant representing an expression con-
ducting no operation. It replaces the identified redundant sync call x by a
noop. Finally, the following code fragment combines p and r into a (trans-
formation) rule and applies it to a target-code fragment in:

Rule syncEl iminat ion = Rule (p , r) ;
auto out = syncEl iminat ion (in) ;

The application of the rule includes the computation of a match result for
pattern p and forwards it to the replacement expression r to produce the
desired result.

5.4 Polyhedral Transformations

Besides its analytic capabilities, the polyhedral model also provides a power-
ful foundation for code transformations – in particular targeting loop nests.
Contemporary compiler infrastructures are frequently equipped with sup-
port for such transformations. The basics of those as well as their integra-
tion into the Insieme compiler infrastructure shall be briefly outlined within
this section.

5.4.1 Overview on Polyhedral Transformations

A simple way to utilize the polyhedral model is to conduct dependency
checks on loop nests as covered in Section 4.5 to verify whether loop trans-
formations can be applied without altering the observable semantic of the
targeted code fragment. The actual modification may then be realized uti-
lizing node mapper or pattern based transformations.

However, the polyhedral model itself offers a much more powerful basis
for conducting transformations [12]. Given the code fragment

l e t i n t = in t <4>;
for (i n t i = 0 . . N) {

for (i n t j = i . . N) {
. . . = a [i] [j −1] ; // S1
a [i] [j] := . . . ; // S2

}
}

and the polyhedral description(
~I,
{(
DS1, TS1,

{
A(S1,USE,a)

})
,
(
DS2, TS2,

{
A(S2,DEF,a)

})})

5.4. POLYHEDRAL TRANSFORMATIONS 331

obtained in Section 4.5.1 the order of execution of the involved statements is
covered by the schedule functions represented by the matrices TS1 and TS2

for each of the involved statements. It also covers the access to the involved
arrays and – implicitly – their number of dimensions and the order of their
indices, hence their memory layout. Effectively, the polyhedral model offers
a code representation enabling the isolated consideration of the scheduling
of instruction instances and the associated memory accesses. Altering those
in the polyhedral representation turns out to be much more efficient, scal-
able and composable than equivalent transformations utilizing AST-based
operations [12]. The only requirement this imposes is a component capa-
ble of converting an arbitrary polyhedral description back int a AST-based
structure, hence proper IR code.

Fortunately, such an algorithm exist and is implement e.g. by the Chunky
Loop Generator (GLooG) library [13]. Thus, arbitrary modifications pre-
serving the dependencies of the original input code can be applied on the
polyhedral representation of a code fragment before converting it back into
IR code. Modifications on the schedule functions may thereby have simi-
lar effects in a single step as long sequences of conventional textbook loop
transformations including e.g. loop fission, fusion, permutation, reversal
skewing and tiling. Consistently, altering access functions allows re-shaping
the memory layout of arrays as well as access patterns. The allowed mod-
ifications, however, are limited under the constraints of the involved data
dependencies which can be accurately analyzed utilizing the same represen-
tation.

In particular, scheduling and optimization problems based on the poly-
hedral model can be represented as (linear) optimization problems tuning
a given objective function, e.g. maximizing data reuse [87]. Effectively, the
problem of obtaining optimal code transformations is converted into solving
a mathematical optimization problem for which sophisticated optimization
techniques can be utilized.

Example Transformation

As has been obtained in Section 4.5.1, the code fragment above contains
a read-after-write dependency preventing e.g. the inner loop from being
parallelized. By reordering the two statements and splitting the inner loop,
this dependency could be resolved. The resulting code would be similar to

332 CHAPTER 5. TRANSFORMATIONS

l e t i n t = in t <4>;
for (i n t i = 0 . . N) {

for (i n t j = i . . N) {
a [i] [j] := . . . ; // S2

}
for (i n t j = i . . N) {

. . . = a [i] [j −1] ; // S1
}

}

Those two transformation steps can be conducted in a single step utiliz-
ing the polyhedral model. For the given example, the two matrices TS1 and
TS2 given by

TS1 =

1 0 0 0
0 1 0 0
0 0 0 0

 and TS2 =

1 0 0 0
0 1 0 0
0 0 0 1

determine the order in which instances of statements S1 and S2 are pro-
cessed. A generic instance I = (i, j,N, 1)T of S1 is executed at timestamp
TS1I = (i, j, 0)T and instance I of statement S2 at the logical timestamp
TS2I = (i, j, 1)T . However, in the transformed code we would like all in-
stances of S2 associated to the inner loop being processed before the cor-
responding instances of S1. This is, for instance, achieved by obtaining
modified matrices T ′S1 and T ′S2 such that

T ′S1I = (i, 1, j, 0)T and T ′S2I = (i, 0, j, 1)T

which corresponds to the matrices

T ′S1 =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

 and T ′S2 =

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

Note that the resulting lexicographical order corresponds to the desired ef-
fect and that, compared to the original matrices, only an additional row
had to be introduced in both matrices. The resulting representation can
then be used to check whether all dependencies encountered in the original
code fragment are still valid – utilizing PM based analyses – to verify the
validity of the applied transformation. Finally, by substituting the original
scheduling matrices with their modified versions and converting the resulting
polyhedral description(

~I,
{(
DS1, T ′S1,

{
A(S1,USE,a)

})
,
(
DS2, T ′S2,

{
A(S2,DEF,a)

})})
back into AST like code, a result equivalent to the code fragment outlined
above is obtained.

5.5. THE TRANSFORMATION FRAMEWORK 333

IR
code PM

CLooG
AST

IR
code

converter PM
transformation

CLooGconverter

Polyhedral Transformation System

IN

OUT

PM’

Figure 5.1: Overview on the polyhedral transformation system.

However, this example represents only a simple use case. Far more ex-
amples utilizing advanced capabilities of the polyhedral model, which have
been omitted in this PM overview for brevity, can be found in the litera-
ture [22, 12]. Also, the utilized approach of first identifying the structure
of the desired target code followed by designing the corresponding modi-
fications is only one way of utilizing polyhedral transformations. As has
been outlined above, the matrices describing a transformed code version
may be computed utilizing mathematical optimization techniques, yielding
results and complex code fragments that could only very difficulty obtained
by sequences of conventional transformations.

5.4.2 Integration of Polyhedral Transformations

The integration of polyhedral transformations into the Insieme Compiler in-
frastructure is illustrated by Figure 5.1. In a first step, a targeted IR code
fragment is converted into a polyhedral representation (PM) as it is done
when analyzing codes. The representation is then transformed according to
the desired PM based transformation and converted by the ClooG library
into an AST like structure. This ClooG AST, combined with some informa-
tion linking statements referenced by the polyhedral model to statements
in the input IR structure, can be converted back into the Insieme IR. The
transformed code is then returned as the result of the transformation.

5.5 The Transformation Framework

So far, utilities to build code transformations have been covered in this
section. Each of those targets an IR node and replaces it by some sort of

334 CHAPTER 5. TRANSFORMATIONS

substitute. However, no structured approach for identifying those targets or
to define the order of transformations to be applied has yet been introduced.
Within this final section, such means for orchestrating transformations are
covered.

5.5.1 Transformations and Connectors

The following definition constitute the transformation framework realized
as part of the Insieme Compiler infrastructure.

The basic entity of the framework is the definition of a transformation.

Definition 5.16 (transformation). A transformation is a function

t : IR→ (IR ∪ {⊥})

converting a given IR node n into t(n) ∈ IR if the transformation can be
validly applied on n or t(n) = ⊥ otherwise. The set of all transformation
functions is denoted by T .

Such a transformation may be implemented based on plain node con-
struction operations, the node mapper infrastructure, the pattern matcher,
the polyhedral model, by composing other transformations or by utilizing
any other available technique. Frequently, transformations are implemented
generically such that they are exhibiting parameters. For instance, a loop-
unrolling transformation may be implemented by offering the actual unroll
factor as a parameter. Hence, loop-unrolling constitutes a whole family of
transformations, referred to as a transformation type.

Definition 5.17 (transformation type). A transformation type is a family
of transformations parametrized by a parameter p ∈ P of some parameter
space P. Formally, a transformation type is a function

f : P → T

obtaining a parameter p ∈ P the corresponding transformation f(p) ∈ T .

Example 5.10 (transformation types). For instance, the function

unroll : N→ T

defined by
unroll(n) = tn

where tn : IR→ (IR ∪ {⊥}) is defined by

tn(i) =

{
n-times unrolled loop l if i = l is a for-loop

⊥ otherwise

is the transformation type unroll and e.g. t4 the transformation unrolling a
loop with an unroll factor of 4.

5.5. THE TRANSFORMATION FRAMEWORK 335

Transformation types provide factory functions for transformations that
can be applied on code fragments. The obtained transformations can then
be orchestrated into a larger transformation utilizing transformation con-
nectors. Some of those are based on node filters.

Definition 5.18 (node filter). Let IRA ⊃ IR be the set of node addresses
(see Section 3.10.2). A node filter is a function

f : IRA → B

The set of all node filters is is denoted by F .

Node filters are predicated on nodes. Those predicates may be realized
by simple code inspection operations, by conducting analysis or matching
patterns. As for transformations, filters are typically implemented generi-
cally by exposing parameters. A related family of filters is referred to as a
filter type.

Definition 5.19 (node filter type). A node filter type is a family of node
filters parametrized by a parameter p ∈ P of some parameters space P.
Formally, a node filter type is a function

f : P → F

obtaining for each parameters p ∈ P the corresponding node filter f(p) ∈ F .

Example 5.11 (node filters and types). A constant function

accept : IRA → B

defined by accept(n) = true is a valid node filter accepting any node. A
function

p : Φ→ F

defined by

p(φ) = mφ

where mφ : IRA → B is defined by

mφ(n) = (match(n, φ) 6= ⊥)

is another example of a pattern based node filter utilizing a tree pattern
φ ∈ Φ to identify nodes to be accepted.

Finally, the following set of transformation connectors can be defined
based on the previous definitions.

336 CHAPTER 5. TRANSFORMATIONS

Definition 5.20 (transformation connectors). Let t, t1, . . . , tn ∈ T be trans-
formations and f ∈ F be a filter. Further, let t[a/b] ∈ T denote a transfor-
mation replacing the node addressed by b ∈ IRA by the value of a ∈ IR,
a v b denote the fact that a ∈ IRA addresses a sub-structure of b ∈ IRA and
a � b the fact that a ∈ IRA addresses a node succeeding the node addressed
by b ∈ IRA in a pre-order iteration through the tree structure defined by
the common root of a and b. Then

pipeline(t1, . . . , tk)

try(t1, t2)

if(f, t1, t2)

forAll(f, t)

fixpoint(t)

defined by

pipeline()(n) = n

pipeline(t1, . . . , tk)(n) = pipeline(t2, . . . , tk)(t1(n))

try(t1, t2)(n) =

{
t1(n) if t1(n) 6= ⊥
t2(n) otherwise

if(f, t1, t2)(n) =

{
t1(n) if f(n)

t2(n) otherwise

forAll(f, t)(n) = pipeline(t[t(n1)/n1], . . . , t[t(nk)/nk])(n)

where {n1, . . . , nk} = {x ∈ IRA | x v n ∧ f(x)}
and ∀1≤i<k . ni � ni+1

fixpoint(t)(n) =

{
n if t(n) = n

fixpoint(t)(t(n)) otherwise

are transformations as well.

Essentially, transformation connectors are higher-order transformation
types utilizing other transformations as parameters. The pipeline operator
creates sequences of transformations, the try and if operator apply transfor-
mations under certain conditions, the forAll operator apples a given trans-
formation on selected sub-structures and the fixpoint operator repeatedly
applies a given transformation until no more changes occur. For the latter
case, it has to be ensured that such a fixpoint is reached eventually.

Combined with the remaining transformations the present connectors
can be utilized to assemble arbitrary, parametrized transformation scripts.

5.5. THE TRANSFORMATION FRAMEWORK 337

Example 5.12 (innermost loop unrolling). To demonstrate the expressive-
ness of the presented transformation connectors we will device a transfor-
mation unrolling all innermost for loops by a factor of 4. Let id ∈ T be the
identity function, hence a transformation without any effect. The desired
transformation is given by the term

forAll(

p(innermost(forStmt())),

try(unroll(4), id)

)

where the pattern φ = innermost(forStmt()) ∈ Φ is utilized to select the
nodes to be targeted by the transformation try(unroll(4), id) ∈ T which
attempts to apply the loop unrolling operation. Unlike the plain unrolling-
transformation the resulting transformation may be applied on any node
structure.

5.5.2 Implementation of Transformation Scripts

Like the pattern matcher and the rest of the Insieme System, the trans-
formation framework is implemented based on C++ utilizing a functional
programming style. Consequently, transformation scripts can be defined
similar to the examples illustrated in the previous section by adapting it to
C++ syntax.

The following code fragment outlines the construction of a transforma-
tion script for a matrix-multiplication kernel.

auto t = makePipel ine (
// c leanup
s e q u e n t i a l i z e ,

// t i l e
makeLoopStamping (tsC , 0u , 0u , 0u) ,
makeLoopTiling ({ tsA , tsB , tsC }) ,

// c o l l a p s e t i l e d loop
makeForAll (

f : : outermostLoops () ,
makeLoopCollapsing (1)

) ,

// un r o l l innermost loop
makeForAll (

f : : innermostLoops () ,
makeTry (

makeTotalLoopUnroll ing () ,
makeLoopUnrolling (4)

)
) ,

338 CHAPTER 5. TRANSFORMATIONS

// p a r a l l e l i z e s e l e c t e d l oops
t : : makeForAll (f : : pickLoop (0) , p a r a l l e l i z e) ,
t : : makeForAll (f : : pickLoop (1) , p a r a l l e l i z e)

) ;

The overall transformation is a sequence of transformations, constituted
by the enclosing pipeline. The first step is a sequentialize operation remov-
ing any potential parallel loops from the targeted code fragment. The second
step conducts 3-dimensional loop tiling based on the transformation param-
eters tsA, tsB and tsC corresponding to the tile sizes to be used. Before
the tiling is applied, the loop stamping transformation splits the present
loops such that each loop in the targeted loop nest exhibits an iteration
range forming a multiple of the desired tile size and the remaining part is
processed in a separate loop. This reduces the complexity of the boundary
expressions of the tiled loops and may enable total loop-unrolling in the in-
nermost loops. This unrolling is attempted in the following step before the
last step parallelizes the two outermost loops.

The utilized filters pickLoop enable loops being addressed by their location
in the code. The first loop is 0, the second 1. The first loop nested in loop
0 is loop 0-0, the second loop 0-1 and so forth.

The resulting parametrized transformation is specifically designed to be
applied on a code fragment implementing a matrix multiplication. Other
scripts for alternative code fragments may be equally composed.

5.6 Summary

The frameworks and utilities covered in this chapter provide the means for
building and composing parametrized code transformations and transforma-
tion scripts. The range of currently supported techniques range from rudi-
mentary approaches of implementing transformations by directly composing
modified nodes (Section 5.2), over node mapper (Section 5.2.1) and novel
pattern-matching based techniques developed as part of this thesis (Sec-
tion 5.3), to sophisticated polyhedral transformations (Section 5.4). The ap-
plication of the resulting elementary, local transformation operations can be
orchestrated utilizing the high-level primitives of the transformation frame-
work to form transformation scripts (Section 5.5). However, the problem of
devising (suitable) scripts and/or optimal parameters for the involved trans-
formation types is known as auto-tuning of program codes and among the
topics of the next chapter – which also includes a variety of example appli-
cations utilizing the transformation infrastructure presented in this chapter.

Chapter 6

Applications

All compiler optimizations require three components: analyses determining
their validity, transformations conducting the actual code manipulations and
a third, decision making component determining where to apply transfor-
mations and whether they are actually profitable. The first two components
have been covered in the last two chapters, the final is to be covered in this
chapter.

This chapter discusses a few example applications and research results
based on the Insieme infrastructure developed in the context of this the-
sis. Each section summarizes a different application presented in a different
publication utilizing the Insieme infrastructure for its implementation. The
first covers a multi-objective auto-tuning framework for parallel applications
[49], the second an automated scheduling approach for parallel loops [97] and
the third a hybrid compiler/runtime optimization improving the execution
of nested parallel codes [99, 100]. The chapter concludes by a short sec-
tion enumerating a list of additional work conducted by third parties, yet
utilizing the infrastructure developed by this thesis.

6.1 Contributions

The major contributions of this chapter are:

• the demonstration of the utilization of the Insieme infrastructure for
conducting research on the automated tuning and coordination of par-
allel programs

• the development of a novel system for the multi-objective tuning of
(parallel) programs (Section 6.2)

• the development of a novel loop-scheduling solution based on a runtime
system component utilizing compiler deduced properties characteriz-
ing the scheduled loops (Section 6.3)

339

340 CHAPTER 6. APPLICATIONS

• the development of a novel, automated task-granularity control mech-
anism reducing the overhead and coordination effort of task parallel
applications based on a combination of compiler and runtime system
based techniques (Section 6.4)

In the context of this thesis, this chapter corroborates the thesis’s hypothesis
by demonstrating a variety of applications utilizing the widened influence of
a novel, high-level, parallelism aware source-to-source compiler for automa-
tizing the load management, tuning and coordination of parallel programs.

6.2 Multi-Objective Auto-Tuning

Efficient parallelization and optimization of programs for modern parallel
architectures is a time-consuming and error-prone task that requires nu-
merous iterations of code transformations, tuning and performance analysis
which in many cases have to be redone for each different architecture.

Auto-tuning has been extensively studied in recent years to largely auto-
mate the process of tuning codes for (parallel) computers to realize portable
performance [64, 111, 109, 23, 33]. The basic idea is to automatically find
an effective set of transformations with proper parameter settings (e.g. tile
sizes, loop ordering and unrolling factors) for individual code regions. How-
ever, while a carefully selected and tuned transformation sequence might
be beneficial for one objective, the same may have adverse consequences on
others [91]. Many successful practical auto-tuning solutions focus on spe-
cific applications [111, 109]. For more generic, compiler-based approaches,
however, the prohibitively large and complex optimization problem of select-
ing, customizing and ordering transformations to obtain an optimal variant
of a user’s input code is still among the most fundamental open issues in
compiler research [102, 86, 11, 91, 54].

Existing auto-tuning compilers often try to tackle this problem by (1)
offline searching a subset of the parameter space [102] based on domain
specific constraints and heuristics or analytical performance models [91], (2)
online tuning of program parameters (e.g. tile sizes) [11], or (3) dynamic
code generation and replacement [103]. One factor common to most of these
methods and systems, particularly in the field of parallel computing, is that
they focus exclusively on a single optimization objective such as execution
time, memory behavior or resource consumption. Only little support exists
for code optimizers that deal with trade-offs between multiple, conflicting
goals.

Based on the Insieme infrastructure, a novel multi-objective auto-tuning
framework for parallel codes has been introduced [49]. It consists of a com-
piler component featuring a multi-objective optimizer and a runtime system.
The multi-objective optimizer derives a set of non-dominated solutions, each
of them expressing a trade-off among the different conflicting objectives.

6.2. MULTI-OBJECTIVE AUTO-TUNING 341

This set is commonly known as Pareto set in the field of multi-objective
optimization research [21].

To make effective use of the resulting Pareto set of optimal solutions, each
of them has to be made available at runtime. This is achieved by having the
compiler generate a set of code versions per region, each corresponding to
one specific solution. The runtime system then exploits the trade-off among
the different objectives by selecting a specific solution (code version) for each
region, based on context-specific criteria.

The approach is generic and can be applied to arbitrary transformations
and parameter settings. Its effectiveness is demonstrated by exploring the
trade-off between execution time and efficiency when tuning tile-sizes and
the numbers of involved threads in shared memory parallel applications.
This full section is a summary of previously published work [49].

The major contributions of the author of this thesis to this Insieme based
application are – besides the development of the underlying infrastructure
– the design and implementation of the multi-objective optimization infras-
tructure covered in Section 6.2.2, including the required static and dynamic
analyses, code transformations and the backend support, as well as the im-
plementation of the random and brute force optimizer and the conduction
and evaluation of the involved experiments.

6.2.1 Motivation

Two separate but related observations motivate the design of the multi-
objective auto-tuner. Firstly, it is well-known that for many computational
problems, strong parallel scaling can not be achieved. Beyond some thresh-
old – the exact value of which is problem, architecture and implementation
dependent – increasing the number of threads (cores) will no longer suffi-
ciently decrease computation time, which results in an inefficient use of the
available resources. The resulting trade-off between efficiency and speedup
motivates the use of multi-objective optimization techniques in compiler re-
search. Figure 6.1 illustrates this trade-off on one of the parallel computers
and benchmarks used in our evaluation (see Section 6.2.3 for details).

A second observation, which motivated the use of multi-versioning for
our compilation approach, is that different numbers of threads may require
specific transformation parameter values or even distinct transformation se-
quences for optimal performance. A potential reason for this is that the
effective capacity of shared cache levels exploitable by individual threads
depends on the number of concurrent threads running on the same chip. In
Figure 6.2 this behavior is illustrated for different tile sizes in the case of
three-dimensional tiling for matrix multiplication (IJK loop ordering). The
images show the relative execution time of tile size combinations for the i
and j loop, keeping the tile size for the k loop fixed. Darker areas represent
faster tile size combinations. It can be seen that the selection of optimal tile

342 CHAPTER 6. APPLICATIONS

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1

2

4

8

16

32

1 5 10 20 40

Ef
fi

ci
e

n
cy

Sp
ee

d
u

p

Cores Used

speedup

efficiency

Figure 6.1: Efficiency and speedup trade-off in a matrix multiplication kernel
for a varying number of cores.

1t1t 10t10t

20t20t 40t40t

tile size itile size i

til
e

siz
e

j
til

e
siz

e
j

tile size itile size i

til
e

siz
e

j
til

e
siz

e
j

tile size itile size i

tile size itile size i

til
e

siz
e

j
til

e
siz

e
j

100%100%

150%150%
>150%>150%

til
e

siz
e

j
til

e
siz

e
j

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 in

di
vi

du
al

 b
es

t)

Figure 6.2: Relative execution time of tiled matrix multiplication with dif-
ferent tile size selections, for 1, 10, 20 and 40 threads.

sizes depends on the amount of threads used in the computation – a pattern
that has also been observed by Shirako et al. [91].

These preliminary results demonstrate that, in order to offer the highest
possible performance at any desired efficiency level – and thus thread count
– an optimizing multi-objective compiler has to include some adaptive mech-
anism to specialize each tuned parallel code section for a given number of
threads.

6.2.2 Method

Our method, which is based on a combination of compiler and runtime
techniques, is described in this section. The first part gives an overview of

6.2. MULTI-OBJECTIVE AUTO-TUNING 343

Analyzer

Optimizer

Parallel Target Platform

Input
Code

Runtime System

Multi-
Versioned

Code

Code
Regions Best

Solutions

Search
Points

Measure-
ments

compile time runtime

1

2

3

4

5

6 Dynamic
Selection

Backend

Figure 6.3: Overview of our multi-objective optimization infrastructure.

the general architecture of our approach based on the Insieme infrastructure,
whereas the second part provides a brief overview on the utilized multi-
objective optimization algorithm.

Architecture Overview

Figure 6.3 illustrates the overall architecture of our solution, highlighting
the four main components: the code analyzer, the multi-objective optimizer,
the multi-versioning backend and the runtime system. The labels (1-6) in
Figure 6.3 follow the processing of a program within our framework. An
input code will be loaded by the compiler (1), analyzed and decomposed
into regions to be tuned by the optimizer.

For each region, the analyzer determines a set of transformation skele-
tons (=parametrized transformation scripts, see Section 5.5) which describe
generic sequences of code transformations using unbound parameters for
tunable properties (e.g. tile sizes, unrolling factors or number of threads).

The regions, together with their associated transformation skeletons and
some (optional) parameter constraints, are passed on to the optimizer specif-
ically devised for the auto-tuning system (2). At this point, the optimizer
conducts auto-tuning by iteratively selecting sets of configurations for each
of the regions to be evaluated (executed) on the target system (3). Each con-
figuration corresponds to an instantiation of a transformation skeleton’s pa-
rameters. During the evaluation, a single execution of the resulting program
is sufficient to obtain measurements for all simultaneously tuned regions. For
this purpose the dynamic analysis infrastructure covered by Section 4.6 is
utilized. To further reduce the optimization time, multiple independent con-
figurations are generated, compiled and if possible evaluated in parallel on
distinct instances of the targeted platform.

In the end, the optimizer derives a Pareto set for each of the selected
regions (4). The backend then generates, for each code region, a set of

344 CHAPTER 6. APPLICATIONS

specialized code versions – one for each solution in the obtained Pareto
set (5). For this purpose the multi-versioning capabilities of work items
are utilized in the runtime system (see Section 2.4.1). Additionally, each
code version is annotated with meta-information to be used by the runtime
system, including details regarding the represented trade-off.

Finally, during execution of the resulting code region, the runtime sys-
tem dynamically selects among the available code versions (6). The actual
strategy used to do so remains application specific. The decision might be
forwarded to the user. Alternatively, system wide performance settings may
be considered. In more sophisticated scenarios, dynamic or static task sched-
ulers could be extended to exploit this additional flexibility to improve their
own (potentially multi-objective) quality of service. However, the ultimate
method to utilize the newly gained opportunity of dynamically customizing
non-functional attributes is beyond the scope of this work and left for future
research.

The Static Optimizer Algorithm

The role of the static optimizer is to tune the transformation skeletons pro-
vided for the selected regions by computing a set of good configurations
(solutions) for each of them.

Multi-Objective Optimization A multi-objective optimization prob-
lem is characterized by an objective function

f : C → Rm

where C is the set of all valid configurations and m ≥ 2 the number of
objectives. A configuration c1 ∈ C dominates a configuration c2 ∈ C, if c1

provides better results than c2 for all objectives. More accurately, whenever

∀1≤i≤m . fi(c1) ≤ fi(c2)

and

∃1≤i≤m . fi(c1) < f1(c2)

is satisfied. On the contrary, two configurations are non-dominated if neither
is dominating the other. A set of non-dominated configurations is called
Pareto set. A Pareto set is said to be optimal when no configuration c′ ∈ C
dominates any configuration in it. The goal of a multi-objective optimization
algorithm is to find a Pareto set S ⊆ C as close as possible to the optimal
Pareto set.

Within the static optimizer, the problem of tuning a region is mapped
to an instance of a multi-objective optimization problem and solved using a
generic solver. Therefore, the search space C is derived from the parameters

6.2. MULTI-OBJECTIVE AUTO-TUNING 345

exhibited by the associated skeletons. Within each configuration all tuning
options, including the skeleton to be selected, potential flags enabling op-
tional parts of the transformation skeleton, unrolling factors, tile sizes and
thread count specifications are modeled uniformly. Furthermore, each con-
figuration comprises all the information required to convert a code region
into a code variant which can be evaluated by executing it on the target
system. This process is performed by the implementation of the objective
function f , which executes the resulting version and collects measurements
to quantify the individual objectives (e.g. execution time, resource usage,
energy consumption, etc.).

Multi-Objective Optimization Techniques Usually, the cardinality
of the set C is prohibitively large, rendering it impossible to perform an
exhaustive search evaluating all the configurations. In order to deal with
this problem, approximation techniques are employed. The challenge is to
compute solutions that are close to the optimal Pareto set by evaluating
only a minimal number of configurations.

Traditionally, approximation techniques from the field of operational re-
search like Nelder-Mead, Simplex or Genetic Algorithms (GA) [66, 103, 54]
have been applied within optimizing compilers. Although these techniques
only evaluate a small fraction of the overall search space, the number of
steps is still too large to represent a viable option to be used within a com-
piler. In order to overcome this obstacle, several complementary methods
for additionally reducing the search space have been proposed [91]. The
effectiveness of most of these methods relies on analytical prediction models
that are largely domain specific. Furthermore, these approaches only fo-
cus on a single objective. It has not yet been demonstrated whether these
techniques can be extended to multi-objective optimization problems.

In our approach, we utilize a novel multi-objective optimization algo-
rithm to be used within our iterative compiler framework. We refer to this
algorithm as RS-GDE3. It combines an approximation technique from the
class of Differential Evolution (DE) algorithms [95] with a reduction mech-
anism based on Rough Set theory [76]. Unlike other reduction mechanisms,
our selected concept does not depend on any domain-specific knowledge. To
reduce the search space, the Rough Set based approach requires only a small
number of evaluated configurations. Consequently, our approach does not
depend on any analytical models or heuristics to reduce the search space –
making it de facto independent of the actual interpretation of the tuned pa-
rameters. The full details on the optimization algorithm and the utilization
of its sub-components are covered in the corresponding literature [49].

In every iteration, RS-GDE3 produces a set of new configurations to
be evaluated on a target architecture – one for each element within the
current population. We have configured RS-GDE3 for our work to stop

346 CHAPTER 6. APPLICATIONS

Sockets/ Cache Setup
System Cores L1d/i L2 L3 Kernel GCC

Westmere 4/40 32K/32K 256K 30M 2.6.32 4.5.3
Barcelona 8/32 64K/64K 512K 2M 2.6.18 4.5.3

Table 6.1: Hardware platforms for experimental evaluation.

1: for i = 1 . . . N do
2: for j = 1 . . . N do
3: for k = 1 . . . N do
4: C[i][j] = C[i][j] +A[i][k] ∗B[k][j]
5: end for
6: end for
7: end for

Figure 6.4: Simple MM kernel using IJK loop ordering.

iterating when the solutions do not improve for three consecutive iterations.
A particular advantage of RS-GDE3 is that configurations can be evaluated
simultaneously to reduce the search time, a property exploited by our auto-
tuner by evaluating configurations in parallel.

6.2.3 Results

Experimental Setup

To demonstrate the capabilities of our system we used two parallel comput-
ing systems. The first, an Intel-based system, incorporates 4 Xeon E7-4870
processors, each comprising 10 physical cores (20 hardware threads) and 3
levels of cache. We refer to this system as Westmere. The second system is
an AMD server, named Barcelona, which is based on 8 Opteron 8356 pro-
cessors, each contributing 4 cores. Table 6.1 summarizes the configuration
of these systems. Note that L1 and L2 are per-core private caches, whereas
L3 is shared among the cores of each CPU.

When running experiments using a subset of cores, all involved threads
were bound to individual physical cores such that the resources of one chip
are fully utilized before involving an additional processor. For our exper-
iments we observed that the hyper-threading support on the Intel archi-
tecture did not provide any extra benefit – neither in terms of speed nor
efficiency. Therefore, we are skipping the corresponding results for brevity.

A Detailed Example

To provide a detailed analysis of our approach we have selected the widely
known and investigated Matrix Multiplication (mm) kernel as shown within

6.2. MULTI-OBJECTIVE AUTO-TUNING 347

Figure 6.4. We are applying loop tiling on all three loop levels, thereby cre-
ating a three-dimensional parameter space. This transformation is followed
by collapsing the two outermost tiling loops (corresponding to the i and j
loops) to increase the number of iterations before parallelizing the resulting
outermost loop.

Unlike in the sequential or the non-tiled case, using the (initially) more
cache friendly IKJ loop ordering as a starting point is not an option due
to a inherent load balancing issue introduced by doing so. When tiling the
IKJ variant of an mm-kernel using (necessarily) large tile sizes t = (ti, tk, tj)
to obtain a good last level cache utilization, the number of loop iterations
is limited by dN/tie due to tiling. The larger ti the less iterations can
be distributed among the threads processing the loop. Additionally, each
iteration computes larger sections of the resulting matrix. As a consequence
load balancing can degrade, which may seriously limit the scalability for an
increasing number of cores. To mitigate this effect, loop collapsing can be
applied before parallelizing the outermost loop, thereby effectively reducing
the work-load associated with an individual iteration. However, in the IKJ
case collapsing the tiling-loops of i and k prohibits the intended subsequent
parallelization. Since this limitation does not occur when starting with the
IJK loop ordering, we have selected the IJK loop ordering for our evaluation.

Tiling of Parallel Loops We first want to investigate the influence of the
number of threads used for processing a parallel loop nest on the optimal
tile size for this loop. Therefore, we conducted an extensive search within
a necessarily restricted search space on two different architectures. For a
problem size of N = 1400, mm-kernel variations using more than 14.000
tiling configurations t = (ti, tj , tk) ∈ [1..700]3 have been generated, compiled
and evaluated on our target platforms for different thread numbers. On
Westmere we performed our evaluation using 1, 5, 10, 20 and 40 cores while
on Barcelona configurations involving 1, 2, 4, 8, 16 and 32 cores have been
investigated. We refer to this kind of extensive search as the brute force
method. A subset of the results has been illustrated in Figure 6.2.

Each of the resulting configurations has been evaluated multiple times
and the median of the collected execution times was used for comparison.
Table 6.2 lists the best tile sizes found for each specific number of employed
threads on our target platforms. For instance, the best configuration for
10 cores found on Westmere is (ti, tj , tk) = (32, 288, 9). The table also
includes the relative performance loss when running an optimal configuration
obtained for one number of threads using a different number of cores. For
instance, using 40 threads to run the mm kernel version tuned for 10 threads
takes 11% longer than the variant tuned specifically for 40 threads.

As can be observed in Table 6.2, on both architectures the performance
impact of using tiling parameters tuned for a non-matching number of

348 CHAPTER 6. APPLICATIONS

Westmere Architecture

opt. Tile Sizes Perf. Loss over Best for # of Cores in %
Nr. of Cores ti tj tk 1 5 10 20 40 Avg.

1 core 96 128 8 - 1.2 5.4 11.3 15.1 8.3
5 cores 32 304 9 1.0 - 1.5 4.5 0.3 1.8
10 cores 32 288 9 0.9 0.1 - 4.3 11.0 4.1
20 cores 32 192 12 2.3 2.2 2.5 - 10.4 4.4
40 cores 32 208 12 1.7 0.4 3.2 6.8 - 3.0

GCC -O3 - - - 605.3 593.3 559.7 502.6 422.8 536.8

Barcelona Architecture

opt. Tile Sizes Perf. Loss over Best for # of Cores in %
Nr. of Cores ti tj tk 1 2 4 8 16 32 Avg.

1 core 96 480 5 - 7.3 7.3 10.7 6.0 18.0 9.9
2 cores 80 496 5 0.6 - 4.5 5.1 14.9 17.1 8.4
4 cores 128 352 7 1.4 4.3 - 12.1 4.2 19.3 8.3
8 cores 176 304 7 6.7 3.1 5.5 - 23.2 30.1 13.7
16 cores 176 352 8 7.4 6.6 8.0 2.1 - 2.9 5.4
32 cores 144 240 8 5.9 5.3 9.8 22.0 13.5 - 11.3

GCC -O3 - - - 3948.7 3732.9 3619.9 3886.5 3486.5 4628.0 3883.8

Table 6.2: Optimal Tiling Parameters for Different Number of Threads and
Architectures.

threads can be quite severe. For instance, if we apply the best tile size
configuration found for a single thread to a matrix multiply execution with
all available cores on our target architectures, then the resulting perfor-
mance degradation amounts to 15.1% and 18%, respectively, compared to
the best found tile size for the largest number of available threads. On our
Barcelona system, this performance impact even reaches 30.1% when using
the configuration tuned for 8 cores for a mm run involving 32 cores. Also,
when using configurations obtained for a large number of cores in scenar-
ios involving fewer threads, a slowdown can be observed. Using the best
32-core configuration on the Barcelona system with less threads results in
performance loss between 5.3% and 22% compared to the individual best
configurations.

Configurations representing the optimum for a single number of cores
are on average between 1.8% and 8.3% (column Avg. in Table 6.2) slower
than individually tuned solutions on the Westmere architecture. On the
Barcelona architecture this range varies between 5.4% and 13.7%. Finally,
the comparison with the GCC -O3 baseline demonstrates the well known,
enormous potential of tiling in general as well as the high quality of the
individually tuned solutions.

Trade-off between Speedup and Efficiency In addition to the impact
on optimal tiling parameters, the collected data also enables us to investigate
the trade-off between speedup and efficiency when tuning the mm-kernel for

6.2. MULTI-OBJECTIVE AUTO-TUNING 349

multiple objectives.
Let ts be the execution time of the fastest (tiled) sequential code version

and tp(x) its parallel counterpart using x threads. The speedup of a code
being executed using x threads is usually defined by

s(x) =
ts

tp(x)

and its efficiency by

e(x) =
s(x)

x
=

ts
x · tp(x)

Unfortunately, both definitions depend on the fastest sequential execution
time, which in general remains unknown. However, ts is a constant which
can be omitted when comparing the quality of different versions of the same
region. Hence, instead of comparing the speedup s(x) we can use the execu-
tion time tp(x) when trying to derive the fastest solution - just as the total
resource usage

r(x) = x · tp(x)

can be used as an equivalent, yet obtainable substitute for e(x) as part of
our optimizer. However, in general we strive to maximize e(x) whereas r(x)
needs to be minimized.

When plotting execution time vs. the resource usage of all the con-
figurations evaluated using the brute force search mechanism, the pattern
illustrated within Figure 6.5 is produced. Due to the correlation between the
execution time tp(x) and the resource usage r(x) = x · tp(x), all points using
the same number of threads are located on a line. Furthermore, due to the
large number of points evaluated, the individual lines are densely populated
within a certain range. In every line, there is a single point exhibiting the
shortest execution time and thus also the least resource requirements. This
point dominates all other solutions within the same line and corresponds to
the best solutions listed in Table 6.2.

The globally non-dominated tips of the lines are the desired configura-
tions to be obtained using our static multi-objective optimizer. Together,
they form the Pareto front of the multi-objective optimization problem for
speedup and efficiency. Unfortunately, finding these optimal solutions re-
quires searching the optimal tiling parameters for individual thread counts
in multiple vast, three-dimensional search spaces. For our evaluation we only
considered 5 respectively 6 out of 40 respectively 32 options for the number
of cores – all of them contributing one point to the Pareto front, which might
not always be the case. Each additional number of cores adds another line
which may add one extra point on the Pareto front. This problem definition
automatically eliminates configurations using too many cores for non-scaling
codes. For these cases, the execution time will increase for larger number
of cores and thus their corresponding configurations will not be part of the

350 CHAPTER 6. APPLICATIONS

800

1000

1200

1400

25 100 400

R
e

so
u

rc
e

 U
sa

ge
 [

m
s]

Execution Time [ms]

All Configurations

Pareto Front

R
e

so
u

rc
e

 U
sa

ge
 [

m
s]

(a) Westmere Architecture

1000

1500

2000

2500

3000

3500

64 256 1024

R
e

so
u

rc
e

 U
sa

ge
 [

m
s]

Execution Time [ms]

All Configurations

Pareto Front

(b) Barcelona Architecture

Figure 6.5: Execution time and resource usage for different configurations
evaluated based on brute force.

Pareto front. The same happens to solutions using an inadequate number
of cores. For instance, if a region is only fully utilizing the available threads
if their number is a power-of-two, all other thread numbers will result in
solutions dominated by a configuration using fewer cores due to their bad
resource utilization. Those will also be automatically discarded.

Table 6.3 lists the properties of the optimal points within the Pareto front
and provides details about the trade-off between speedup and efficiency for
each of these points.

The Optimizers’ Solutions In a final step, we processed the mm-kernel
using our static optimizer as well as a random search strategy for compari-
son. Unlike within the brute force case, where artificial restrictions had to be
added to facilitate its completion within a reasonable time frame, only few
search-space restrictions need to be defined for our optimizer. The upper
boundary for tile sizes has been set to N/2, since larger tile sizes clearly have
little potential to dominate smaller tile sizes. Further, the upper boundary
for the number of threads was set according to the target machine. Both
restrictions could easily be extracted statically from the targeted region and

6.2. MULTI-OBJECTIVE AUTO-TUNING 351

Westmere Architecture
Relative Relative

Cores Speedup Efficiency Time Resources
1 1.00000 1.00000 100% 100%
5 4.82873 0.96575 21% 104%
10 9.26091 0.92609 11% 108%
20 16.77778 0.83889 6% 119%
40 26.35799 0.65895 4% 152%

Barcelona Architecture
Relative Relative

Cores Speedup Efficiency Time Resources
1 1.00000 1.00000 100% 100%
2 1.92067 0.96033 52% 104%
4 3.65286 0.91322 27% 110%
8 6.53208 0.81651 15% 123%
16 10.65231 0.66577 9% 150%
32 14.53095 0.45409 7% 220%

Table 6.3: Impact of Number of Threads on Speedup and Efficiency.

platform. No constrains regarding the granularity of the potential configu-
rations have been defined.

Figure 6.6 compares the Pareto front obtained by our optimizer with the
ones obtained after exploring the search space with the brute force mech-
anism and a random search in both architectures. The implemented ran-
dom search generates random configurations, evaluates them and returns
those which are non-dominated. In the case of the Westmere architecture,
we observe that the configurations generated by our optimizer are better
(lower execution time and better utilization of resources) than the solutions
generated by the brute force approach. For this specific architecture, our
algorithm produces solutions that are up to 13% faster. In the case of the
Barcelona architecture, our solutions are close to the brute force results. In
both architectures, random search using an equal number of evaluations as
our method is very far off the quality achieved by the other techniques.

To systematically compare different optimization strategies we are using
three derived metrics. Let S be the set of solutions obtained by an algo-
rithm. The first, simplest metric is |S|, the number of points within the set.
Since a larger number of solutions offers a higher flexibility for the dynamic
decision-making, this quantitative metric has been included. Additionally,
to judge the quality of a solution set S, its hypervolume V (S) ∈ [0 . . . 1]
[116] is employed as a metric. It computes the normalized volume (in the
bi-objective case the area) behind a front. The larger V (S), the closer the
front could be pushed toward the hypothetical ideal (0, 0) point. Hence, the
hypervolume provides a metric for the quality of the individually obtained

352 CHAPTER 6. APPLICATIONS

800

1000

1200

1400

25 100 400

R
e

so
u

rc
e

 U
sa

ge
 [

m
s]

Execution Time [ms]

Brute Force

RS_DGE3

Random

(a) Westmere Architecture

1000

1500

2000

2500

3000

3500

64 256 1024

R
e

so
u

rc
e

 U
sa

ge
 [

m
s]

Execution Time [ms]

Brute Force

RS_DGE3

Random

(b) Barcelona Architecture

Figure 6.6: Pareto fronts obtained using different algorithms.

solutions, ranging from 0 (worst solutions) to 1 (unattainable optimal solu-
tions). Finally, we compare the number of points E evaluated for obtaining
a solution set, representing a metric for the time required to apply the cor-
responding method. Unlike the other two metrics, E does not describe the
quality of the obtained solution but provides an indicator of the efficiency
of the algorithm itself.

Since two out of three of the covered search strategies are stochastic al-
gorithms, they produce different results in different runs. Hence, the results
of a single run are not sufficient for an objective comparison. Thus, results
collected from repeated executions have to be aggregated and compared. In
our evaluation we use the arithmetic means E, |S| and V (S) derived by
running the optimizer 5 times as a directly comparable substitute.

The results of this comparison for the mm-kernel are listed in Table 6.6
together with the results for the kernels investigated in the following subsec-
tion. The metrics reflect the observation made in Figure 6.6. For the West-
mere architecture, our algorithm obtains 9.4 solutions on average, which are
exceeding the quality of the solutions obtained using the brute force ap-
proach although evaluating fewer than 1.1% of the points within the search
space. For the Barcelona system, 10.4 solutions with a slightly weaker per-

6.2. MULTI-OBJECTIVE AUTO-TUNING 353

Kernel Problem Size Computation Memory
mm 14002 O(N3) O(N2)

dsyrk 14002 O(N3) O(N2)
jacobi-2d 100002 O(N2) O(N2)
3d-stencil 6003 O(N3) O(N3)
n-body 500000 O(N2) O(N)

Table 6.4: Kernel Characteristis

formance are obtained on average by only evaluating less than 0.9% of the
points the brute force approach touches. In both cases, our RS-DGE3 al-
gorithm is vastly outperforming the much simpler random search strategy
covering a comparable number of points.

Additional Kernels

Finally, we would like to demonstrate the general applicability of our opti-
mization scheme. To this end, four additional kernel codes, each exhibiting
different computation and memory usage characteristics, have been selected
and evaluated.

The set consists of one additional BLAS-3 linear algebra kernel (dsyrk,
computing B = A∗AT +B), two stencil codes (jacobi-2d and a generic 3x3x3
3d-stencil) and a naive implementation of an n-body simulation. Except
for the mm and dsyrk kernels, all of them exhibit distinct computation /
memory complexities as listed in Table 6.4 and hence considerably different
memory reuse and access patterns. Also, although identically categorized in
terms of complexity, the memory access patterns of mm and dsyrk are very
different since the (on-the-fly) transposition of A eliminates the unaligned
matrix access conducted within the mm kernel.

Table 6.5 summarizes the impact of thread-specific optimization when
applying brute force on the selected kernels. Each row corresponds to the
last column included in Table 6.2, representing the average performance
loss when applying the ideal tile size for some particular number of threads
across all other thread counts. Additionally, the overall average loss (avg)
and the maximum loss incurred when only optimizing for serial execution
(1tmax) are included.

In the jacobi-2d kernel, the average performance loss across all thread
numbers is 11.8% on Westmere, while it goes up to 28.7% on Barcelona.
Conversely, 3d-stencil averages 24.6% on Westmere and only 14.7% on
Barcelona, demonstrating that the impact of choosing distinct per-thread-
count tile parameters varies across both hardware platforms and software
applications. This is even more pronounced in the n-body kernel, where
our chosen problem size fits entirely in the cache on Westmere, resulting in
almost no variation, while the performance loss is extremely significant on

354 CHAPTER 6. APPLICATIONS

Westmere Architecture

% Avg. Perf. Loss of Best Params for
Kernel 1t 5t 10t 20t 40t avg 1tmax

mm 8.3 1.8 4.1 4.4 3.0 4.3 15.1
dsyrk 2.9 6.4 6.5 2.5 2.4 4.1 6.5

jacobi-2d 14.0 9.5 7.6 14.2 13.7 11.8 23.6
3d-stencil 8.6 17.1 75.1 6.6 15.8 24.6 26.7
n-body 0.7 0.3 0.5 0.4 0.5 0.5 1.5

Barcelona Architecture

% Avg. Perf. Loss of Best Params for
Kernel 1t 2t 4t 8t 16t 32t avg 1tmax

mm 9.9 8.4 8.3 13.7 5.4 11.3 9.5 17.9
dsyrk 7.6 9.8 4.6 6.1 2.1 3.3 6.7 14.2

jacobi-2d 38.6 28.9 17.7 17.2 50.3 19.5 28.7 89.2
3d-stencil 70.8 5.9 2.4 3.8 2.4 3.0 14.7 119.4
n-body 112.1 116.2 110.4 29.7 28.4 27.6 70.7 293.0

Table 6.5: Brute Force Result Summary

Barcelona, averaging 70.7% due to its limited 2 MB L3 cache. We included
the 1tmax column to point out the potentially large losses incurred when
optimizing for serial performance and using the same results for parallel ex-
ecution. Particularly on the Barcelona system, execution times can increase
by up to a factor of 4 (293.0% loss) with this approach, and losses are above
89.2% for jacobi-2d, 3d-stencil and n-body.

Finally, we applied our optimizer to the range of investigated kernels
and compared the results with the ones obtained by the brute force evalua-
tion and a random search. The results of this comparison are listed within
Table 6.6.

Several conclusions can be extracted from these results. First: our opti-
mizer always computed more configurations than both the brute force algo-
rithm and the random search. Second: the number of configurations evalu-
ated by our optimizer were between 99% and 90% lower than the evaluations
required by brute force. Third: the hypervolumes of the Pareto sets com-
puted by our technique are comparable to the volumes of the sets obtained
by brute force. In the case of the Westmere architecture, sets exceeding the
quality of the brute force solutions could be obtained for all the analyzed
kernels. In the case of the Barcelona architecture our approach computed
Pareto sets of higher quality for the jacobi-2d problem. Only the n-body
problem on Westmere posed some difficulties to our technique. These diffi-
culties could be related to the shape of the search space of that particular
application. Analyzing and resolving this issue in detail will be the focal

6.3. AUTOMATED LOOP SCHEDULING 355

Westmere Architecture

Brute Force Random RS-DGE3

Benchmark E |S| V (S) E |S| V (S) E |S| V (S)

mm 71290 5 0.84 780 2.0 0.03 724 9.4 0.88
dsyrk 71290 5 0.75 1200 4.4 0.00 1186 11.2 0.81

jacobi-2d 23805 4 0.69 825 10.8 0.73 1027 21.2 0.83
3d-stencil 10580 5 0.77 1000 8.0 0.52 852 21.4 0.86
n-body 26136 5 0.86 1350 3.2 0.65 1334 28.6 0.95

Barcelona Architecture

Brute Force Random RS-DGE3

Benchmark E |S| V (S) E |S| V (S) E |S| V (S)

mm 85548 6 0.83 800 2.0 0.01 740 10.4 0.76
dsyrk 85548 6 0.87 1200 3.6 0.00 1152 11.0 0.78

jacobi-2d 28566 6 0.73 675 10.8 0.81 674 17.2 0.88
3d-stencil 12696 6 0.87 850 9.4 0.78 822 17.0 0.85
n-body 21780 6 0.78 1100 3.6 0.51 1063.6 25.6 0.68

Table 6.6: Pareto fronts obtained using different optimization algorithms

point of future work. For the sake of completeness, it should be noted that
the results obtained by the optimizer clearly outperform the results of the
random search in all cases.

6.2.4 Conclusion

Based on the Insieme infrastructure we established a compiler infrastructure
capable of optimizing programs according to multiple, potentially conflicting
objectives simultaneously. By exposing a set of individually tuned versions
of a single code region to the runtime system, trade-off decisions can be
deferred until the actual execution. This way, our system enables application
developers to tune their codes automatically for multiple objectives without
the requirement of fixing any priorities. This decision is left to the end user.

We demonstrated the capabilities of our framework, and in particular of
our optimization algorithm, by tuning tiling parameters and thread-counts
for five different parallel codes across two hardware platforms. Our search
algorithm generally achieves results on par with or better than a brute force
search while using 90% to 99% fewer evaluations. Additionally, our ex-
periments provide evidence for the importance of considering the number
of involved threads when tuning tile sizes. Failing to do so can decrease
performance by up to a factor of 4.

6.3 Automated Loop Scheduling

OpenMP is one of the most widely used languages for programming parallel
shared memory systems. The predominant paradigm to utilize OpenMP for
increasing the performance of applications is to parallelize loops. Thereby,

356 CHAPTER 6. APPLICATIONS

the runtime environment, controlled by the user, has to determine how to
distributed the various potentially concurrent loop iterations among the
available hardware cores. The corresponding decision is a trait-off between
introduced management overhead and load balancing issues and may there-
fore have significant impact on the overall performance of a program. Con-
sequently, this loop scheduling problem has been of interest since the stan-
dard’s inception.

Based on the Insieme infrastructure, a fully automated loop scheduling
system has been devised that does not depend on user decisions. The ba-
sic idea is to utilize static analyses within the compiler to characterize loop
bodies to enable more informed scheduling decisions during the runtime.
Furthermore, the runtime system continuously monitors the system envi-
ronment and program state and considers those when conducting scheduling
decisions. The resulting solution is applicable to existing OpenMP programs
without any code-level changes.

The content of this section is a summary of previously published work
by Thoman, Jordan, Pellegrini and Fahringer [97] and derived work [98].
Besides the development of the underlying infrastructure, the major contri-
butions of the author of this thesis to this application are the static analyses
utilized for characterizing loop bodies as well as the design and implemen-
tation of the mechanism forwarding information from the compiler to the
runtime system. All of those are covered in detail in Section 6.3.2.

6.3.1 Motivation

To motivate our design of a unified compiler/runtime approach to loop
scheduling some initial experiments using simple OpenMP kernels in a va-
riety of settings shall be presented. They also demonstrate the importance
of load awareness. For a complete description of the experimental setup
and hardware see Section 6.3.3. In all figures the relative execution time
normalized to the best performing configuration is shown.

Figure 6.7 illustrates results for two kernels, dense matrix multiplication
with full and triangular matrices, using a variety of standard OpenMP loop
scheduling policies. Clearly, the ideal loop schedule depends on the charac-
teristics of the program. The dense matrix multiplication exposes an equal
amount of work within each iteration of the parallel loop while for the trian-
gular matrix, the effort per iteration depends on the iterator value. We say
that the dense matrix multiplication has a flat work profile while the work
profile for the triangular matrix is slanted.

In the next experiment the impact of the problem size on the ideal loop
schedule is investigated. In Figure 6.8 we see that with small problem sizes,
the negative performance impact of scheduling policies with a runtime com-
ponent (dynamic, guided) increases, most likely due to thread scheduling
overhead. Also, the increase in workload per chunk mitigates the slightly

6.3. AUTOMATED LOOP SCHEDULING 357

0,8

0,9

1

1,1

1,2

1,3

1,4

R
el

at
iv

e
R

u
n

ti
m

e

(a) Dense Matrix Multiplication

0,8
0,9
1

1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8

R
e

la
ti

ve
 R

u
n

ti
m

e

(b) Triangular Matrix Multiplication

Figure 6.7: Initial Experiments, Impact of Program Characteristics

worsened load balance for a static chunk size of 8, leading to this configura-
tion showing the best result. With large problem sizes, the relative overhead
of runtime scheduling is much smaller, tough still measurable. The round-
robin static scheduling policy “static,1” features acceptable load balance
with relatively low overhead, making it the best performing configuration.

Finally, we look at a scenario that has often been neglected in loop
scheduling research: the impact of external system load on the execution
of a program. While this is an unusual situation in traditional high perfor-
mance computing (HPC), where a cluster of servers is reserved for exclusive
use by one program, it is the default on desktops, workstations and some
large shared memory servers. With on-chip parallelism steadily increasing
– even on embedded systems – and OpenMP being employed in end-user
applications and games [55], we believe that an automatic loop scheduler
needs to take this scenario into account.

Figure 6.9 shows the same program configurations as Figure 6.7(b) in two
distinct load scenarios (for information on how the load simulation is per-
formed, see Section 6.3.3). With increasing system load more fine-grained

358 CHAPTER 6. APPLICATIONS

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

R
e

la
ti

ve
 R

u
n

ti
m

e

(a) Small problem size (N=160)

0,8
0,85
0,9
0,95

1
1,05
1,1
1,15
1,2
1,25
1,3

R
el

at
iv

e
R

u
n

ti
m

e

(b) Large problem size (N=1600)

Figure 6.8: Initial Experiments, Impact of Problem Size

runtime scheduling policies gain a significant advantage of up to 46% com-
pared to the default policy. These figures contain error bars since there
was a slightly larger variance in the measurements – particularly for static
scheduling – as a result of operating system scheduling behavior.

To summarize: these initial findings guided the design of our loop
scheduling in the following ways:

• As per the first set of figures, the automatic loop scheduler clearly
needs to be aware of the program structure. This is accomplished via
compiler analysis.

• However, as the second set of examples shows, just having static in-
formation is insufficient. The problem size is usually only known at
runtime, necessitating integration of static compiler analysis with a
runtime system.

• Finally, when exclusive use cannot be assumed, being aware of external
system load is of utmost importance when selecting a scheduling policy.
Thus, loop scheduling needs to consider the system state.

6.3. AUTOMATED LOOP SCHEDULING 359

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

R
e

la
ti

ve
 R

u
n

ti
m

e

(a) Low load (desktop) scenario

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

R
e

la
ti

ve
 R

u
n

ti
m

e

(b) High load (workstation) scenario

Figure 6.9: Initial Experiments, Impact of External Load

6.3.2 Method

Our automated loop scheduling system is based on the Insieme infrastruc-
ture. Figure 6.10 outlines its basic structure. After an OpenMP input
program is processed by the frontend (1) and converted into the Insieme IR
a customized analysis is utilized to to obtain a symbolic effort estimation
function for each parallel loop body. This parametrized function provides
a work-load estimation for a given range of loop iterations. The analysis
results are annotated to the program (3) and converted by the backend into
target code including those functions in the form of meta-information asso-
ciated to the individual parallel loops (4). During the execution, whenever a
parallel loop is reached, the loop scheduler decides on how to distribute the
corresponding range of loop iterations among the available resources. This
decision is based on the actual iterator range, meta-information forwarded
from the compiler (5) and data continuously collected by the runtime’s mon-
itoring system (6).

360 CHAPTER 6. APPLICATIONS

Input
Code

Execution Environment

Code with Loop-
Meta-Infos

IR annotated
IR

PM effort
functions

Fr
on

te
nd

Analyses

Insieme Compiler

Insieme
Runtime

Loop Scheduler

System Monitor

1

2

3 4

5

6

B
ac

ke
nd

Figure 6.10: An overview of the automated loop scheduling system.

Compiler Analysis

The goal of the compiler analysis is to obtain, for each parallel loop, an
effort estimation function

feffort ∈ N2 → N

characterizing the loop body. Given lower and upper iteration bounds a and
b, the evaluation of feffort(a, b) should provide an estimate for the computa-
tional cost of the corresponding sub-range of the covered loop.

This effort estimation function is derived in several steps, starting from
the parallel loop body B:

1. Enclose B in a for loop iterating over the symbolic range [a, b)

2. Extract a polyhedral representation of this parametrized loop

3. Initialize the effort estimation function by feffort(a, b) := 0

4. For each statement s ∈ S in the polyhedral representation of B:

(a) Use the barvinok [104] library to obtain a piecewise affine function
for the statement’s cardinality fcard(a, b)

(b) Weight this function with the effort estimation eff(s) for the state-
ment, computing fs(a, b) := fcard(a, b) ∗ eff(s)

(c) Add the resulting symbolic statement effort to the total effort
function by computing feffort(a, b) := feffort(a, b) + fs(a, b)

5. Algebraically simplify feffort(a, b)

In step 2, the IR version of the processed loop is converted into a polyhe-
dral representation utilizing the infrastructure introduced in Section 4.5.1.
To estimate the overall computation effort of the loop body, step 4 sums

6.3. AUTOMATED LOOP SCHEDULING 361

up the individual costs of the involved statements. Thereby, for each state-
ment, a symbolic expression describing the cardinality of its iterator domain
is obtained (4a) and multiplied by the computation cost of each statement
instance (4b). The latter is obtained using the code feature extraction util-
ities covered by Section 4.3.2 to estimate the number of memory access and
floating point operations required to process the given statement. Finally,
after summing up the results of the individual statements, a symbolic ex-
pression estimating the computational cost of processing the sub-range [a, b)
is obtained and converted into the desired function.

In case the loop body can not be converted into a polyhedral represen-
tation since it does not satisfy the constraints of a SCoP, an estimate of the
workload of a single loop iteration is obtained by applying the feature ex-
traction utility used in step 4b on the entire loop body instead of individual
statements. The framework of Definition 4.2 is thereby handling the weight-
ing of nested structures. Experimental data on how commonly this fallback
needs to be employed in real programs can be found in the full paper [97].

Compiler Backend

The backend creates for each parallel loop a work item (see Section 2.4.1).
To pass loop-related meta-information from the compiler to the runtime, an
(optional) function pointer of type

uint64 effort estimator(int64 lower, int64 upper)

and a scalar fallback value

uint64 iteration effort

are additionally attached to each of those work item. For each loop where our
analysis was successful, the function pointer is set to a compiler generated
C implementation of the deduced effort estimation function, otherwise it is
set to NULL and the field iteration effort is filled by the value obtained
from the fallback analysis.

Runtime Monitoring

The resource monitoring component of the runtime needs to measure the cur-
rent external load, that is, CPU load generated by processes other than the
managed parallel program. This is obtained by using the Linux proc filesys-
tem. Specifically, the current processes’ CPU usage values from /proc/

self/stat are compared with the system-wide values obtained from /proc/

stat, and a value between 0.0 and 1.0 representing the total external load
across all cores is computed. To minimize the overhead of this method
and to increase measurement reliability, this value is cached and updated at
most ten times per second. Increasing the update frequency did not improve
scheduling performance in our experiments.

362 CHAPTER 6. APPLICATIONS

Algorithm 6.1 Automatic loop scheduling algorithm.

lower, upper lower and upper bound of iteration range
members number of threads in the local thread group
estimator effort estimation function for current loop
iter effort scalar per-iteration effort estimate for current loop
load current external system load
MINEFF minimum effort for consideration (constant per-system)
MINLOAD minimum load for consideration (constant per-system)

1: if estimator available then
2: estimate = estimator(lower, upper)
3: else
4: estimate = (upper− lower) ∗ iter effort

5: end if
6: if estimate < MINEFF then
7: return immediate
8: end if
9: if load > MINLOAD then

10: chunk = max((MINEFF/iter effort) ∗ (1− load), 1)
11: return dynamic(chunk)
12: end if
13: if estimator available then
14: shares = compute shares(lower, upper, members, estimator)
15: return balanced(shares)
16: else
17: chunk = max(MINEFF/iter effort, 1)
18: return dynamic(chunk)
19: end if

Loop Scheduling Algorithm

All information gathered by the components outlined above is used by the
runtime loop scheduler to make a scheduling decision for each individual
execution of every parallel loop. The decision algorithm is outlined in Algo-
rithm 6.1 and consists of five major steps:

1. Estimate the workload effort (lines 1-5)

2. Immediately schedule tiny loops if the estimated effort is small (6-8)

3. Check the external load and use an adaptive dynamic schedule if it is
greater than a threshold value (9-12)

4. If an effort estimation function is available, use calculated balanced
distribution (13-15)

5. Otherwise, assume irregular load and schedule dynamically (16-19)

The result of the algorithm determines the loop scheduling behavior for
the current loop execution instance. Three modes are available:

6.3. AUTOMATED LOOP SCHEDULING 363

immediate no parameters. Immediately executes the whole loop on the
first thread to encounter it.

dynamic one parameter, the chunk size. Works like the standard OpenMP
policy of the same name, dynamically distributing chunks of the loop
range to requesting threads.

balanced requires an array of floating point values determining the relative
starting points of the shares for each member of the work group. For
example, [0.0, 0.25, 0.5, 0.75] would implement an equal distribution
amongst four threads, while [0.0, 0.6, 0.9, 0.96] assigns progressively
smaller chunks to subsequent threads.

The algorithm makes use of the

compute shares(lower, upper, members, estimator)

function. It generates a distribution that tries to assign approximately the
same amount of work to each member of the current work group. It first
estimates the total effort for the given range [lower, upper], divides it by
the number of work group members, and then uses a binary search to find a
suitable chunk for each thread using the estimation function. Though this is
usually a very quick process since the estimation function only takes a few
cycles to run, the result is cached and reused if the same loop is executed
for the same range again.

The parameters MINEFF and MINLOAD need to be set once per system. We
have not yet developed a rigorous method for deducing these automatically.
Nevertheless, experience indicates that systems are relatively insensitive re-
garding the precise values of these parameters, making them easy to tune
manually.

6.3.3 Results

All experiments were performed on a SuperMicro 7046GT-TRF server with
two Intel Xeon 5650 processors, containing 6 cores (12 hardware threads)
each. The system runs CentOS version 5 (kernel 2.6.18) 64 bits. To compile
the reference version of the example programs and as a secondary compiler
for the code produced by Insieme, GCC version 4.5.3 was used with the -O3
flag set to reflect a production environment. When we refer to a “default”
scheduling policy, we specifically mean the default implementation of the
version of GOMP [69] included with this version of GCC.

To ensure statistical significance, each experiment was repeated five
times, and the median result is reported. In cases where significant sta-
tistical variance occurred vertical error bars are used to show the standard
deviation. We depict three values per configuration (combination of pro-
gram and system load state): the default OpenMP behavior, the best result

364 CHAPTER 6. APPLICATIONS

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

no load desktop workstation

omp default

omp best

insieme

Figure 6.11: Dense matrix multiplication results.

obtained using OpenMP policies for each configuration, and the result ob-
tained by our method. The “best” OpenMP policy is found by exhaustive
search across the following settings: [(no change), auto, static, dynamic,
guided]. The latter three are tested with the chunk sizes 1, 2, 8 and 32. All
values are normalized to the execution time of the best performing version.

External load

Profiles were recorded by monitoring each individual core of a reference
system. During experiments, these profiles were replayed by a custom load
generator. We used two separate load profiles, a “desktop” profile and a
“workstation” profile. The former features generally lower load and short
peaks of activity, while the latter shows a higher average load level and fully
saturates some cores.

Kernel Experiments

For illustrative purposes, we will apply our method to three small kernels: a
dense matrix multiplication, a triangular matrix multiplication, and a pen-
dulum simulation. These represent three major classes of problems. Both
the dense and triangular matrix multiplication satisfy the SCoP constraints
and can therefore be rigorously analyzed. The former has a flat work pro-
file and is thus ideally suited to static OpenMP scheduling, while the latter
has a slanted work profile. Finally, the per-iteration work in the pendulum
kernel strongly depends on the input data, hence it can not be covered by
SCoP analysis.

Figure 6.11 shows the results for dense matrix multiplication. In the
absence of external load, fully static scheduling is ideal for this kernel, and
our implementation is 1.7% slower than the best (and default) OpenMP
policy. With external load, the default policy is ineffective, and our result
improves on the best OpenMP policy by 10% to 15%. The best policy found

6.3. AUTOMATED LOOP SCHEDULING 365

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

no load desktop workstation

omp default

omp best

insieme

Figure 6.12: Triangular matrix multiplication results.

0

200000

400000

600000

800000

1000000

1200000

-5 15 35 55 75 95

E�
or

t E
st

im
at

io
n

Iterator Value

0 0.25 0.5 0.75 1

Computed distribution:

thread 0 t1 t2 ...

Figure 6.13: Triangular matrix multiplication effort estimation function.

for desktop load is “dynamic,8” while the best policy for the workstation
load profile is “dynamic”. The reason for the good result demonstrated by
our method is that due to the detection of external load the chunk size is
adapted dynamically.

Triangular Matrix Multiplication Kernel Next, we look at the trian-
gular matrix multiplication kernel, which has a more interesting load profile.
As Figure 6.12 illustrates, the compiler-assisted workload distribution per-
formed by our method in the unloaded case is very effective, improving per-
formance by 82% compared to the default behavior, and by 27% compared
to the best OpenMP scheduling policy, “static,2”.

This improvement over the block-cyclic scheduling can be explained by
the effort estimation function generated by our analysis. The per-thread
shares computed for 16 threads are shown in Figure 6.13. In the upper
part, the effort estimation for each iterator value is plotted: iterations below

366 CHAPTER 6. APPLICATIONS

0

0,2

0,4

0,6

0,8

1

1,2

1,4

no load desktop workstation

omp default

omp best

insieme

Figure 6.14: Pendulum simulation results.

zero perform no work, above that the amount of effort increases with the
iterator value as the lower left triangular matrix rows become progressively
wider. For this test case, the best scheduling policy with a loaded system
is “dynamic” for both load profiles. Our scheduling is the fastest for both
situations, though in the “workstation” case the difference is negligible (3%).

Pendulum Simulation The performance results for the pendulum kernel
are depicted in Figure 6.14. This benchmark computes the resting points of
pendulae under the effect of magnetic fields, from many starting locations. It
is communication-free but has an unpredictable, input data dependent, load
imbalance, causing default scheduling to be sub-optimal. For the case with
no load, the “dynamic,2” policy is best, while for the other two cases “dy-
namic” performs best. When the workstation external load profile is active,
our method performs slightly (0.7%) worse than the “dynamic” OpenMP
policy. For this load profile and the loop effort estimated for this kernel,
our scheduler always decides to dynamically distribute a single loop itera-
tion, thus performing exactly the same operation as the “dynamic” policy.
The 0.7% difference can be explained by the overhead introduced by our
scheduling process.

Real-world Applicability To evaluate our system on real-world appli-
cations beyond simple kernels its effect on the benchmarks contained in
the NAS Parallel Benchmarks (NPB) [9] suite have been investigated. The
results are summarized in Table 6.7.

The “Default” and “Best” columns list the relative difference in execu-
tion time achieved by our scheduling system compared to default scheduling
(as specified by the benchmarks) and the best scheduling policy found in the
search space described earlier. For example, 4.2% in the ft.B/none/default
cell means that executing the ft benchmark with no external load and the
default scheduling policy took 104.2% of the time the same configuration

6.3. AUTOMATED LOOP SCHEDULING 367

Gain Over
Name External Load Default Best Best Config

ft.B none 4.2% -0.2% static,1
ft.B desktop 21.8% 4.4% dynamic,2
ft.B workstation 59.9% 11.2% dynamic

ep.B none 14.0% -1.9% dynamic,8
ep.B desktop 3.2% -0.9% dynamic
ep.B workstation 19.7% 3.0% dynamic,32

bt.B none -2.4% -2.4% static
bt.B desktop 70.8% 65.2% dynamic
bt.B workstation - - -

cg.B none 8.4% 3.9% guided,32
cg.B desktop 113.4% 111.2% guided,32
cg.B workstation 471.3% 451.7% guided,8

mg.B none 51.7% 5.3% dynamic
mg.B desktop 56.1% 33.0% dynamic
mg.B workstation 157.4% 110.8% dynamic,2

GM none 13.7% 0.9%
GM desktop 48.2% 36.8%
GM workstation 94.9% 67.7%

Table 6.7: Nas Parallel Benchmark performance results.

took using our scheduling system. The bt benchmark with workstation ex-
ternal load could not be completed due to time constraints – the execution
time increased disproportionately with increased load across all scheduling
policies. The GM values are the geometric means, for each configuration,
across all benchmarks.

Note that even with no external load, our method tends to achieve an
improvement over default scheduling due to the availability of compiler-
deduced meta-information. The average speedup obtained in this setting is
13%. A detailed evaluation of the results can be found in the full publication
presenting this loop scheduling approach [97].

6.3.4 Conclusion

Based on the Insieme infrastructure we established an automated OpenMP
loop scheduling system that combines advanced compiler analysis with a
load-aware runtime system. Polyhedral analyses are used to calculate a
parametrized effort estimation function for each parallel loop, based on the
cardinality of all statements it contains. Executable code for this function
is generated by the compiler backend, and invoked at runtime to calculate
an ideal balanced schedule or estimate efficient chunk sizes for dynamic

368 CHAPTER 6. APPLICATIONS

scheduling. Additionally, external CPU load is taken into account during
the scheduling process.

We evaluated our system on small kernels as well as programs from
the NAS Parallel Benchmarks suite, and achieved improvements of up to
82% in the unloaded state, and 471% with heavy external load, compared
to default OpenMP scheduling. To estimate the absolute effectiveness of
our approach, we performed an exhaustive search over a broad range of
standard OpenMP scheduling policies and compared with the best results.
Our scheduling frequently improves upon even this tuned result, particularly
in scenarios featuring external load. The worst-case performance achieved
by our system is within 3% of the best standard OpenMP policy.

6.4 Improved Task Scheduling

Task-based parallelism is one of the most fundamental parallel abstractions
in common use today [7]. While relatively easy to implement and use, achiev-
ing good efficiency and scalability with task parallelism can be challenging.
A central feature of every task-based parallel program that significantly af-
fects both efficiency and scalability is task granularity [32]. The granularity
of tasks is defined by the length of the execution time of a single task between
interactions with the runtime system, such as spawning new tasks.

Very fine-grained, short-running tasks lead to a loss in efficiency com-
pared to sequential execution due to the runtime overhead associated with
generating and launching a task, as well as synchronizing its completion
with other tasks in the system. On the other hand, coarse-grained, long-
running tasks minimize overhead, but are hard to schedule effectively and
may therefore fail to scale well on large parallel systems. Previous work in
this area has focused mostly on runtime systems or user-controlled cutoffs
to manage granularity. Conversely, we devised an approach based on the
Insieme infrastructure that combines a multiversioning compiler with a run-
time system which adaptively selects from the generated versions. Our goal
is to maximize efficiency by increasing task granularity – and thus decreasing
overheads – without negatively affecting load balance or scalability.

The content of this section is a summary of previously published work by
Thoman, Jordan and Fahringer [99, 100] and derived work [98]. The contri-
butions of the author of this thesis are the implementation of the necessary
building blocks for the applied code transformations and the corresponding
backend extensions in the Insieme compiler as well as contributions in the
design of the overall approach and the decision making component in the
runtime system. All of those are covered in detail in Section 6.4.2.

6.4. IMPROVED TASK SCHEDULING 369

0
1
2
3
4
5
6
7
8
9

OMP - icc OMP - gcc OMP -
insieme

Cilk+ - icc sequential

Ex
e

cu
ti

o
n

 T
im

e
 [

se
c]

Figure 6.15: Initial Experiments, N-Queens N = 13, single-threaded.

1

3

9

27

1 2

Ex
e

cu
ti

o
n

 T
im

e
 [

se
c]

OMP - icc

OMP - gcc

OMP - insieme

Cilk+ - icc

sequential

ideal

Figure 6.16: Initial Experiments, N-Queens N = 13, scaling from 1 to 2
threads.

6.4.1 Motivation

Figure 6.15 shows single-threaded execution times measured for the Barcelona
OpenMP Tasks Suite (BOTS) [31] N-Queens benchmark with N = 13. For
details on the hardware, compiler versions and programs used refer to Sec-
tion 6.4.3.

The lowest execution time amongst the OpenMP versions is achieved
by our compiler and runtime system (Insieme), however, this time is still
28% higher than purely sequential execution. Even the Cilk version, while
more efficient than any OpenMP implementation, is 19% slower than the
sequential version. Our multiversioning method is designed to address this
inefficiency. Throughout this section, when we refer to inefficient execution,
we mean execution which takes longer than executing purely sequential code
(assuming perfect scaling).

Note that the OpenMP runtime systems of ICC [45] and GCC [93] per-
form special case handling when only a single worker thread is used. This

370 CHAPTER 6. APPLICATIONS

is visible in Figure 6.16, which shows their performance degrading when
switching from one to two threads. Further experiments in Section 6.4.3
confirm this behavior, with scaling starting after some initial performance
degradation when activating multi-threaded execution. The OpenMP ver-
sion compiled with Insieme and the Cilk version do not suffer from this
issue, however they still induce a relative overhead of about 20% compared
to ideal linear scaling from the sequential version. We identified the following
potential causes for this inefficiency:

1. Task generation overhead. This includes generating a task structure,
populating it with values and enqueuing it.

2. Synchronization primitive overhead (e.g. the OpenMP taskwait di-
rective). At the very least, this involves keeping track of all the sub-
tasks launched by each task, and signaling when they are complete.

3. Task library calls. The runtime methods required for tasking are gen-
erally implemented in a separate library, and the overhead for their
invocation is incurred even if they perform no actual work.

4. Non-inlineable, indirect program function calls. Since the program
function implementing a given task needs to be called by the tasking
library, a pointer to it is usually passed to the library function. Even
if the runtime library decides to directly execute the call, this pre-
vents the benefits – improved instruction scheduling and a reduction
in overhead – associated with inlining.

Issues 1 and 2 can be mitigated by a pure runtime approach, e.g. the
runtime library can dynamically decide whether to generate a full task struc-
ture or directly call the task function. This method is usually referred to as
lazy task creation [62]. However, the basic overhead of library function calls
(issue 3) and the fact that indirectly called functions in the original program
can not be inlined (issue 4) can not be changed at runtime and need to be
handled at compile time. This limitation of pure runtime systems motivates
our compiler-aided multiversioning approach.

All four potential causes for inefficient execution identified above are
directly related to and influenced by the granularity of tasks. The more
often individual tasks are generated and synchronized, the higher the impact
of the associated overheads on execution time. However, simply increasing
the granularity of all tasks is not a solution: such an approach will lead to
load imbalance, increasing the probability of workers idling. Therefore, our
goal is the generation of different implementations for each task.

6.4.2 Method

Figure 6.17 provides an overview of our approach. The process starts by
converting an OpenMP or Cilk program with parallel tasks into our IR

6.4. IMPROVED TASK SCHEDULING 371

Input
Code

Execution Environment

Multi-
versioned

Code
IR modified

IR

Fr
on

te
nd

Transformation

Insieme Compiler

Insieme
Runtime

Task Scheduler

System Monitor

2

3 4

6

B
ac

ke
nd

1

Multiversioned
TaskMultiversioned

Task
TaskTaskTask Multiversioned

Task

5

Figure 6.17: Overview of the task scheduling system.

(1). In the next step, each code fragment spawning a task is transformed
into a semantically equivalent code fragment composed by multiple different
versions of the task (2). The resulting versions replace the original task
implementations in the input code (3) and the backend produces target
code where each parallel task is represented a work item – see Section 2.4.1
– exhibiting multiple implementations (4). During the program execution,
whenever a specific task is invoked, a task scheduling component selects
dynamically among the available implementations (5) based on the current
system state (6). In the following the involved components are elaborated
in more detail.

Compile-time Multiversioning

During compilation our goal is to generate multiple versions of each parallel
task, with varying granularity. This involves a three step process, which may
be applied multiple times to further increase the task size. The individual
steps are as follows:

1. Task unrolling. Replaces each task invocation site with a direct
call to the task function, which is subsequently inlined. This can
be thought of as a context and parallelism-aware recursive function
inlining step. The name task unrolling is adapted from Rugina’s usage
of recursion unrolling [90]. Essentially this step is an application of
the recursive function unfolding operation introduced in Section 5.2.2.

2. Sequentialization. This step focuses on identifying which synchro-
nization primitives – if any – were rendered superfluous by the partial
elimination of parallel task invocations due to task unrolling, and re-
moving them. This particular step has been covered in Section 5.3.4
as an example of pattern based transformations.

372 CHAPTER 6. APPLICATIONS

F1

F2

A F1’
(F1)

(F2)

F1

F2

F2’
(F2)

(F1)

F1’’

F2’’

B

A

B

A

B

A

B

(1) Original version
 of each task

(2) Each task
 unrolled once

(3) Each task
 fully sequentialized

Mutually recursive
tasks

… task spawning point

… function body

Input Program Output Program

… sequential execution

Figure 6.18: Version Generation and Control Flow

3. Simplification. The unrolling and sequentialization may have gener-
ated code that can be simplified by basic operations such as arithmetic
simplification, constant propagation or dead code elimination. Thus,
these are performed before any further processing.

The number of generated versions depends on the granularity of the
initial tasks and the largest granularity desired. The versions are generated
and encoded into the target program in the following order.

1. Original. The original version from the input program.

2. N times unrolled versions. Starting from N = 1. In these ver-
sions, only partial sequentialization is performed. Outer task spawn-
ing points are removed, but the innermost spawning location is kept.
This process is illustrated in detail in a code example described below.

3. Fully sequentialized version. In this version all task spawning
points are removed and replaced with plain function calls.

Figure 6.18 illustrates the result of generating 3 versions for a mutually
recursive task set consisting of two functions F1 and F2. The original
program thus has two task spawning locations, A (which spawns F1) and
B (spawning F2). To improve the clarity of the illustration, these task
spawning points have been replicated in the figure, however they are still all
referring to the same task.

Version (1) is identical to the original program, except that at each
spawning point there is now a choice between 3 distinct implementations
of each function. In version (2), consisting of F1′ and F2′, each recursive

6.4. IMPROVED TASK SCHEDULING 373

task invocation was unrolled once, forming tasks of increased granularity.
Clearly, if this version is used, more work is performed between individual
task invocations and interactions with the runtime library. Finally, version
(3), comprising F1′′ and F2′′, is fully sequentialized. Once this version is
invoked, no further parallel tasks will be spawned on this branch of the
recursive descent.

Code Example

To illustrate the effect of the transformations, consider the following pseudo
code fragment implementing a parallel version of the recursive computation
of Fibonacci numbers.

let f i b = (n) → i n t {
i f (n<2) return n ;
a = spawn(f i b (n−1)) ;
b = spawn(f i b (n−2)) ;
sync ;
return a + b ;

}

A pseudo-code formulation is used for reasons of clarity and size. It closely
re-assembles the familiar IR syntax, yet drops explicit variable declarations
and utilizes two additional constructs: spawn implies the generation of a
new parallel task (corresponding to Cilk’s spawn or OpenMP’s #pragma omp

task untied), while sync waits for the completion of all launched subtasks
(equivalent Cilk’s sync or to OpenMP’s #pragma omp taskwait). Both
constructs can be directly replaced by IR constructs – see Section 3.9.

In the first step, first-level task invocations are replaced with in-place
calls of the associated functions, producing the following version.

let f i b = (n) → i n t {
i f (n<2) return n ;
a = (n2) → i n t {

i f (n2<2) return n2 ;
a2 = spawn(f i b (n2−1)) ;
b2 = spawn(f i b (n2−2)) ;
sync ;
return a2 + b2 ;

}(n−1) ;
b = (n3) → i n t {

i f (n3<2) return n3 ;
a3 = spawn(f i b (n3−1)) ;
b3 = spawn(f i b (n3−2)) ;
sync ;
return a3 + b3 ;

}(n−2) ;
sync ;
return a + b ;

}

374 CHAPTER 6. APPLICATIONS

Context-sensitive inlining of these calls results in the following, single recur-
sive function.

let f i b = (n) → i n t {
i f (n<2) return n ;
i f (n−1<2) a = n−1;
else {

a2 = spawn(f i b (n−1−1)) ;
b2 = spawn(f i b (n−1−2)) ;
sync ;
a = a2 + b2 ;

} ;
i f (n−2<2) b = n−2;
else {

a3 = spawn(f i b (n−2−1)) ;
b3 = spawn(f i b (n−2−2)) ;
sync ;
b = a3 + b3 ;

} ;
sync ;
return a + b ;

}

Finally, redundant applications of the sync operation are removed using the
transformation presented in Section 5.3.4 and arithmetic simplification is
applied. This results in the final version given by

let f i b = (n) → i n t {
i f (n<2) return n ;
i f (n<3) a = n−1;
else {

a2 = spawn(f i b (n−2)) ;
b2 = spawn(f i b (n−3)) ;
sync ;
a = a2 + b2 ;

} ;
i f (n<4) b = n−2;
else {

a3 = spawn(f i b (n−3)) ;
b3 = spawn(f i b (n−4)) ;
sync ;
b = a3 + b3 ;

} ;
return a + b ;

}

Note that the last sync call has been eliminated. This process can be re-
peated N times to generate increasingly larger task sizes.

After all the versions are generated, each version needs to be modified
to enable runtime selection. The original version is converted into

6.4. IMPROVED TASK SCHEDULING 375

let f i b = (n) → i n t {
i f (n<2) return n ;
a = spawn(

pick (f i b , f i b u1 , f i b s e q) (n−1)
) ;
b = spawn(pick (

pick (f i b , f i b u1 , f i b s e q) (n−2)
) ;
sync ;
return a + b ;

}

where the pick keyword implies a possible choice between semantically
equivalent versions, which is deferred to the runtime system. The unrolled
version produced above is converted to

let f i b u 1 = (n) → i n t {
i f (n<2) return n ;
i f (n<3) a = n−1;
else {

a2 = spawn(
pick (f i b , f i b u1 , f i b s e q) (n−2)

) ;
b2 = spawn(

pick (f i b , f i b u1 , f i b s e q) (n−3)
) ;
sync ;
a = a2 + b2 ;

} ;
[. . same f o r b . .]
return a + b ;

}

and an unrolled, fully sequential version to

let f i b s e q = (n) → i n t {
i f (n<2) return n ;
i f (n<3) a = n−1;
else {

a2 = f i b s e q (n−2) ;
b2 = f i b s e q (n−3) ;
a = a2 + b2 ;

} ;
[. . same f o r b . .]
return a + b ;

}

This way, the processing of an initial call to the function fib is processed in
parallel, where the runtime may decide at every step how large the tasks to
be processed in the next nested steps should be – depending on the current
load distribution in the system.

A more detailed description of the covered transformation steps can be
found in the related publications [98, 99].

376 CHAPTER 6. APPLICATIONS

Runtime Version Selection

The previous section outlined how multiple versions with different granular-
ity and trade-offs are generated in the compiler. This provides the runtime
system with an opportunity of making a version choice every time a task
is spawned. Making the wrong choice can result in not gaining the desired
increase in efficiency, or, at worst, greatly diminishing parallelism – e.g. in
case a fully sequentialized version is chosen too early. We considered the fol-
lowing design goals and observations when developing our version selection
method:

• At the start of the program, the original (most fine-grained) version of
the tasks should be used, since the parallelism available in the system
is not yet fully leveraged and load-balancing is a priority.

• The impact of conservative behavior – i.e. using more fine-grained
tasks – causes more gradual performance degradation than using tasks
that are too coarse grained, potentially leading to some worker threads
idling.

• The decision procedure needs to be simple and not introduce large
overheads on its own, otherwise it could negate any benefits from mul-
tiversioning.

• The decision making process should be distributed – no new synchro-
nization points between worker threads should be introduced to facil-
itate version selection.

Taking these points into account led to the development of a distributed
version selection heuristic based on two parameters that are tracked for
each individual worker thread. The first is task demand, which keeps track
of other worker’s unfulfilled attempts to steal tasks from the local worker.
The second parameter is the queue length of each worker, or how many tasks
it currently has available to be executed or stolen.

Task demand is tracked in a surprisingly simple, but effective, manner.
The demand is stored as an integer which starts at a positive value equal to
the maximum task queue length. Whenever a task is generated by a worker
thread, it reduces its own task demand by 1. When a worker attempts to
steal from another which has no tasks available, that target worker’s demand
value is reset to the starting value.

Our version selection procedure is listed in Algorithm 6.2. In conjunction
with the demand tracking outlined above, it has the following desirable
properties:

• Evaluating the selection function only takes a few dozen cycles, as-
suming that all the required values are cached.

6.4. IMPROVED TASK SCHEDULING 377

Algorithm 6.2 Task Version Selection Algorithm (from [98]).

queue length current queue length
task demand current task demand
num versions number of versions generated for current task
MAX QUEUE maximum queue length (fixed)

output: 0 ⇔ original task
N = 1 . . . num versions− 2 ⇔ unrolled N times

num versions− 1 ⇔ fully sequentialized

1: res = num versions− d(task demand/MAX QUEUE) ∗ num versionse
2: if res >= num versions− 1 then
3: if queue length == MAX QUEUE then
4: return num versions− 1
5: end if
6: return num versions− 2
7: end if
8: return res

• The way in which task demand is completely reset if any stealing
operation fails, but is only reduced gradually during normal execution,
mirrors the earlier observation about the negative performance impact
of wrong granularity selection. It makes the expensive case of idle
workers unlikely by reacting very strongly to failed stealing attempts.

• Selecting the fully sequentialized version is a step that should only
be taken after careful consideration, since it will prevent any further
parallelism from being generated on this branch of the recursive de-
scent. Therefore, the heuristic only takes this step if there has been
no demand for additional tasks over a large number of spawn points
and the queue is full.

The choice of the MAX QUEUE parameter has an impact on the effectiveness of
this approach. Experimental evaluation has shown that generally, a longer
queue is beneficial on systems with a larger number of cores. For the evalu-
ation in Section 6.4.3, MAX QUEUE was set to 32.

6.4.3 Results

In this section we will evaluate the performance impact of our optimization
on multiple benchmark programs. We start by describing our measurement
methodology and the experimental setup used followed by an in-depth eval-
uation of a single program, and conclude with an overview of the results of
a number of other codes in order to provide a balanced overall impression.
More details can be found in the related publications [99, 100, 98].

378 CHAPTER 6. APPLICATIONS

Experimental Setup

For our experiments we used an Intel-based parallel system, incorporating
4 Xeon E7-4870 processors, each comprising 10 physical cores (20 hardware
threads) and 3 levels of cache. Table 6.8 summarizes the configuration of
this system.

Sockets/ Cache Software
Cores L1d/i L2 L3 OS Kernel GCC ICC Insieme

4/40 32K/32K 256K 30M CentOS 6.3 2.6.32 4.6.3 12.1 g4614502

Table 6.8: Hardware and software platform for experimental evaluation.

When running experiments using a subset of cores, all involved threads
were bound to individual physical cores such that the resources of one chip
are fully utilized before involving an additional processor. All experimental
runs were repeated five times, and the median runtime is reported.

While the most important comparison for our evaluation is between our
compiler with and without our multiversioning method, we also included the
results obtained by other platforms to provide a reference for comparison.
Table 6.8 includes the exact version number of the compilers used in these
comparisons. ICC was used as the backend compiler for the Insieme source
to source infrastructure, and its built-in Cilk Plus support was employed
to compile Cilk programs. The optimization flag “-O3” was enabled for all
calls to GCC and ICC.

A Detailed Evaluation

The first program we will evaluate is the N-Queens benchmark included in
BOTS [31]. Each task in N-Queens spawns 0 to N child tasks, and the
depth of its task invocation trees varies from 1 to N , while not following
any simple pattern. The size of individual tasks is relatively small.

Figure 6.19 illustrates the performance of N-Queens using a variety of
compilers and implementations. Four OpenMP versions are shown: GCC,
ICC and Insieme with (“taskopt”) and without (“insieme”) task optimiza-
tion. Additionally, we included the results of a Cilk version and a fully
sequential version without any parallel language primitives. The execution
time is presented in a log-log plot to improve readability. An efficiency plot is
provided in Figure 6.20, which compares the execution times of the parallel
versions against ideal scaling from the sequential version.

In terms of OpenMP results, it is clear that the task granularity in this
benchmark is too small to be handled effectively by GCC’s GOMP imple-
mentation. ICC shows the same behavior that was already partially observed
in Section 6.4.1 – execution time increases when going from a single-threaded
to a multi-threaded setup. However, starting from two threads performance

6.4. IMPROVED TASK SCHEDULING 379

0,2

1

5

25

1 2 4 8 16 32

Ex
e

cu
ti

o
n

 T
im

e
 [

se
c]

Cores Used

OMP - gcc

OMP - icc

Cilk+ - icc

OMP - insieme

OMP - taskopt

Sequential

Figure 6.19: N-Queens benchmark results, N = 13, execution time.

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

Ef
fi

ci
e

n
cy

Cores Used

OMP - gcc

OMP - icc

Cilk+ - icc

OMP - insieme

OMP - taskopt

Figure 6.20: N-Queens benchmark results, N = 13, efficiency.

scales relatively well up to 40. Since both of these OpenMP implementations
seem ill-equipped to handle very fine-grained tasking well, we also included
a Cilk version, which has previously been shown to provide better scaling
for fine-grained tasks [73]. Indeed, this implementation performs better in
the single-threaded case and scales more smoothly to multiple cores than
the GCC and ICC OpenMP versions.

Using Insieme to compile the OpenMP input program results in perfor-
mance that is comparable to Cilk for up to 16 cores, and scales slightly better
beyond this amount. However, a comparison with the fully sequential ver-
sion indicates that even the Insieme OpenMP version and the Cilk version
lose around 20% of performance to overheads incurred due to parallelization.
When our task optimization is activated, this overhead is effectively avoided.
Even more importantly, this significant reduction in overhead is achieved
without negatively affecting the scalability of the program. Performance

380 CHAPTER 6. APPLICATIONS

Improvement over Best Alternative using N Cores
Code N=1 2 5 10 20 40

Queens 27.92% 27.52% 17.78% 26.64% 25.35% 24.91%
Fib 26.43× 32.17× 37.90× 58.15× 86.69× 150.36×
Sort 5.61% 5.47% 6.43% 7.47% 7.88% 8.11%
Strassen 3.54% 7.72% 5.77% 10.08% 7.55% 7.52%
Stencil 20.87% 33.49% 39.17% 47.97% 45.50% 28.29%
Floorplan 36.76% 31.25% 22.62% 21.06% 20.52% 27.68%
FFT 1.84% 4.84% 3.48% 3.93% 10.16% 33.21%
QAP 2.11× 2.66× 2.80× 3.59× 4.68× 6.13×

Table 6.9: Benchmark Results

compared to our implementation without task optimization is improved by
22% to 28% across all measured core counts, with a 25% increase at the full
40 cores.

Compared to the fully sequential version, our approach achieves an ef-
ficiency above 99% up to 8 cores, 97% at 16 cores, 85% with 32 cores and
80% at 40 cores. Using the full system (40 cores), our implementation with
task optimization improves N-Queens performance by 56% compared to the
best competing implementation (Cilk).

Further Benchmarks

Table 6.9 summarizes our benchmark results. It includes measurements for
the N-Queens benchmark presented above, as well as a number of additional
programs from the BOTS benchmark suite. The values represent the rel-
ative improvement achieved using adaptive granularity control, compared
to the best result among the other three versions (GCC, ICC and unopti-
mized Insieme version). The data demonstrates the significant performance
improvement that can be obtained utilizing the presented technique. A
lot more detailed results and descriptions can be obtained from the related
publications [99, 100].

6.4.4 Conclusion

We have presented a fully automatic, adaptive approach to parallel task
granularity control which goes beyond what can be achieved by improving
either just a runtime system or focusing only on compilation. By combining
a compiler which performs task multiversioning with a runtime system that
adaptively selects from these versions, we were able to minimize parallel
runtime overhead even for very fine grained tasks. Our method uses a novel
combination of compiler transformations to build an optimized set of seman-
tically equivalent task versions which differ in granularity. The availability

6.5. ADDITIONAL INSIEME APPLICATIONS 381

of this set of implementations in the compiled program in turn enables our
runtime heuristic to adjust the amount of tasks generated, while incurring
even less overhead than a traditional lazy task creation system with cut-offs.

Evaluating our proposed method across a set of eight benchmarks has
shown that our optimization is widely applicable, and that the magnitude
of these improvements is related to the task granularity of the input pro-
gram. For programs with relatively coarse-grained tasks, execution times
are reduced by 5% - 10%, while we can achieve improvements of a fac-
tor of 6 or more compared to the best competing implementations in fine-
grained test cases. Benchmark results also demonstrate that our runtime
selection heuristic successfully ensures that scalability (up to 40 cores) is
not negatively affected by adaptive task granularity adjustment. Crucially,
our adaptive granularity control scheme improves performance in all tested
benchmarks and for any given number of cores.

6.5 Additional Insieme Applications

The work based on the Insieme infrastructure listed so far focuses on parallel
programs targeting shared memory platforms by Thoman and Jordan – since
those have been the main focus of the author of this thesis. However, the
Insieme infrastructure is utilized for a variety of different applications by
other project members. A few of those shall be enumerated to conclude this
chapter.

Related research is focusing on:

• OpenCL: e.g. researching tools automatically converting OpenCL ker-
nels targeting single accelerator devices into kernels to be distributed
among multiple devices including facilities for managing the load dis-
tribution in heterogeneous environments by Kofler and Grasso [56, 36].

• MPI: e.g. static analysis and compiler optimizations for tuning the
utilization of MPI communication primitives by improving the utiliza-
tion of caches by Pellegrini [78]

• Energy: e.g. the modeling of energy consumption of codes [42] as
well as the integration of energy into the multi-objective auto-tuning
framework presented in Section 6.2 by Gschwandtner [41]

A comprehensive, regularly updated list of research conducted based on
Insieme project is listed on the project web page [29].

6.6 Summary

In this chapter a variety of applications researched and developed based on
the unique capabilities of the Insieme infrastructure have been described.

382 CHAPTER 6. APPLICATIONS

The covered applications range from a novel multi-objective auto-tuning
solution obtaining code variations manifesting optimal trade-offs between
various objectives (Section 6.2), over compiler aided loop scheduling tech-
niques capable of achieving significant performance improvements compared
to state-of-the-art alternatives (Section 6.3), to a combination of compiler
and runtime components automatically adapting the granularity of parallel
tasks, resulting in a significantly faster program execution and improved
scalability compared to alternative, state-of-the-art solutions (Section 6.4).
Additional research activities based on the Insieme infrastructure, including
tuning utilities for OpenCL and MPI based applications have been briefly
summarized in Section 6.5. Together, all those applications provide substan-
tial evidence that a novel, unified, high-level, parallelism aware source-to-
source compiler infrastructure as our own provides a valuable platform for
future research and the development of tools in the area of parallel languages
and optimizing compilers – as claimed by this thesis’s hypothesis.

Chapter 7

Conclusion

Developing applications efficiently utilizing parallel hardware is complex and
time consuming. Besides the challenges related to actually identifying paral-
lelism within algorithms, parallelism needs to be explicitly revealed utilizing
specialized APIs, providing features that are typically beyond the scopes of
the underlying programming languages. Consequently, those constructs are
hardly covered by the optimization steps employed by the utilized compiler
infrastructures. Thus, the required load management and tuning effort is
left to the developer. Furthermore, the utilized APIs and their primitives
are commonly restricted to specific types of target architectures, e.g. shared
or distributed memory systems or GPUs, leading to a lack of portability of
the resulting, parallel programs.

This thesis is based on the hypothesis that a novel, high-level, parallelism
aware source-to-source compiler infrastructure can open up a whole new
level of influence for compiler and runtime system components that can be
utilized for mitigating, or even eliminating, contemporary issues encountered
in the context of programming parallel systems. Such an infrastructure,
offering the foundation for the development of these kind of utilities, has
been presented in this thesis. Its main objective is to off-load workload
and system management responsibilities from the software developer to the
compilation tool chain. By closely integration static compiler features with
dynamic load management and monitoring capabilities, an environment for
the necessary tuning steps is established.

The foundation of the system is laid by unified representations for pro-
grams – one for the static compilation process, another for the runtime
system. The former has been extensively elaborated in this thesis. It pro-
vides a unified, parallelism aware, high-level, holistic, language independent
intermediate language for the representation and manipulation of coarse-
grained parallel programs. Based on its concise structure and its formalized
semantic, it provides a valuable platform for research in the area of parallel
languages and associated optimizing compilers.

383

384 CHAPTER 7. CONCLUSION

Based on the central intermediate language, frameworks and utility have
been established, providing the necessary ingredients for conducting research
utilizing the Insieme infrastructure. Among those are essential components
like frontends and backends enabling the system to handle real-world codes.
Additionally, various tools and frameworks for conduction and developing
program analyses and transformations have been established on top of the
Insieme IR and elaborated in detail in this thesis. Furthermore, example
applications utilizing those capabilities for building tools supporting devel-
opers on implementing efficient, portable, scalable and automatically tuned
programs for a variety of complex, contemporary architectures have been
presented.

7.1 Contributions

A primary contribution of this thesis is the unique design of the Insieme
infrastructure, including its compiler and runtime components as well as the
program models utilized within those. Together they provide an infrastruc-
ture for the automated analysis, transformation and tuning of parallel codes
as described in Chapter 2.

Although the runtime program model forming the foundation of the run-
time system has only been briefly covered in Section 2.4, it provides a pow-
erful foundation for dynamic load and resource management components
steering the execution of a program. By abstracting the underlying hardware
infrastructure utilizing workers and memory blocks as well as decomposing
the original monolithic input program into work and data items, the run-
time is enabled to effectively influence the execution of a program by man-
aging the workload and data distribution. Furthermore, meta-information
forwarded by the compiler and multiversioned implementations of the indi-
vidual work items provide additional opportunities for the runtime system
to positively influence the execution of a program.

The major part of the thesis, and the biggest contribution, is INSPIRE –
the Insieme Parallel Intermediate Representation – a high-level intermediate
language offering a unified parallel model comprising a small, fixed set of
parallel primitives. It exhibits a number of novel features and properties
exceeding the capabilities of conventional compiler IRs:

• Parallel IR: unlike conventional IRs, treating parallel APIs as ordi-
nary libraries, the Insieme IR explicitly incorporates parallel language
constructs in its design

• Suitable level of abstraction: by constituting a high-level, concise,
language independent intermediate language, INSPIRE does not suf-
fer from the narrow scope of conventional low-level IRs reassembling
assembly like instructions or the restraining complexity of existing,

7.1. CONTRIBUTIONS 385

high-level source-to-source compiler IRs semantically bound to their
input languages

• Global perspective: by eliminating the boundaries of individual
translation units, INSPIRE based program representations are not
limited to by their scope, enabling whole program analyses and trans-
formations. In particular since parallel control flows are neither con-
fined to individual procedures or translation units, this design decision
provides increased insight and control over processed applications and
satisfies a necessary prerequisite for handling real-world parallel appli-
cations and for the support of a variety of powerful transformations.

• API and Hardware abstraction: due to its language independence
and capability of modeling parallel constructs offered by hardware-
specific APIs, INSPIRE is not restricted to specific types of parallel
APIs and target systems. Instead the Insieme IR represents the paral-
lel structure of an application utilizing an abstract, universal, parallel
machine, constituted by the formalization of its semantic defined in
Section 3.7.

• Support for hybrid input codes: input programs utilizing multiple
different parallel APIs to express the parallel structures of their com-
ponents are encoded utilizing a unified set of primitives, resulting in a
program where all parallel operations are coordinated by a single en-
tity. Essentially, the system provides means for a compiler supported,
unified implementation of arbitrary parallel APIs.

• Support for composing parallel codes: by utilizing a single con-
trol entity steering the parallel execution of the entire program and
supporting nested parallel constructs, the management problem of co-
ordinating individually parallelized software modules is effectively cir-
cumvented.

• A unified research infrastructure: finally, the Insieme IR and
its associated tool set provide a novel platform for researching issues
related to the development, optimization and tuning of parallel ap-
plications. The spectrum ranges from input languages and parallel
APIs over static code generation, analysis and transformation steps to
dynamic program steering and tuning utilities.

Additionally, this thesis contributed tools for analyzing and transform-
ing parallel programs encoded utilizing the Insieme IR. In particular the
constraint based analysis framework covering all IR constructs and a variety
of language extensions represents a comprehensive foundation for developing
static program analyses targeting parallel programs. Its broad coverage of
input codes and dynamic language features based on the concise, functional

386 CHAPTER 7. CONCLUSION

nature of the underlying IR and its unprecedented support of parallel con-
structs at the given scale are novel in the field of source-to-source compilers.

Furthermore, the establishment of declarative transformation utilities
utilizing the tree-based nature of the Insieme IR and a tool set for compos-
ing arbitrary code transformations simplifies the task of developing proto-
types of transformations and auto-tuning solutions as they are required for
conducting corresponding research.

Finally, based on the Insieme infrastructure, additional contributions
regarding the automated, compiler based improvement of the performance
and/or scalability of parallel programs have been made that exceed the ca-
pabilities of comparable state-of-the-art solutions. Those include the estab-
lishment of a generic, multi-objective auto-tuning framework and solutions
for the automated determination of loop scheduling policies and the trans-
parent, continuous adaptation of the granularity of recursively nested tasks
as covered in Chapter 6.

Together, all those contributions provide substantial evidence for the va-
lidity of the thesis’s hypothesis that unified, parallelism-aware, high-level
programming models utilized by compiler tool chain utilities provide a valu-
able foundation for the expansion of the capabilities of those tools towards
the automated coordination and tuning of parallel programs.

7.2 Future Work

The Insieme infrastructure is continuously maintained and extended by the
members of the Distributed and Parallel Systems group of the computer
science department at the University of Innsbruck. As such, new features
and applications are constantly developed.

Among the obvious extensions are additions to the existing tool set.
Additional analyses and transformations may be researched and added to
the system. For instance, the fact that the Insieme compiler obtains a
whole-program perspective on input codes enables transformations which
can not be supported by conventional, translation unit based compilers. In
particular, transformations targeting the layout of data structures can be
implemented – a feature which could definitely contribute to increase data
locality or reduce the amount of data to be moved throughout a parallel
system, yet can hardly by realized by a conventional compiler infrastructure
in case dependencies are crossing translation unit boundaries.

Another line of research to be followed could be the investigation of
improved auto-tuning capabilities. The effective composition of code trans-
formations to satisfy optimization objectives remains an open problem which
has been further extended by the flexibility of our system’s transformation
scripting facilities enabling transformations to be targeted on individual code
fragments. The potential of this increased flexibility as well as means to deal

7.2. FUTURE WORK 387

with the associated enormous search space may be valuable objectives of fu-
ture research.

Another direction to follow could be program analysis tools enabling
developers to identify errors and potential performance issues within their
applications utilizing compiler based analyzing techniques. Properly uti-
lized, they may lead to semi-automated program tuning processes combin-
ing the insight and creativity of the human developer with the precision and
analytical power of compilers.

On a related matter, new prototypes of parallel languages and APIs
depending on increased compiler support may be investigated. Cumber-
some tasks including the generation of code moving data objects between
address spaces, the conversion of program code into code to be processed
by accelerators, or load balancing operations may be gradually off-loaded
to the compiler which, in turns, provides feedback to the developer regard-
ing encountered obstacles. Furthermore, advanced features including failure
recover operations and performance monitoring may be transparently in-
corporated. The resulting, semi-automated tool chain would combine the
strengths of human developers with the mechanical power of compilers and
the capabilities of sophisticated generic load management components, mon-
itoring facilities and failure recovery systems developed by experts, thereby
exceeding the capabilities and productivity of conventional compiler or li-
brary based solutions.

Appendices

389

Appendix A

The Insieme Sources

Insieme is an open source project maintained by the Distributed and Parallel
Systems Group of the computer science department at the University of
Innsbruck. An up to date version of the sources is hosted on GitHub under

https://github.com/insieme/insieme

and may be freely accessed, forked, modified and extended. In this appendix
a brief overview on the organization of the codes shall be provided.

A.1 The Directory Structure

The root directory of the project contains four directories:

• code . . . contains the code of the various modules of the Insieme in-
frastructure

• docs . . . latex based documentation files

• scripts . . . various scripts for setting up a build environment for the
project; in particular for handling third party library dependencies

• test . . . a collection of 400+ (parallel) programs utilized for running
integration tests on the Insieme infrastructure and as input for exper-
imental evaluations

Beside those directories, a cmake script for establishing a build environment
is provided as well as a readme manual describing its usage.

A.2 The Modules

In the code directory the various components of the system are organized
into several modules. Those include

391

https://github.com/insieme/insieme

392 APPENDIX A. THE INSIEME SOURCES

• core . . . the Insieme compiler core comprising basic data structures
and utilities including

– the implementation of the IR structure (see Section 3.10)

– language extensions and their infrastructure (Section 3.8)

– the visitor infrastructure (Section 4.2)

– the node mapper infrastructure (Section 5.2.1)

– type checker utilities (Section 3.5)

– validity checks (Section 3.6)

– the basic manipulation tool box (Section 5.2.2)

– the pattern matcher implementation (Section 5.3)

– simple, flow-insensitive analyses (Section 4.3)

– an IR builder providing a unified façade for constructing IR
structures

– a pretty printer converting IR structures into a human read-
able format, similar to the syntax utilized throughout this thesis

– an IR parser capable of converting string based code fragments
using the syntax utilized throughout this thesis into IR structures

– a set of IO operations storing and retrieving IR structures to and
from binary streams, in particular files

• frontend . . . the Clang based C/C++ frontend implementation offer-
ing a plug-in system for handling parallel APIs and language exten-
sions including OpenMP, Cilk, OpenCL and MPI. Some of those, like
the rest of the system, are still under development (Section 2.3 and
3.9).

• backend . . . an infrastructure for assembling and customizing Insieme
compiler backends supporting the generation of runtime dependent
or independent C/C++ output code as well as OpenCL kernel codes
(Section 2.3).

• analysis . . . collection of analysis frameworks based on the Insieme
IR, including

– the feature extraction framework (Section 4.3.2)

– the CBA framework (Section 4.4)

– the polyhedral model based analysis system (Section 4.5)

– the dynamic program analysis system (Section 4.6)

as well as various analyses built on top of those.

A.2. THE MODULES 393

• transform . . . a collection of transformations and associated utilities
including

– manually encoded transformations (Section 5.2)

– pattern based transformations (Section 5.3)

– polyhedral model based transformations (Section 5.4) and

– the transformation framework primitives (Section 5.5)

as well as various transformations built on top of those.

• driver . . . a set of applications build based on the functionality of-
fered by the other modules (see Chapter 6). Those include, a drop-in
replacement for GCC (insiemecc) to be utilized within make files, a
minimal demo application demonstrating the utilization of the various
modules to build new applications as well as a integration test runner
and a few additional Insieme based utilities.

• runtime . . . the Insieme runtime system implementation including,
among others, the following components:

– work and data item management (Section 2.4.1)

– worker and memory management (Section 2.4.2)

– scheduling operations (Chapter 6)

– monitoring facilities

For more details on those components see the PhD thesis covering the
Insieme runtime system [98].

• meta information . . . a module for forwarding information between
the compiler and the runtime system (Chapter 6)

• utils . . . a collection of generic C++ utilities to be utilized by the var-
ious modules to simplify the implementation of the features, includ-
ing container utils, functional utils, meta-programming utilities and
generic components including e.g. constraint solvers (Section 4.4.3)

Each module contains three sub-directories:

• include . . . the header files providing prototypes and type definitions
to be utilized by others to access the offered functionality

• src . . . the implementation of the offered functionality

• test . . . an extensive list of unit tests evaluating the proper operation
of the offered functionality

394 APPENDIX A. THE INSIEME SOURCES

In addition to providing means for automated unit testing of the implemen-
tation, the test cases included in the test directory also provide a valuable
source of examples demonstrating the utilization of the offered function-
ality. Furthermore, they promote test-driven development – the principle
development process utilized by the Insieme project.

List of Symbols

Symbol Description Page

A(s,m,d) polyhedral model access function 292

B set of basic blocks 186
B the set {true, false} -
C set of class types 163
C set of channel states 115
C set of call context strings 203
C set of constraints 218
D set of data items 27
D function assigning domain to type 68
D function computing type domain constraints 68
Ds polyhedral model iterator domain 291
dφ function computing repetition-depth 317

dom computes the domain of a partial mapping 64
E set of IR expressions 53
Ev set of valid IR expressions 86
E universal environment 89
F function collecting free type variables 83
Fvar function collecting free variables 83
Frec function collecting free recursive variables 84
Fbrk function collecting free break statements 85
Fret function collecting free return statements 85
FV function obtaining free variables of term 218
F set of node filters 335
G function collecting generic type variables 64
H abstract set of system resources 30
I set of low-level program instructions 186
I set of data index values 235
~I iteration vector 290
I set of identifiers 49
IV set of intermediate variables 91
IE set of intermediate expressions 91

IEgsync set of global synchronizing expressions 93

395

396 LIST OF SYMBOLS

Symbol Description Page

IEi set of irreducible intermediate expression 93
IR set of all IR structures 178
IS set of intermediate statements 91
I set of symbol interpretations 89
I set of node instances 201
K set of node types 302
L set of property space values 187

Lf(...) forest based property space constructor 241

Lt(...) tree based property space constructor 235

L|...|≤n limited power-set property space constructor 261

L set of memory locations 135

L̂ set of abstract memory locations 272
L set of node labels 206

MGS function computing the most general substitution 75
MGT function computing the most general type 73
M set of pattern variable matches 317
M set of memory locations 271
M set of node mapper 303
N set of natural numbers including 0 -
η constant referencing no memory location 135
η̂ abstract constant referencing no memory location 272
Pa property space of the arithmetic analysis 263
Pb property space of the boolean analysis 266
Pr property space of the reference analysis 272
P set of valid IR programs 87
P set of data paths 135
P set of program points 206

P̂ set of abstract data paths 272
Poly set of polynomials constructor 262
RD set of resource requirement functions 30
R set of real numbers -
R set of ranges 111
R set of references 135
R set of thread regions 208

R̂ set of abstract references 272
S set of IR statements 58
Sv set of valid IR statements 87
S set of program states 94
S set of synchronization points 207
T set of IR types 50
T set of universal trees 312
Tc set of closed IR types 64

397

Symbol Description Page

Tg set of generic IR types 64
Tgvar set of generic type variables 64
Tv set of valid IR types 64
T→ set of function types 52
T set of thread addresses 94
T set of thread contexts 204
T set of transformations 334
Ts polyhedral model schedule function 291
U pattern variable universe 317
V set of IR variables 52
V set of pattern variables 312

Vrec set of recursive variables 52
V set of data item values 28
V the universal value set 88
V feature value set 178
WS set of work item execution states 30
WD set of work item description 30
W set of abstract worklist instances 218
Z set of integers -
Φ set of tree patterns 312
Ψ set of list patterns 312
∆ set of tree generator expressions 322
Σ set of list generator expressions 322
Υ set of value generator expressions 322
Γ∆ function generating trees 322
ΓΣ function generating lists of trees 322
ΓΥ function generating values 322
ε empty mapping 64
ε feature extraction function 178
π data index projection operator 235
⊥ empty data path 135
⊥ bottom element of a property space 187
⊥ constant denoting failed transformation 334
> top element of a property space 187
× Cartesian product set constructor -
⇀ partial mapping constructor 64
7→ constructor for an element of a mapping 64
≡ definitionally equal types 70
<: subtype relation 71
→ program state transition 95
→a thread address based state transition 97
→e environment based state transition 97

398 LIST OF SYMBOLS

Symbol Description Page

→r reduction based state transition 97
→s sequential program state transition 95
t feature aggregation function 178
] union of disjoint sets -⊔

one-of-a-set combination operator of a property space 187
t binary one-of-a-set combination operator of a prop-

erty space
187

t a data index union operator 235⊔ all-of-a-set combination operator of an extended
property space

231

u binary all-of-a-set combination operator of an ex-
tended property space

231

v partial order on property space 187
w partial order on property space 187

List of Acronyms

Acronym Description Page

API Application Programming Interface -
AST Abstract Syntax Tree -
CBA Constraint Based Analysis 194
CFG Control Flow Graph 186
CPU Central Processing Unit -
DAG Directed Acyclic Graph -
DFA Data Flow Analysis 186
DSL Domain-Specific Language -
GCC GNU Compiler Collection 7
GPGPU General Purpose Graphics Processing Unit -
GPU Graphics Processing Unit -
HPC High Performance Computing -
INSPIRE Insieme Parallel Intermediate Representation 21
IR Intermediate Representation 6
IRSPM Insieme Runtime System Program Model 27
LLVM formerly: Low Level Virtual Machine 8
MESI Modified, Exclusive, Shared or Invalid protocol 27
MPI Message Passing Interface -
NUMA Non-Uniform Memory Access 1
PGAS Partitioned Global Address Space -
PM Polyhedral Model 289
RISC Reduced Instruction Set Computing -
SIMD Single Instruction Multiple Data -
SMP Symmetric Multi-Processing -
SMT Simultaneous Multi-Threading -
VLIW Very Long Instruction Words -

399

List of Figures

2.1 Overview of the Insieme architecture. 21

2.2 Example utilization of the Insieme infrastructure. 23

2.3 Abstraction of resources in the Insieme Runtime System. . . . 33

2.4 Abstract environment as seen by the dynamic optimizer. . . . 34

3.1 Example thread group nesting. 44

3.2 Example application of the pfor operator. 46

3.3 Example applications of the redistribute operator. 47

3.4 Utilization of a channel for inter-thread communication. . . . 48

3.5 Reachable States of Example 3.20 118

3.6 Comparison of IR structures. 155

3.7 Two ways of addressing substructures within an IR DAG. . . 157

3.8 Applying transformations on an immutable IR DAG. 159

4.1 Comparison of thread IDs and thread contexts. 205

4.2 Overview on a system for dynamic program analyses. 297

5.1 Overview on the polyhedral transformation system. 333

6.1 Efficiency and speedup trade-off in a matrix multiplication
kernel for a varying number of cores. 342

6.2 Relative execution time of tiled matrix multiplication with
different tile size selections, for 1, 10, 20 and 40 threads. . . . 342

6.3 Overview of our multi-objective optimization infrastructure. . 343

6.4 Simple MM kernel using IJK loop ordering. 346

6.5 Execution time and resource usage for different configurations
evaluated based on brute force. 350

6.6 Pareto fronts obtained using different algorithms. 352

6.7 Initial Experiments, Impact of Program Characteristics . . . 357

6.8 Initial Experiments, Impact of Problem Size 358

6.9 Initial Experiments, Impact of External Load 359

6.10 An overview of the automated loop scheduling system. 360

6.11 Dense matrix multiplication results. 364

6.12 Triangular matrix multiplication results. 365

401

402 LIST OF FIGURES

6.13 Triangular matrix multiplication effort estimation function. . 365
6.14 Pendulum simulation results. 366
6.15 Initial Experiments, N-Queens N = 13, single-threaded. . . . 369
6.16 Initial Experiments, N-Queens N = 13, scaling from 1 to 2

threads. 369
6.17 Overview of the task scheduling system. 371
6.18 Version Generation and Control Flow 372
6.19 N-Queens benchmark results, N = 13, execution time. 379
6.20 N-Queens benchmark results, N = 13, efficiency. 379

List of Tables

3.1 List of (derived) boolean operators. 124
3.2 Short-circuit evaluated, derived boolean operators. 125
3.3 Derived memory allocation operators. 132

4.1 Examples of Extended Property Spaces. 232

6.1 Hardware platforms for experimental evaluation. 346
6.2 Optimal Tiling Parameters for Different Number of Threads

and Architectures. 348
6.3 Impact of Number of Threads on Speedup and Efficiency. . . 351
6.4 Kernel Characteristis . 353
6.5 Brute Force Result Summary 354
6.6 Pareto fronts obtained using different optimization algorithms 355
6.7 Nas Parallel Benchmark performance results. 367
6.8 Hardware and software platform for experimental evaluation. 378
6.9 Benchmark Results . 380

403

List of Definitions

2.1 Definition (data items) . 27

2.2 Definition (value domain) . 28

2.3 Definition (value assignment functions) 28

2.4 Definition (data requirements) 29

2.5 Definition (work item execution state) 30

2.6 Definition (work item) . 30

2.7 Definition (work item description) 30

3.1 Definition (types) . 50

3.2 Definition (variables) . 52

3.3 Definition (recursive variables) 52

3.4 Definition (expressions) . 53

3.5 Definition (typing statement) 57

3.6 Definition (statements) . 58

3.7 Definition (substitution) . 58

3.8 Definition (let bindings) . 58

3.9 Definition (let statements) . 59

3.10 Definition (jobs) . 59

3.11 Definition (thread identification) 60

3.12 Definition (thread group management) 60

3.13 Definition (work distribution operator) 61

3.14 Definition (data distribution operator) 61

3.15 Definition (channels and channel operators) 62

3.16 Definition (free type variables) 63

3.17 Definition (closed types) . 64

3.18 Definition (generic types) . 64

3.19 Definition (valid types) . 64

3.20 Definition (generic type variables) 64

3.21 Definition (partial mapping) 64

3.22 Definition (generic type variable instantiation) 65

3.23 Definition (concrete type instantiation) 66

3.24 Definition (recursive type unfolding and folding) 66

3.25 Definition (type domains) . 68

405

406 LIST OF DEFINITIONS

3.26 Definition (definitionally equal) 70
3.27 Definition (subtypes) . 71
3.28 Definition (typing rules) . 72
3.29 Definition (most general type) 73
3.30 Definition (type inference) . 75
3.31 Definition (type checking procedure) 82
3.32 Definition (free type variables for statements) 83
3.33 Definition (free variables) . 83
3.34 Definition (free recursive variables) 84
3.35 Definition (free break and return statements) 85
3.36 Definition (valid functions) 86
3.37 Definition (valid expressions) 86
3.38 Definition (valid statements) 87
3.39 Definition (valid program) . 87
3.40 Definition (universal value set) 88
3.41 Definition (interpretation) . 89
3.42 Definition (environment) . 89
3.43 Definition (environment function notation) 90
3.44 Definition (intermediate expressions and statements) 91
3.45 Definition (type annotations) 92
3.46 Definition (irreducible expression) 93
3.47 Definition (global synchronizing expressions) 93
3.48 Definition (thread address) 94
3.49 Definition (program state) . 94
3.50 Definition (traces) . 96
3.51 Definition (recursive function unfolding) 103
3.52 Definition (ranges) . 111
3.53 Definition (channel state) . 115
3.54 Definition (reference domain) 135
3.55 Definition (classes) . 163
3.56 Definition (abstract class type) 163
3.57 Definition (class types) . 163
3.58 Definition (object function types) 164
3.59 Definition (class meta info) 165

4.1 Definition (static feature extraction framework) 178
4.2 Definition (weighted feature extraction framework) 181
4.3 Definition (control flow graph) 186
4.4 Definition (property space) 187
4.5 Definition (data-flow analysis framework) 189
4.6 Definition (CBA constraint solver) 196
4.7 Definition (abstract loop iterator) 200
4.8 Definition (node instance) . 201
4.9 Definition (call context) . 203

LIST OF DEFINITIONS 407

4.10 Definition (thread context) 204
4.11 Definition (node labels) . 206
4.12 Definition (program points) 206
4.13 Definition (synchronization points) 207
4.14 Definition (thread region) . 208
4.15 Definition (Petri net graph with place capacities) 209
4.16 Definition (execution net) . 210
4.17 Definition (markings) . 213
4.18 Definition (program state graph) 214
4.19 Definition (extended property space) 231
4.20 Definition (data index) . 235
4.21 Definition (tree based property space constructor) 235
4.22 Definition (forest based property space constructor) 241
4.23 Definition (limited power-set property space) 261
4.24 Definition (integer constant property space) 261
4.25 Definition (polynomial) . 262
4.26 Definition (arithmetic property space) 263
4.27 Definition (memory location addresses) 271
4.28 Definition (reference property space) 272
4.29 Definition (reaching definition property space) 283
4.30 Definition (killed definition property space) 284
4.31 Definition (convex polytope) 290

5.1 Definition (IR structure) . 302
5.2 Definition (node mapper) . 303
5.3 Definition (node transformation) 303
5.4 Definition (annotation migration) 307
5.5 Definition (annotated node transformation) 308
5.6 Definition (universal tree structure) 312
5.7 Definition (tree and list pattern syntax) 312
5.8 Definition (tree and list pattern semantic) 313
5.9 Definition (variable match) 317
5.10 Definition (variable match path) 318
5.11 Definition (variable match operations) 318
5.12 Definition (match function) 320
5.13 Definition (generator syntax) 322
5.14 Definition (generator semantic) 323
5.15 Definition (rule) . 324
5.16 Definition (transformation) 334
5.17 Definition (transformation type) 334
5.18 Definition (node filter) . 335
5.19 Definition (node filter type) 335
5.20 Definition (transformation connectors) 336

List of Examples

2.1 Example (data item) . 28

2.2 Example (value domains) . 29

2.3 Example (value assignment function) 29

2.4 Example (data requirements) 29

2.5 Example (work items) . 31

3.1 Example (composed types) 51

3.2 Example (expressions) . 55

3.3 Example (variable instantiations) 66

3.4 Example (domains) . 68

3.5 Example (definitionally equal) 70

3.6 Example (most general types – generic types) 74

3.7 Example (most general types – sub-types) 74

3.8 Example (type inference) . 79

3.9 Example (counter) . 90

3.10 Example (thread address) . 94

3.11 Example (sequential transition) 95

3.12 Example (auxiliary relations) 97

3.13 Example (literals) . 99

3.14 Example (call expression – callable object) 100

3.15 Example (call expression – abstract operator) 100

3.16 Example (accessing structs) 102

3.17 Example (accessing unions) 103

3.18 Example (pfor application) 113

3.19 Example (redistribute application) 114

3.20 Example (channel operations) 117

3.21 Example (narrow and expand) 134

3.22 Example (reference values) 135

3.23 Example (data path handling) 138

3.24 Example (virtual function call) 166

4.1 Example (counting operations) 179

4.2 Example (maximum loop nesting depth) 179

409

410 LIST OF EXAMPLES

4.3 Example (instruction ratios) 180
4.4 Example (control flow graph) 187
4.5 Example (property space) . 187
4.6 Example (data-flow analysis) 191
4.7 Example (node instances) . 201
4.8 Example (implicit call context) 202
4.9 Example (required call context) 202
4.10 Example (call strings) . 203
4.11 Example (thread contexts) . 205
4.12 Example (program points) . 206
4.13 Example (sync points) . 208
4.14 Example (thread regions) . 209
4.15 Example (execution net) . 210
4.16 Example (execution graph with uncertainty) 212
4.17 Example (program state graph) 214
4.18 Example (extended property spaces) 232
4.19 Example (nominal data index) 236
4.20 Example (unit data index) . 237
4.21 Example (single data index) 238
4.22 Example (range based data index) 238
4.23 Example (heterogeneous composed values) 240
4.24 Example (modeling channel states) 252
4.25 Example (arithmetic property space values) 263

5.1 Example (node mapper) . 303
5.2 Example (recursive node mapper) 304
5.3 Example (annotation migrations) 307
5.4 Example (tree and list patterns) 313
5.5 Example (advanced tree and list patterns) 315
5.6 Example (recursive tree patterns) 316
5.7 Example (match operations) 319
5.8 Example (generators) . 323
5.9 Example (rules) . 325
5.10 Example (transformation types) 334
5.11 Example (node filters and types) 335
5.12 Example (innermost loop unrolling) 337

Bibliography

[1] C++ support for clang. http://clang-analyzer.llvm.org/dev_

cxx.html. (accessed January 6, 2012).

[2] Clang static analyzer. http://clang-analyzer.llvm.org.

[3] clang: a C language family frontend for LLVM. http://clang.llvm.
org, October 2012.

[4] The program transformation wiki, 2013. [Online; 30-May-2013].

[5] Pluto - an automatic parallelizer and locality optimizer for multicores.
http://pluto-compiler.sourceforge.net/, 2014.

[6] G. Aigner, A. Diwan, D.L. Heine, M.S. Lam, D.L. Moore, B.R. Mur-
phy, and C. Sapuntzakis. An overview of the suif2 compiler infrastruc-
ture. Computer Systems Laboratory, Stanford University, 2000.

[7] Krste et al. Asanovic. The landscape of parallel computing research: A
view from berkeley. Technical report, EECS Department, University
of California, 2006.

[8] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Com-
piler transformations for high-performance computing. ACM Comput.
Surv., 26(4):345–420, 1994.

[9] D. H. Bailey, E. Barszcz, J. T. Barton, et al. The NAS parallel bench-
marks. Technical report, The International Journal of Supercomputer
Applications, 1991.

[10] Rajkishore Barik, Zoran Budimlic, Vincent Cavé, Sanjay Chatterjee,
Yi Guo, David M. Peixotto, Raghavan Raman, Jun Shirako, Sagnak
Tasirlar, Yonghong Yan, Yisheng Zhao, and Vivek Sarkar. The ha-
banero multicore software research project. In Shail Arora and Gary T.
Leavens, editors, OOPSLA Companion, pages 735–736. ACM, 2009.

411

http://clang-analyzer.llvm.org/dev_cxx.html
http://clang-analyzer.llvm.org/dev_cxx.html
http://clang-analyzer.llvm.org
http://clang.llvm.org
http://clang.llvm.org
http://pluto-compiler.sourceforge.net/

412 BIBLIOGRAPHY

[11] M.M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanu-
jam, and P. Sadayappan. Parameterized tiling revisited. In Proceed-
ings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, pages 200–209. ACM, 2010.

[12] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting
polyhedral loop transformations to work. Languages and Compilers
for Parallel Computing, pages 209–225, 2004.

[13] Cédric Bastoul. Generating loops for scanning polyhedra: Cloog users
guide. Polyhedron, 2:10, 2004.

[14] Cédric Bastoul and Paul Feautrier. Adjusting a program transforma-
tion for legality. Parallel Processing Letters, 15(1-2):3–18, 2005.

[15] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. The polyhedral model is more widely ap-
plicable than you think. In Compiler Construction, pages 283–303.
Springer, 2010.

[16] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jrme Feret, Lau-
rent Mauborgne, Antoine Min, David Monniaux, and Xavier Rival.
Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In Torben. Mo-
gensen, DavidA. Schmidt, and I.Hal Sudborough, editors, The Essence
of Computation, volume 2566 of Lecture Notes in Computer Science,
pages 85–108. Springer Berlin Heidelberg, 2002.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an
efficient multithreaded runtime system. In Proc. 5th ACM SIGPLAN
symp. on Principles and practice of parallel programming, PPOPP ’95,
pages 207–216, 1995.

[18] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel
programmability and the chapel language. International Journal of
High Performance Computing Applications, 21(3):291–312, 2007.

[19] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform clus-
ter computing. In Acm Sigplan Notices, volume 40, pages 519–538.
ACM, 2005.

[20] C. Chen, J. Chame, and M. Hall. Chill: A framework for composing
high-level loop transformations. U. of Southern California, Tech. Rep,
pages 08–897, 2008.

BIBLIOGRAPHY 413

[21] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veld-
huizen. Evolutionary Algorithms for Solving Multi-Objective Problems
(Genetic and Evolutionary Computation). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[22] A. Cohen, S. Girbal, and O. Temam. A polyhedral approach to ease
the composition of program transformations. In Euro-Par 2004 Par-
allel Processing, pages 292–303. Springer, 2004.

[23] K.D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimiz-
ing compilers for the 21st century. The Journal of Supercomputing,
23(1):7–22, 2001.

[24] James R Cordy. The txl source transformation language. Science of
Computer Programming, 61(3):190–210, 2006.

[25] Leonardo Dagum and Ramesh Menon. Openmp: an industry stan-
dard api for shared-memory programming. Computational Science &
Engineering, IEEE, 5(1):46–55, 1998.

[26] Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula. Generating efficient data movement code for heteroge-
neous architectures with distributed-memory. In PACT, pages 375–
386. IEEE, 2013.

[27] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigen-
mann, and Samuel Midkiff. Cetus: A source-to-source compiler infras-
tructure for multicores. Computer, 42(12):36–42, 2009.

[28] Vivek Sarkar Deepak Majeti. Heterogeneous habanero-c (h2c): A
portable programming model for heterogeneous processors. .

[29] The Insieme development team. Insieme compiler and runtime infras-
tructure. http://insieme-compiler.org.

[30] Gabriel Dos Reis and Bjarne Stroustrup. A principled, complete, and
efficient representation of c++. Mathematics in Computer Science,
5(3):335–356, 2011.

[31] Alejandro Duran, Xavier Teruel, et al. Barcelona OpenMP Tasks
Suite: A set of benchmarks targeting the exploitation of task paral-
lelism in OpenMP. In ICPP, pages 124–131, 2009.

[32] David N. Turner (ed), Hans Wolfgang Loidl, and Kevin Hammond. On
the granularity of divide-and-conquer parallelism. In Glasgow Work-
shop on Functional Programming, pages 8–10. Springer-Verlag, 1995.

http://insieme-compiler.org

414 BIBLIOGRAPHY

[33] G. Fursin, Y. Kashnikov, A.W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, et al.
Milepost gcc: machine learning enabled self-tuning compiler. Interna-
tional Journal of Parallel Programming, 39(3):296–327, 2011.

[34] Kirsten Lackner Solberg Gasser, Flemming Nielson, and Hanne Riis
Nielson. Systematic realisation of control flow analyses for cml. In
Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman, editors,
ICFP, pages 38–51. ACM, 1997.

[35] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen,
David Parello, Marc Sigler, and Olivier Temam. Semi-automatic com-
position of loop transformations for deep parallelism and memory hi-
erarchies. International Journal of Parallel Programming, 34(3):261–
317, 2006.

[36] Ivan Grasso, Klaus Kofler, Biagio Cosenza, and Thomas Fahringer.
Automatic problem size sensitive task partitioning on heterogeneous
parallel systems. In PPOPP, pages 281–282, 2013.

[37] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Grösslinger, and Louis-Noël Pouchet. Polly-polyhedral opti-
mization in llvm. In Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), volume 2011, 2011.

[38] Khronos Group. Spir 1.0 specification for opencl, 2012.

[39] The Portland Group. PGI Optimizing Fortran, C and C++ Compilers
& Tools. http://www.pgroup.com/index.htm, 2014.

[40] Dirk Grunwald and Harini Srinivasan. Data flow equations for ex-
plicitly parallel programs. In Marina C. Chen and Robert Halstead,
editors, PPOPP, pages 159–168. ACM, 1993.

[41] Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer. Multi-
objective auto-tuning with insieme: Optimization and trade-off analy-
sis for time, energy and resource usage. In Euro-Par 2014 Parallel Pro-
cessing, Lecture Notes in Computer Science, pages –to be published–.
Springer Berlin Heidelberg, 2014.

[42] Philipp Gschwandtner, Michael Knobloch, Bernd Mohr, Dirk Pleiter,
and Thomas Fahringer. Modeling cpu energy consumption of hpc
applications on the ibm power7. In PDP, pages 536–543. IEEE, 2014.

[43] John L. Hennessy and David A. Patterson. Computer Architecture -
A Quantitative Approach (4. ed.). Morgan Kaufmann, 2007.

BIBLIOGRAPHY 415

[44] G.J. Holzmann. The model checker spin. Software Engineering, IEEE
Transactions on, 23(5):279–295, 1997.

[45] Intel. Intel C and C++ Compilers. http://software.intel.com/en-us/c-
compilers/, 2012.

[46] Suresh Jagannathan and Stephen Weeks. Analyzing stores and refer-
ences in a parallel symbolic language. In ACM SIGPLAN Lisp Point-
ers, volume 7, pages 294–305. ACM, 1994.

[47] Troy A. Johnson, Sang Ik Lee, Long Fei, Ayon Basumallik, Gautam
Upadhyaya, Rudolf Eigenmann, and Samuel P. Midkiff. Experiences
in using cetus for source-to-source transformations. In Rudolf Eigen-
mann, Zhiyuan Li, and Samuel P. Midkiff, editors, LCPC, volume 3602
of Lecture Notes in Computer Science, pages 1–14. Springer, 2004.

[48] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and
Thomas Fahringer. Inspire: The insieme parallel intermediate rep-
resentation. In Proceedings of the 22Nd International Conference on
Parallel Architectures and Compilation Techniques, PACT ’13, pages
7–18, Piscataway, NJ, USA, 2013. IEEE Press.

[49] Herbert Jordan, Peter Thoman, Juan Jose Durillo Barrionuevo, Si-
mone Pellegrini, Philipp Gschwandtner, Thomas Fahringer, and Hans
Moritsch. A multi-objective auto-tuning framework for parallel codes.
In Jeffrey K. Hollingsworth, editor, SC, page 10. IEEE/ACM, 2012.

[50] Herbert Jordan, Peter Thoman, and Thomas Fahringer. A high-level ir
transformation system. In Euro-Par 2013: Parallel Processing Work-
shops, pages 647–656. Springer, 2014.

[51] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static
data race detection for concurrent programs with asynchronous calls.
In Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 13–22. ACM, 2009.

[52] Laxmikant V Kale and Sanjeev Krishnan. CHARM++: a portable
concurrent object oriented system based on C++, volume 28. ACM,
1993.

[53] Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt, and François
Irigoin. Spire: A sequential to parallel intermediate representation
extension. Technical report, Technical Report CRI/A-487, MINES
ParisTech, 2012.

416 BIBLIOGRAPHY

[54] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined
selection of tile sizes and unroll factors using iterative compilation. In
Proceedings of the 2000 International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’00, pages 237–, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[55] Bjoern Knafla and Claudia Leopold. Parallelizing a real-time steering
simulation for computer games with openmp. In Christian H. Bischof,
H. Martin Bücker, Paul Gibbon, Gerhard R. Joubert, Thomas Lip-
pert, Bernd Mohr, and Frans J. Peters, editors, PARCO, volume 15
of Advances in Parallel Computing, pages 219–226. IOS Press, 2007.

[56] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An
automatic input-sensitive approach for heterogeneous task partition-
ing. In Allen D. Malony, Mario Nemirovsky, and Samuel P. Midkiff,
editors, ICS, pages 149–160. ACM, 2013.

[57] C. Lattner and V. Adve. Llvm: A compilation framework for life-
long program analysis & transformation. In Code Generation and
Optimization, 2004. CGO 2004. International Symposium on, pages
75–86. IEEE, 2004.

[58] Hugh Leather, Edwin V. Bonilla, and Michael F. P. O’Boyle. Auto-
matic feature generation for machine learning based optimizing com-
pilation. In CGO, pages 81–91. IEEE Computer Society, 2009.

[59] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static
single assignment form and constant propagation for explicitly parallel
programs. In LCPC, pages 114–130, 1997.

[60] Francesco Logozzo and Manuel Fähndrich. On the relative complete-
ness of bytecode analysis versus source code analysis. In CC, pages
197–212, 2008.

[61] J. Merrill. Generic and gimple: A new tree representation for entire
functions. In Proceedings of the 2003 GCC Developers Summit, pages
171–179, 2003.

[62] Eric Mohr, David A. Kranz, Robert H. Halstead, and Jr. Lazy task
creation: A technique for increasing the granularity of parallel pro-
grams. IEEE Transactions on Parallel and Distributed Systems, 2,
1991.

[63] Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine
learning approach to automatic production of compiler heuristics. In
Donia Scott, editor, AIMSA, volume 2443 of Lecture Notes in Com-
puter Science, pages 41–50. Springer, 2002.

BIBLIOGRAPHY 417

[64] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda. Soft-
ware Automatic Tuning (From Concepts to State-of-the-Art Results).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2010.

[65] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. Cil: Intermediate language and tools for analysis and trans-
formation of c programs. In R. Nigel Horspool, editor, CC, volume
2304 of Lecture Notes in Computer Science, pages 213–228. Springer,
2002.

[66] J. A. Nelder and R. Mead. A Simplex Method for Function Minimiza-
tion. The Computer Journal, 7(4):308–313, January 1965.

[67] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. Pthreads pro-
gramming: A POSIX standard for better multiprocessing. O’Reilly
Media, Inc., 1996.

[68] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of
program analysis. Springer, 1999.

[69] Diego Novillo. Openmp and automatic parallelization in gcc. In
In the Proceedings of the GCC Developers, http: // gcc. gnu. org/

projects/ gomp/ , 2006.

[70] Diego Novillo, Ronald C. Unrau, and Jonathan Schaeffer. Concurrent
ssa form in the presence of mutual exclusion. In ICPP, pages 356–,
1998.

[71] NVidia. Compute unified device architecture (cuda) programming
guide, 2007.

[72] Michael O’Boyle and François Bodin. Compiler reduction of synchro-
nisation in shared virtual memory systems. In ICS, pages 318–327,
1995.

[73] Stephen Olivier and Jan F. Prins. Comparison of openmp 3.0 and
other task parallel frameworks on unbalanced task graphs. Interna-
tional Journal of Parallel Programming, 38(5-6):341–360, 2010.

[74] Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil.
Fast and efficient automatic memory management for gpus using
compiler-assisted runtime coherence scheme. In PACT, pages 33–42,
2012.

[75] Mark S. Papamarcos and Janak H. Patel. A low-overhead coher-
ence solution for multiprocessors with private cache memories. In
Dharma P. Agrawal, editor, ISCA, pages 348–354. ACM, 1984.

http://gcc.gnu.org/projects/gomp/
http://gcc.gnu.org/projects/gomp/

418 BIBLIOGRAPHY

[76] Zdzisaw Pawlak. Rough sets. International Journal of Parallel Pro-
gramming, 11(5):341–356, 1982.

[77] Simone Pellegrini, Thomas Fahringer, Herbert Jordan, and Hans
Moritsch. Automatic tuning of mpi runtime parameter settings by
using machine learning. In Proceedings of the 7th ACM Interna-
tional Conference on Computing Frontiers, CF ’10, pages 115–116,
New York, NY, USA, 2010. ACM.

[78] Simone Pellegrini, Torsten Hoefler, and Thomas Fahringer. Exact de-
pendence analysis for increased communication overlap. In EuroMPI,
pages 89–99, 2012.

[79] Simone Pellegrini, Jie Wang, Thomas Fahringer, and Hans Moritsch.
Optimizing mpi runtime parameter settings by using machine learning.
In Matti Ropo, Jan Westerholm, and Jack Dongarra, editors, Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
volume 5759 of Lecture Notes in Computer Science, pages 196–206.
Springer Berlin Heidelberg, 2009.

[80] Thoman Peter. Insieme-RS A Compiler-supported Parallel Runtime
System. PhD thesis, University of Innsbruck, 2013.

[81] James L Peterson. Petri net theory and the modeling of systems. Pren-
tice Hall PTR, 1981.

[82] E Petit, F Bodin, and R Dolbeau. An hybrid data transfer optimiza-
tion for gpu. Compilers for Parallel Computers (CPC2007), 2007.

[83] Benjamin C. Pierce. Types and programming languages. MIT Press,
2002.

[84] Antoniu Pop, Albert Cohen, et al. Preserving high-level semantics
of parallel programming annotations through the compilation flow of
optimizing compilers. In CPC, 2010.

[85] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal,
Georges-André Silber, and Nicolas Vasilache. Graphite: Polyhedral
analyses and optimizations for gcc. In Proceedings of the 2006 GCC
Developers Summit, page 2006. Citeseer, 2006.

[86] L.N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative op-
timization in the polyhedral model: Part i, one-dimensional time.
In Code Generation and Optimization, 2007. CGO’07. International
Symposium on, pages 144–156. IEEE, 2007.

BIBLIOGRAPHY 419

[87] Louis-Noël Pouchet, Peng Zhang, P Sadayappan, and Jason Cong.
Polyhedral-based data reuse optimization for configurable computing.
In Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays, pages 29–38. ACM, 2013.

[88] D. Quinlan. ROSE: Compiler support for object-oriented frameworks.
Parallel Processing Letters, 10(02n03):215–226, 2000.

[89] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP paral-
lel programming on clusters of multi-core SMP nodes. In PDP, 2009.

[90] Radu Rugina and Martin C. Rinard. Recursion unrolling for divide
and conquer programs. In Proc. 13th Int. Workshop on Languages
and Compilers for Parallel Computing, LCPC ’00, pages 34–48, 2001.

[91] Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Noël Pouchet,
J. Ramanujam, P. Sadayappan, and Vivek Sarkar. Analytical bounds
for optimal tile size selection. In ETAPS International Conference
on Compiler Construction (CC’12), Tallinn, Estonia, March 2012.
Springer Verlag.

[92] Marc Snir, Steve W Otto, David W Walker, Jack Dongarra, and
Steven Huss-Lederman. MPI: the complete reference. MIT press, 1995.

[93] Richard Stallman. Using and porting the gnu compiler collection.
M.I.T. Artificial Intelligence Laboratory, 2001.

[94] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel
programming standard for heterogeneous computing systems. Com-
puting in science & engineering, 12(3):66, 2010.

[95] Rainer Storn and Kenneth Price. Differential evolution: A simple
and efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11(4):341–359, 1997.

[96] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

[97] P. Thoman, H. Jordan, S. Pellegrini, and T. Fahringer. Automatic
OpenMP loop scheduling: a combined compiler and runtime approach.
OpenMP in a Heterogeneous World, pages 88–101, 2012.

[98] Peter Thoman. Insieme-RS: A Compiler-supported Parallel Runtime
System. PhD thesis, University of Innsbruck, 2013.

[99] Peter Thoman, Herbert Jordan, and Thomas Fahringer. Adaptive
granularity control in task parallel programs using multiversioning. In

420 BIBLIOGRAPHY

Felix Wolf, Bernd Mohr, and Dieter Mey, editors, Euro-Par 2013 Par-
allel Processing, volume 8097 of Lecture Notes in Computer Science,
pages 164–177. Springer Berlin Heidelberg, 2013.

[100] Peter Thoman, Herbert Jordan, and Thomas Fahringer. Compiler
multiversioning for automatic task granularity control. Concurrency
and Computation: Practice and Experience, pages n/a–n/a, 2014.

[101] Peter Thoman, Hans Moritsch, and Thomas Fahringer. Topology-
aware openmp process scheduling. In Mitsuhisa Sato, Toshihiro
Hanawa, MatthiasS. Müller, BarbaraM. Chapman, and BronisR.
Supinski, editors, Beyond Loop Level Parallelism in OpenMP: Accel-
erators, Tasking and More, volume 6132 of Lecture Notes in Computer
Science, pages 96–108. Springer Berlin Heidelberg, 2010.

[102] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jef-
frey K. Hollingsworth. A scalable auto-tuning framework for compiler
optimization. In Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, IPDPS ’09, pages 1–12,
Washington, DC, USA, 2009. IEEE Computer Society.

[103] Ananta Tiwari and Jeffrey K. Hollingsworth. Online adaptive code
generation and tuning. In Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, pages 879–892. IEEE
Computer Society, 2011.

[104] Sven Verdoolaege. barvinok: User guide. Version 0.23), Electronically
available at http://www. kotnet. org/˜ skimo/barvinok, 2007.

[105] Sven Verdoolaege. isl: An integer set library for the polyhedral model.
In Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki
Takayama, editors, ICMS, volume 6327 of Lecture Notes in Computer
Science, pages 299–302. Springer, 2010.

[106] Eelco Visser. A survey of rewriting strategies in program transforma-
tion systems. ENTCS, 57:109–143, 2001.

[107] Eelco Visser. Program transformation with stratego/xt. In Domain-
Specific Program Generation, pages 216–238. Springer, 2004.

[108] Jürgen Vollmer. Data flow analysis of parallel programs. In Proceedings
of the IFIP WG10. 3 working conference on Parallel architectures and
compilation techniques, pages 168–177. IFIP Working Group on Algol,
1995.

[109] R. Vuduc, J.W. Demmel, and K.A. Yelick. Oski: A library of automat-
ically tuned sparse matrix kernels. In Journal of Physics: Conference
Series, volume 16, page 521. IOP Publishing, 2005.

BIBLIOGRAPHY 421

[110] G.E. Weaver, K.S. McKinley, and C.C. Weems. Score: A compiler
representation for heterogeneous systems. In Proceedings of the 1996
Heterogeneous Computing Workshop. Citeseer, 1996.

[111] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of the 1998 ACM/IEEE conference on Su-
percomputing (CDROM), pages 1–27. IEEE Computer Society, 1998.

[112] Anthony Williams. C++ Concurrency in Action. Manning; Pearson
Education, 2012.

[113] R.P. Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, J.M. An-
derson, S.W.K. Tjiang, S.W. Liao, C.W. Tseng, M.W. Hall, M.S. Lam,
et al. Suif: An infrastructure for research on parallelizing and opti-
mizing compilers. ACM Sigplan Notices, 29(12):31–37, 1994.

[114] Jing Yang, Gogul Balakrishnan, Naoto Maeda, Franjo Ivani, Aarti
Gupta, Nishant Sinha, Sriram Sankaranarayanan, and Naveen
Sharma. Object model construction for inheritance in c++ and its
applications to program analysis. In Michael OBoyle, editor, Com-
piler Construction, volume 7210 of Lecture Notes in Computer Sci-
ence, pages 144–164. Springer Berlin Heidelberg, 2012.

[115] Yuan Zhang, Evelyn Duesterwald, and GuangR. Gao. Concurrency
analysis for shared memory programs with textually unaligned bar-
riers. In Vikram Adve, MaraJess Garzarn, and Paul Petersen, edi-
tors, Languages and Compilers for Parallel Computing, volume 5234
of Lecture Notes in Computer Science, pages 95–109. Springer Berlin
Heidelberg, 2008.

[116] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

	Certificate of Authorship
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Motivation
	The State of the Art
	Compilers
	Popular Parallel APIs and Language Extensions

	Open Problems
	Thesis Hypothesis
	Organization

	Insieme
	Contributions
	The Insieme Project
	Mission Statement
	Architecture
	Applications

	The Insieme Compiler
	The Insieme Runtime System
	The Program Model
	The System Model
	Runtime System Components

	Summary

	INSPIRE
	Contributions
	Design Goals
	Overview
	Basic Language Design
	INSPIRE's Unified Parallel Model

	Syntax
	Core Language Constructs
	Parallel Primitives

	The Type System
	Domains
	Type Relations
	Typing Rules
	Type Checking and Type Inference

	Valid Code Fragments
	Auxiliary Definitions
	Valid Expressions
	Valid Statements
	Valid Programs

	Semantic
	The Small-Step Transition Relation
	The Core Language Constructs

	Extensions
	Extension Mechanisms
	Important Extensions

	Modeling Input Codes
	Sequential Host Language Constructs
	Common Parallel Constructs
	Parallel APIs

	Implementation
	Overall Structure
	Addressing Substructures
	Manipulating Substructures

	C++ Support
	Challenges and Requirements
	Language Modifications
	Modeling C++ Constructs

	Summary

	Analyses
	Contributions
	Navigating the IR
	Flow-Insensitive Analyses
	Type Checks and Validity Constraints
	Code Features
	Local Transformations

	Flow-Sensitive Analyses
	Overview on Flow-Sensitive Program Analysis
	Overview on the Insieme CBA Framework
	The Constraint Solver
	The Property Space Framework
	The Constraint Generator Framework
	Example Value Analyses
	Mutable State Extension
	Summary of the Insieme CBA Framework

	Polyhedral Analyses
	Overview on the Polyhedral Model
	Integration of Polyhedral Analyses

	Dynamic Analyses
	Overview on Dynamic Analyses
	Integration of Dynamic Analyses

	Summary

	Transformations
	Contributions
	Transforming the IR
	Node Mappers
	Manipulation Toolbox
	Handling Annotations

	Pattern Based Transformations
	Design Goals
	Patterns and Replacements
	Implementation
	Examples

	Polyhedral Transformations
	Overview on Polyhedral Transformations
	Integration of Polyhedral Transformations

	The Transformation Framework
	Transformations and Connectors
	Implementation of Transformation Scripts

	Summary

	Applications
	Contributions
	Multi-Objective Auto-Tuning
	Motivation
	Method
	Results
	Conclusion

	Automated Loop Scheduling
	Motivation
	Method
	Results
	Conclusion

	Improved Task Scheduling
	Motivation
	Method
	Results
	Conclusion

	Additional Insieme Applications
	Summary

	Conclusion
	Contributions
	Future Work

	Appendices
	The Insieme Sources
	The Directory Structure
	The Modules

	List of Symbols
	List of Acronyms
	List of Figures
	List of Tables
	List of Definitions
	List of Examples
	Bibliography

