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1 Introduction 

This document provides a complete overview on the architecture of the AllScale 
Environment. To that end, Section 2 covers the internal design of the involved 
components. The interfaces among those components are covered in Section 3, 
while Section 4 provides an example demonstrating the dynamic interaction of 
all the involved components. 

The architecture presented within this document is the object of ongoing 
development and can thus, necessarily, only provides a snapshot of the AllScale 
system design. Details of interfaces or internal details of the components’ design 
may diverge from the content presented within this document as deemed 
necessary for fulfilling the project’s objectives. 

Before getting to the details of the AllScale components, this introduction section 
is providing a summary of the formalism and terminology utilized through the 
rest of this document.  

 

1.1 Formalism: 

To describe the design of concepts within this document the concept of abstract 
data types (ADT) is utilized. Thus, objects within the system specification are 
associated with abstract types on which (equally abstract) operations may be 
performed. While the details of the actual implementation of those types and 
operations are negligible for the overall system architecture, their signatures 
define the means for the interaction of components. Furthermore those 
constructs provide the level of abstraction needed by this document to focus on 
the high-level design concepts of the AllScale Environment. The actual 
implementation details of the various abstract types and operators are found 
within the corresponding deliverables and/or the actual source code realizing 
those concepts. Where necessary, those deliverables are referenced. 

To specify abstract types and operators throughout this document, the following 
symbols and type constructors are utilized: 

Symbol Interpretation 

𝒃𝒐𝒐𝒍 abstract type for Boolean values  

𝒊𝒏𝒕 abstract types for natural numbers 

𝒖𝒏𝒊𝒕 abstract type for the unit constant (void type in C/C++) 

𝜶, 𝜷, 𝜸, 𝜹, … type variables 

(𝑻𝟏, 𝑻𝟐, … , 𝑻𝒏) tuple type with n components; component 𝑖 is of type 𝑇𝑖 

𝑻𝟏 → 𝑻𝟐 type of a function accepting a value of type 𝑇1 as an 
argument and returning a value of type 𝑇2 

𝟐𝑻 the power set of elements of type T  
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𝑻∗ a list of elements of type T, may be empty 

𝑻+ a list of elements of type T, not empty 

 

1.2 Terminology 

The following table provides a summary of the terms utilized throughout this 
document to address various components and aspects of the overall AllScale 
architecture: 

Term Description 

AllScale the entire project, comprising the AllScale 
Environment, pilots, and infrastructure 

AllScale API the AllScale component to be utilized by end users to 
develop applications, comprising the necessary 
parallel primitives 

AllScale application a program utilizing the AllScale Environment for 
implementing a solution for some particular, domain 
specific problem 

AllScale Compiler the compiler component of the AllScale Toolchain 
analyzing and transforming end user code to convert 
it to code processible by the AllScale Runtime System 

AllScale Core API a fix set of basic parallel primitives for the creation of 
AllScale applications; part of the AllScale API 

AllScale Environment the entire AllScale software stack, comprising the API, 
compiler, runtime system, and runtime system 
subsystems 

AllScale Infrastructure the hardware and software resources utilized for the 
development of AllScale, including source repositories 
and their configuration scripts, the AllScale website, 
and build, test, and benchmark servers 

AllScale Monitoring 
Service 

a runtime subsystem collecting information on a 
processed application as well as properties of the 
utilized hardware infrastructure 

AllScale pilot one of the three AllScale applications (iPIC3D, 
AMDADOS, or Fine/Open) created to demonstrate the 
abilities of the AllScale Environment 

AllScale Resilience 
Manager 

a runtime subsystem managing backup and recovery 
operations of an AllScale application during execution 
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AllScale Runtime short form for AllScale Runtime System 

AllScale Runtime 
System 

the component managing the execution of an AllScale 
Application by controlling the distribution of 
computation and data among available hardware 
resources as well as hardware parameters 

AllScale Scheduler the runtime subsystem deciding on the workload and 
data distribution as well as the utilization and 
configuration of the available hardware resources 

AllScale SDK an empty AllScale application providing a template for 
building new AllScale applications 

AllScale Toolchain the AllScale Compiler and the AllScale Runtime 
System utilized to compile and run applications 

AllScale User API a freely extensible set of higher level parallel 
primitives built on top of the Core API providing 
convenience functionality to end users; a basic set of 
constructs is provided as part of the AllScale API 

data item the unit of data managed by the runtime system; data 
items can be uniquely addressed and actively 
distributed among nodes by the runtime system 

dynamic optimizer an alternative designation of the AllScale Scheduler 
component stressing its central obligation of steering 
an application execution towards a given optimization 
objective (e.g. low execution time or low energy) 

end user in the context of the API and compiler: a developer 
utilizing the AllScale Environment for developing an 
application; in the context of the pilots, the runtime 
system and its sub-components: the person executing 
an AllScale application 

locality a AllScale Runtime System process participating in the 
computation of an AllScale application, providing and 
managing an address space for data items 

node a physical entity of a target architecture, governed by 
a single OS image 

runtime subsystem components embedded within the AllScale Runtime 
System providing services to the processed 
application; this includes the scheduler, the 
monitoring system and the resilience manager 

standard toolchain a C++ build environment capable of compiling and 
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running C++14 applications; e.g. setups utilizing the 
GCC or clang compiler 

target architecture a computer utilized for running an AllScale application 

task in the API layer: the unit of work; in the runtime layer: 
synonym to work item 

work item the unit of work managed by the runtime system; 
work items can be uniquely addressed, have 
associated data requirements, may be split into 
smaller work items and migrated among nodes 

 

 

2 AllScale System Architecture Design 

In this chapter the overall system architecture of the AllScale Environment and 
pilots is covered. Section 2.1 starts with a general overview, enumerating the 
main components and outlining their interaction. It is followed by Sections 2.2 - 
2.8 elaborating on the architectural details of the individual system components. 

2.1 Overview 

Figure 1 outlines the overall architecture of the AllScale Environment and pilots. 
The architecture comprises seven components: 

 The AllScale API (see Section 2.2) 
 The AllScale Pilot Applications (see Section 2.3) 
 The AllScale Compiler (see Section 2.4) 
 The AllScale Runtime System (see Section 2.5) 
 The AllScale Scheduler (see Section 2.6) 
 The AllScale Monitoring Service (see Section 2.7) 
 The AllScale Resilience Manager (see Section 2.8) 
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The pilot applications are implemented based on a set of generic parallel APIs 
offered by the AllScale API. The API itself is subdivided into two layers: the User-
Level API and the Core API. The Core API layer covers a small, concise set of 
essential primitives: constructs for expressing data structures, parallel control 
flows, and synchronization operations. While concise and expressive, the core 
API is not supposed to be directly utilized by application developers due the 
complex nature of included constructs. Their main purpose is to provide a 
compact interface for actual implementations, in particular the one realized by 
the AllScale compiler. To support application developers, the User API layer is 
introduced and maintained by expert developers. It maps common parallel 
patterns to the Core-API primitives. Thus, the User-Level API is a flexible, open 
layer that can be extended and customized without requiring any changes in the 
AllScale Environment. 

Codes implemented utilizing the AllScale API can be compiled by standard C++ 
tools and executed on parallel, shared memory machines. This modus is intended 
for use during the development and debugging phases of an application 
development project. However, for obtaining an extreme scale high-performance 
version that benefits from all the services offered by the AllScale Environment, 
the same code base has to be compiled by the API-aware AllScale Compiler. 
Unlike standard C++ compilers, the AllScale Compiler is aware of the 
interpretation of the parallel primitives offered by the Core API layer and 
restructures the application by introducing additional versions of encountered 
parallel code fragments. Each version targets a different architecture and/or 
represent a different trade-off between multiple optimization objectives (e.g. 
more parallelism vs. less overhead). Together with information describing the 
specific traits of the versions – such as the scenario they have been tuned for – as 

 
Figure 1. Overview on AllScale Architecture 
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well as details regarding their (data) dependencies, the resulting set of 
implementations are forwarded to the AllScale Runtime System.  

The AllScale Runtime System provides the infrastructure for the AllScale 
Dynamic Optimizer (aka the scheduler) to dynamically auto-tune a running 
program for multiple objectives to achieve a desired trade-off among the 
considered tuning objectives. It does so, by distributing workload and data 
dynamically throughout the system, coordinating the exchange of information, 
and continuously adjusting performance relevant hardware parameters. The 
scheduler can, for this purpose, rely on dynamically updated knowledge 
provided by the AllScale Monitoring Service capturing the state of the target 
system as well as the managed program execution. Furthermore, the AllScale 
Resilience Manager aids the scheduler in preparing for and responding to errors 
occurring during the program execution. Therefore, it coordinates the utilization 
of self-healing and self-stabilizing mechanisms integrated in or revealed by the 
AllScale Environment.  

Further details about these interactions and the internal design of the involved 
component are covered in the following sections. 

 

2.2 AllScale API 

2.2.1 Overview 

The AllScale API is the façade of the AllScale Environment towards end-user 
applications. It provides the necessary primitives to express parallelism, data 
dependencies, and needed synchronization steps within application code. The 
API is subdivided into two layers: 

 The AllScale Core API  
 The AllScale User API 

The Core API provides a concise set of basic generic primitives, comprising 
parallel control flow, synchronization, and communication constructs. The User 
API is harnessing the expressive power of the Core API to provide specialized 
primitives for particular use cases, including basic constructs like parallel loops 
as well as more sophisticated functionality offering efficient implementations of 
e.g. stencil operations. 

The purpose of the subdivision into a Core and User API is to enable the 
implementation of a variety of parallel primitives on top of a small, concise set of 
central constructs which can be utilized to provide portability among different 
implementations of the AllScale Core API. In particular, within the AllScale 
project, two implementations are developed:  

 a shared memory, pure C++ implementation which can be compiled by 
any C++14 compatible compiler which furthermore serves as a reference 
implementation and development platform for the pilot applications, and  

 the implementation utilizing the AllScale Compiler and Runtime System, 
utilizing a combination of static program analysis, code generation, 
scheduling, and resilience techniques to provide a highly scalable and 
portable implementation of the Core API 
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Additional parallel constructs may be introduced in the AllScale User API 
without the necessity of altering the underlying Core API implementation. Thus, 
the User API layer provides an effective way of extending the range of supported 
parallel patterns. 

Furthermore, by introducing the User API, application developers are shielded 
from the complexity of the Core API constructs. Due to the introduction of the 
User API efficient implementations of primitives native to the domain of the 
applications can be provided by parallelization experts. Thus, the overall task of 
providing efficient parallel codes is distributed among three contributors: 

 the domain expert aiming on obtaining the most effective algorithmic 
solution for the problem of interest 

 the high performance computing expert able to develop efficient domain 
specific primitives to be utilized by the domain expert, focusing on e.g. 
communication and synchronization overheads and cache efficiency  

 the system level expert focusing on providing the most flexible and 
portable implementation of the Core API, thereby handling load 
management, scheduling, resilience, and hardware management 
obligations 

The separation of responsibilities also effects the code base. By shielding the 
domain expert from all the underlying details (synchronization, communication, 
cache efficiency, scheduling, utilization of low-level parallel APIs …), the 
resulting application code remains free of the otherwise necessary management 
code. This positively affects the maintainability of the resulting applications and 
thus the productivity of the domain expert. 

2.2.2 Technological Base 

The AllScale API makes heavy use of C++’s code template based meta-
programming feature. This build-in language feature of C++ enables the scripted 
generation of code during the first stages of the compilation process. Widely 
utilized examples include the generation of data structures like vectors, sets, or 
maps specialized to specific type parameters. However, the capabilities of this 
features reach much further. Type parameters may be inspected, and cases may 
be distinguished. Thus, the meta-programming feature can be utilized to 
synthesize specialized code. It also enables the generic implementation of 
primitives, where a single primitive may cover a wide range of use cases, without 
the introduction of any abstraction overhead.  

All primitives of the AllScale Core API are generic primitives making heavy use of 
C++ meta-programming features for the automated synthetization of program 
code. So may all of the AllScale User API constructs, to improve their usability, 
reusability, and flexibility. 

The AllScale API utilizes C++ template features introduced by the C++14 
standard revision, supported by recent versions of GCC, Clang, and Visual Studio. 
No additional libraries or system dependencies are required. 
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2.2.3 AllScale Core API 

The AllScale Core API provides a concise set of generic primitives for expressing 
parallel control flows, communication, and synchronization operations.  

2.2.3.1 Parallel Control Flow and Synchronization Primitives 

The AllScale Core API provides a single primitive for running concurrent tasks. 
This primitive, the prec operator, is a higher order function combining three 
given functions into a new, recursive function1. The three combined input 
functions are: 

 a function testing for the base case of a recursion 
 a function processing the base case of a recursion 
 a function processing the recursive step case 

The prec operator combines those functions into a new recursive function which, 
for a given input parameter, conducts the specified computation accordingly. 
Thereby sub-tasks invoked by the step case function may be processed in 
parallel. 

To support an arbitrary input type, the prec operator has the type 

(𝛼 → 𝑏𝑜𝑜𝑙, 𝛼 → 𝛽, (𝛼, 𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) → (𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) 

where 𝛼  is the parameter type of the resulting recursive function and 
𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉 is a parameterized abstract data type (ADT) modeling a handle on 
parallel tasks (see below). The parameter of the prec operator are: 

 a function of type 𝛼 → 𝑏𝑜𝑜𝑙 identifying base cases 
 a function of type 𝛼 → 𝛽 computing base cases 
 a function of type (𝛼, 𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉 computing a step 

cases where 
o the first parameter is the parameter for the recursive step and 
o the second parameter is a reference to the recursive function 

created by the prec call itself to compute sub-task 

The resulting value of type 𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉 is a function which, upon invocation, 
spawns a new task conducting the specified recursive operation in parallel. The 
resulting task handle can be utilized to orchestrate the parallel execution of 
additional tasks. 

For the 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒 ADT, the following operators are defined: 

NAME TYPE DESCRIPTION 

wait (𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉) → 𝑢𝑛𝑖𝑡 Waits for the referenced task to be 
completed. 

get (𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉) → 𝛼 Waits for the referenced task to be 
finished and obtains the computed result 

                                                        

1 For clarity we focus on the non-mutual recursive case in this document. The actual 
implementation provides support for the mutual recursive case as well. 



D2.3 – AllScale System Architecture 

Copyright © AllScale Consortium Partners 2017 

 
15 

done (𝛼) → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉 A function referencing a finished task 
which has produced the given value. 

par 

(

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉,
(𝛼, 𝛽) → 𝛾

)

→ 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛾〉 

A function creating a new task waiting for 
the result of the two given treetures and 
computing a new result using the given 
combination function; the subtasks are 
processed in parallel 

seq 

(

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉,
(𝛼, 𝛽) → 𝛾

)

→ 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛾〉 

A function creating a new task waiting for 
the result of the two given treetures and 
computing a new result using the given 
combination function; the subtasks are 
processed in sequence 

 

The function created by the prec operator is – beside the 𝑑𝑜𝑛𝑒, 𝑠𝑒𝑞 and 𝑝𝑎𝑟 
operators – the only constructor for tasks. The 𝑠𝑒𝑞 and 𝑝𝑎𝑟 operators can be 
utilized for orchestrating the parallel control flow within the implementation of 
the step case of a parallel function, while the operators 𝑤𝑎𝑖𝑡 and 𝑔𝑒𝑡 can be used 
for synchronization and data transfers, similar to futures. 

Within this document, we omit the third argument of the par and seq operator 
whenever it is a mere value consumption of the treeture results, not conducting 
any aggregation.  

Due to the restriction of tasks being composed using the presented primitives, 
hierarchies of tasks can only be formed utilizing the 𝑝𝑎𝑟 and 𝑠𝑒𝑞 operator 
recursively – both connecting two sub-tasks. Consequently, all task hierarchies 
are binary hierarchies, where each task has either no child task or two child 
tasks. Those child tasks are referred to as the left and right child task. 

With the given primitives synchronization schemes equivalent to those of 
futures can be realized. However, for finer-grained dependencies, 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒𝑠 
allow to obtain references to sub-tasks. Those references are modeled by the 
𝑡𝑟𝑒𝑓 (task reference) ADT and the following operators: 

NAME TYPE DESCRIPTION 

toRef (𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉) → 𝑡𝑟𝑒𝑓 Converts a treeture to a task reference 

getLeft 𝑡𝑟𝑒𝑓 → 𝑡𝑟𝑒𝑓 Obtains a reference to the (logical) left 
sub-task of the referenced task. 

getRight 𝑡𝑟𝑒𝑓 → 𝑡𝑟𝑒𝑓 Obtains a reference to the (logical) right 
sub-task of the referenced task. 

wait 𝑡𝑟𝑒𝑓 → 𝑢𝑛𝑖𝑡 Waits for the referenced subtask to be 
completed (blocking). 
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A logical sub-task is thereby the sub-task of a task that might in reality not yet or 
not ever exist. This may happen since it is left to the runtime to decide upon the 
granularity of the recursive tasks to be actually processed. Dependencies may 
address a finer grained granularity than the task which are actually processed. In 
those cases, task references are supposed to reference the task with the finest 
granularity comprising the workload of the intended task. 

With those primitives more fine-grained synchronization between tasks within a 
single or across multiple task hierarchies can be realized. The following example 
outlines its application within the context of parallel loops. 

 

Example: 

To illustrate the interaction of the prec operator and the operators defined on 
tasks consider the following example. The objective is to initialize all elements of 
an array with 0. The sequential code is given by the following code fragment: 

for( i = 0 … N ) { 
 A[i] = 0; 
} 

For a nested recursive parallel implementation, the full range of N elements can 
be recursively sub-divided and recursive calls can be processed in parallel. This 
operation can be encoded utilizing the Core API primitives defined above as 
follows (in C++14 like syntax): 

using range = pair<int,int>; 
auto init = prec( 
 [&](const range& r) { return r.second - r.first <= 1; }, 
 [&](const range& r) { for( i = r.first … r.second ) A[i] = 0; }, 
 [&](const range& r, const auto& rec) { 
  int mid = r.first + (r.second – r. first) / 2; 
  return par( 
   rec(range( r.first, mid )), 
   rec(range( mid, r.second )), 
  ); 
 } 
); 
wait(init(0,N)); 

The prec operator call combines the base case test (at most one element), the 
base case computation step, and a function processing the step case into a 
function capable of initializing the entire array. The call to the init function 
(init(0,N)) triggers the parallel processing of the initialization and the concluding 
wait call awaits the completion of the task. 

Notice, that the given code example demonstrates a general template for 
describing parallel loops based on the prec operator. This general pattern can be 
extracted into a generic function pfor of type 

(𝛼, 𝛼, 𝛼 → 𝛽) → 𝑡𝑎𝑠𝑘 

defined by  
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task pfor(𝛼 l, 𝛼 u, 𝛼 → 𝛽 body) { 
 using range = pair< 𝛼, 𝛼 >; 
 auto loop = prec( 
  [&](const range& r) { return r.second - r.first <= 1; }, 
  [&](const range& r) { for( i = r.first … r.second ) body(i); }, 
  [&](const range& r, const auto& pfor) { 
   int mid = r.first + (r.second – r. first) / 2; 
   return par( 
    pfor(range( r.first, mid )), 
    pfor(range( mid, r.second )), 
   ); 
  } 
 ); 
 return init(0,N); 
} 

which can be utilized for running parallel loops by invoking 

wait(pfor(0,N,[&](int i) {  
 A[i] = 0;  
})); 

which, when defining task handles as being implicitly synced upon destruction 
(C++ feature) can be further reduced to 

pfor(0,N,[&](int i) {  
 A[i] = 0;  
}); 

The presented pfor function is one of the operators provided by the AllScale User 
API layer. It demonstrates the realization of a parallel pattern by utilizing the 
underlying Core API constructs. 

 

Fine Grained Synchronization 

In addition to enabling the awaiting of the completion of all the parallel loop 
iterations, the treeture returned by the pfor call can furthermore be utilized to 
synchronize on sub-sets of the iteration range. For instance, by utilizing the task 
reference operations getLeft and getRight references to the tasks processing the 
left and right half of the iteration space can be obtained. By applying this 
operation recursively, smaller subsets can be addressed. As a consequence, fine-
grained synchronization between consecutive parallel loops can be realized. 

For instance, in the code fragment 

auto As = pfor(0,N,[&](int i) {  
 A[i] = f(..);  
}); 
pfor(1,N-1,[&](int i) {  
 A[i] = f(A[i-1], A[i], A[i+1]);  
}, wait_for_neighbors(As)); 
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the treeture obtained from the first parallel loop is utilized as an additional input 
for the second loop describing execution dependencies to be considered. In this 
particular case each iteration i of the second loop may only be processed once 
the iterations i-1, i, and i+1 of the first loop have been completed. The operators 
supported on task references facilitate the implementation of such operations 
within the AllScale User API. The corresponding details as well as the C++ 
specification of the described operators and ADTs is covered in the AllScale API 
specification deliverables (D2.5 and D2.6). 

2.2.3.2 Data Structure Primitives 

As for the description of the control flow, data structures, to be managed by any 
underlying runtime system implementation, need to be equally specified 
utilizing a uniform set of primitives. As for the design of the control flow 
primitives, the objective for the data structure primitives is to provide a flexible 
generic interface such that expert developers of the User Level API have a 
maximum of flexibility to express data structures to be managed by the 
underlying system. 

To this end, the data structure primitives offered by the core are a mere 
specification of any potential type’s interfaces and behaviors – in C++ terms a 
concept. Any type T to be managed by an AllScale API implementation has to 
provide the following properties: 

 type T has to specify the following types: 
o a type F for fragments of the data storage 
o a type R for addressing sub-ranges of the data structure 

Each of those types has to provide the following operators: 

 for the fragment type F: 
o create of type 𝑅 →  𝐹 creating a fragment covering (at least) the 

specified range 
o delete of type 𝐹 → 𝑢𝑛𝑖𝑡 deleting the given fragment 
o resize of type (𝐹, 𝑅) → 𝑢𝑛𝑖𝑡 altering the capacity of the given 

fragment to cover at least the range given by the second parameter 
o mask of type 𝐹 → 𝑇 providing access to the data stored in the 

fragment F via the interface defined by type T 
o extract of type (𝐹, 𝑅) → 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 extracting the data addressed by 

the second parameters from the fragment given by the first 
parameter and packing it into an archive; Archive is a generic type 
of a utility provided by the API implementations to serialize data 
to be transferred between address spaces; 

o insert of type (𝐹, 𝑅, 𝐴𝑟𝑐ℎ𝑖𝑣𝑒) → 𝑢𝑛𝑖𝑡 importing the data stored in 
the given archive into the given fragment at the specified range R. 

 for the range type R: 
o union of type (𝑅, 𝑅) → 𝑅 computing (a super-set of) the union of 

the two ranges covered by the two parameters 
o intersect of type (𝑅, 𝑅) → 𝑅  computing (a super-set of) the 

intersection of the two ranges covered by the two parameters 
o empty of type (𝑅) → 𝑏𝑜𝑜𝑙 determining whether the given range is 

empty, thus contains no elements to be stored 
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o pack of type (𝑅) → 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 to serialize instances 
o unpack of type (𝐴𝑟𝑐ℎ𝑖𝑣𝑒) → 𝑅 to deserialize instances 

Those concepts and interfaces are covered by corresponding C++ type 
requirements checked during the compilation process. 

Example: 

To illustrate the design of data structures to be managed by AllScale API 
implementations, consider the example of storing a 2D grid of doubles. The 
corresponding types could be: 

 T = Grid2D<double> offering operators for accessing elements within a 
2D structure, indexed by coordinates of type R, where the storage is 
provided by an instance of type F; 

 F = GridFragment2D<double> realizing the actual storage of fragments of 
the data stored in Grid2D instances; the implementation may hold a 
reference to allocated memory plus the coordinates of the covered ranges 

 R = Range2D consisting of the conjunction of 2D-coordinate pairs 
describing axis-aligned boxes covering the range to be described 

The implementations of the corresponding operations are then realizing 
according to the requirements specified above. 

2.2.3.3 IO Primitives 

All sensible applications require IO for their operations. While high-performance 
IO is a research topic on its own, the AllScale Core API provides basic primitives 
to facilitate high-performance IO while keeping actual implementations abstract. 

There are two different kind of IO operations supported: 

 Streaming, supported through an AllScale IO interface facilitating e.g. the 
writing of simulation results to output streams 

 Memory mapped IO for the structured loading of static input data for 
which efficient random access operations are required 

The following sections cover the corresponding interfaces. 

 

Stream Based IO 

The underlying concept of the AllScale streaming IO interface is an out-of-order 
stream. Data entries can be atomically read from or written to such a stream. 
However, the order in which entries show up in the stream is undefined. 
Although tasks may be restricted due to imposed synchronization constraints to 
write data in a certain order to a stream pointing e.g. to a file, the resulting file 
may contain the written data in an arbitrary order. Furthermore, the API only 
guarantees the eventual visibility of a written element within an output stream, 
before the application terminates – not any particular timing. Thus, in particular, 
stream IO primitives may not be utilized for realizing synchronization operations 
among tasks. 

Within the API we utilize the abstract types istream and ostream as a 
representation of an input or output stream. Furthermore, the following 
operators are offered: 
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NAME TYPE DESCRIPTION 

read (𝑖𝑠𝑡𝑟𝑒𝑎𝑚) → 𝛼 Atomically reads an element of type 𝛼 
from the given input stream 

write (𝑜𝑠𝑡𝑟𝑒𝑎𝑚, 𝛼) → 𝑢𝑛𝑖𝑡 Atomically writes the given element of 
type 𝛼 to the given output stream, where 
it will be visible eventually  

Additionally, a few operations for the global management of streams and their 
association to files are offered: 

NAME TYPE DESCRIPTION 

create_in (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑖𝑠𝑡𝑟𝑒𝑎𝑚 Opens an input file with the given name 
and provides a stream to read from it; the 
file format is implementation specific and 
data may only be read and written using 
the AllScale IO API 

create_out (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑜𝑠𝑡𝑟𝑒𝑎𝑚 Creates a new empty file under the given 
name and provides an output stream to 
write information to the file; the file 
format is implementation specific and 
may only be read using AllScale IO 
primitives 

get_in (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑖𝑠𝑡𝑟𝑒𝑎𝑚 Obtains an input stream to a previously 
opened input file which might be 
concurrently read 

get_out (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑜𝑠𝑡𝑟𝑒𝑎𝑚 Obtains an output stream of a previously 
opened output file which might be 
concurrently written to 

Streams are designed to be the main facility to be utilized by application 
developers to produce output data without the artificial introduction of extra 
synchronization overhead. Furthermore, the abstraction to streams, their global 
addressing through names, and the lack of guarantees on the output order 
enables the flexible migration of tasks throughout the system. Tasks holding a 
stream to a file X on some node may be moved to another node, where they get 
assigned a new stream pointing to the logically same file. However, in reality the 
stream may point to a physically different output file maintained by the local 
runtime process. The concatenation of all the locally maintained output files 
controlled by the various AllScale Runtime System instances on a system are 
logically forming the actual output file. Thus, no synchronization beyond the 
boundaries of an AllScale node is every required to facilitate streaming IO. 
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Memory Mapped IO 

However, in some cases more complex input data structures need to be loaded. 
For instance, indexed files providing efficient access to desired sub-fractions may 
be loaded by an application. Since the sequential access through streams would 
impose a mayor performance penalty for accessing such a file, memory mapped 
IO is offered for read only files. 

The abstract type referencing a memory mapped IO file is mmfile. The following 
operations are supported on those: 

NAME TYPE DESCRIPTION 

open (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑚𝑚𝑓𝑖𝑙𝑒 Globally opens a memory mapped file 
with the given path. 

get (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑚𝑚𝑓𝑖𝑙𝑒 Obtains a reference to a previously 
opened memory mapped file. 

access (𝑚𝑚𝑓𝑖𝑙𝑒) → 𝛼 Interprets the content of the memory 
mapped file as a value of type 𝛼 

close (𝑚𝑚𝑓𝑖𝑙𝑒) → 𝑢𝑛𝑖𝑡 Globally closes a memory mapped file 
such that it is no longer available for any 
process in the application. 

Opening and closing memory mapped files is a global operation throughout the 
system. Once a file is opened, it is available within the address spaces of all 
runtime system processes, although not necessarily at the same address range. 
The task migration makes sure that references to such files are adapted 
accordingly whenever a task is migrated between nodes. 

Memory mapped IO is mainly considered a facility for special use cases in the 
construction of efficient data structures within the AllScale User API layer. An 
example is the static graph structure of a mesh, as it is required by one of the 
pilot applications. While it might also be utilized by the end user, it will always 
be strictly limited to read-only use cases. Write operations are restricted to the 
steam based IO API. 

 

2.2.4 AllScale User API 

The generic nature of the Core API exceeds the complexity which could be 
effectively handled by domain experts for implementing parallel algorithms. 
Thus, it is the objective of the AllScale User API layer to provide a set of more 
user-friendly constructs for the composition of parallel applications. The 
implementation of those constructs are carried out by high-performance and 
C++ experts utilizing the primitives offered by the Core API. An example for this 
approach has been provided by Section 2.2.3.1 covering the implementation of a 
generic parallel loop. 

The list of constructs covered by the AllScale User API comprises: 
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 parallel control flow primitives: 
o parallel loops with support for fine-grained dependency  

 over numerical ranges (e.g. 1 – 10) 
 over arbitrary ranges defined by C++ iterators 

o parallel reductions as an extension to parallel loops 
o a stencil API utilizing a recursive space-time decomposition 

schema 
o an adaptive grid refinement stencil as an extension to the standard 

stencil 
 data structures: 

o multi-dimensional static and dynamically sized grids (utilized by 
iPIC3D and AMDADOS) 

o an adaptive refine-able grid (utilized by AMDADOS) 
o an unstructured multi-grid mesh (utilized by Fine/Open) 

All of those are solely based on the constructs of the AllScale Core API and 
standard C++ features and are thus portable among different AllScale API 
implementations. 

Since the User API layer is open for future extensions, the given list of example 
constructs comprises only those explicitly required in order to meet the projects 
objectives. Additional operators for other types of parallel applications, including 
e.g. branch and bound or MapReduce use cases may be implemented during the 
course of the development and tuning of the AllScale Environment.  

 

2.3 AllScale Pilot Applications 

In the context of the AllScale project, the AllScale User API is developed in 
particular to support three pilot applications. Those applications have been 
specifically chosen due to their high demand of computational resources, 
combined with dynamic load management requirements, reasonable scalability 
potential and scientific relevance. A general description of those application, as 
well as an assessment of their characteristics can be found in chapter 4 of 
Deliverable D2.1. 

Within this section the architecture of the AllScale implementations of those 
prototypes are outlined. Thereby, the focus is placed in particular on the 
interaction between those pilot applications and the AllScale API. 

As a general observation, all pilots are built around a central data structure on 
which properly orchestrated concurrent updates are iteratively applied. 
However, due to those updates, the underlying data structure may be gradually 
altered such that the necessary computational workload required for updating 
individual partitions of the data structure may significantly vary over time. 

The following subsections summarize the underlying data structure as well as 
the necessary update operations for the individual pilots. Furthermore, the 
implementation of those constructs based on the AllScale API is outlined. 
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2.3.1 iPIC3D: Implicit Particle-in-Cell Code 

The iPIC3D pilot application is a Particle-in-Cell code. As such, its underlying 
data structure is given by a three-dimensional, regular, equidistant grid where 
each cell maintains a dynamically sized list of particles. For each particle its 
species (e.g. electron or proton), and physical properties (location, velocity, 
charge and mass) is stored. The cells within the grid are partitioning the three-
dimensional space in equally sized sub-regions. As an invariant, each particle 
stored within a cell has to be located within the sub-region represented by the 
cell. 

In each iteration of the simulation, the physical effects of the simulated particles 
are aggregated to compute a set of induced force fields. Those fields are 
described by their strength on the corner nodes of the grid structure. In a next 
step, the forces affecting each particle due to the aggregated fields are computed 
and a resulting acceleration obtained. This acceleration is utilized to update the 
velocity and location of each individual particle. To preserve the particle location 
invariant, particles moving beyond the boundary of a cell need to be migrated. 
Once the migration of particles is completed, the next iteration can be computed. 

The simulation is set up such that particles may never move fast enough to skip a 
full cell over the duration of a single time step (=iteration step). This property is 
effectively restricting communication patterns, such that e.g. regions that are 𝑛 
cells apart may differ in their simulation time by up to 𝑛 time steps. It also 
localizes communication since particles may only be exchanged between 
adjacent cells. 

 

Technical Realization 

The iPIC3D prototype utilizes two main data structures: three-dimensional grids 
and particle lists. For both data structures it is necessary to provide the 
possibility of applying parallel operations upon, to exploit the inherent 
scalability of the application. Thus, for both, implementations fitting the data 
item concept imposed by the AllScale Core API have to be provided. Since regular 
n-dimensional grids and lists are general concepts, both of them are developed 
as part of the AllScale User API in the form of generic container-like data 
structures. 

Those data structures are utilized to represent the grid, its particles, and the 
induced fields within the prototype. On top of those, parallel update operations 
are supported utilizing e.g. higher-dimensional variations of the pfor construct 
outlined within the API section above. Thus, the resulting simulation code is 
structured like a list of update loops, enclosed within a single time step loop 
(similar to the example covered in Section 4). 

The algorithm utilized for solving the field equations after aggregating the effects 
of all particles within the simulation remains exchangeable within this pilot 
implementation. The alternative solvers represent different trade-offs between 
communication demands and the length of a simulation time step – and thus the 
number of iterations required for simulating a given physical process. For field 
solver algorithms exhibiting similar localized communication properties than the 
rest of the application, a recursive space-time division may be attempted. This 
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would, in theory, maximize the computational load per memory unit transferred 
through the memory hierarchy and thus lead to highest resource efficiency. This 
space-time decomposition will be supported by another User API primitive.  

 

Main Challenge 

The main challenge imposed by the iPIC3D pilot is its dynamic load. Large groups 
of particles are likely to dynamically form clusters. In fact, the resulting 
application is intended to study this kind of clustering phenomena. In those 
cases, the occupied cells exhibit orders of magnitudes higher computational load 
than relatively empty cells. The AllScale Environment is challenged to realize the 
necessary load balancing capability on an inter-node level to be able to distribute 
the load evenly among the available computational resources, while dynamically 
adapting upon the continuously mutating distribution of particles within the 
simulation. 

More details on the AllScale implementation of this pilot application can be 
found in Deliverable D6.2. 

 

2.3.2 FINE™/OPEN: Unstructured CFD solver 

The FINE™/OPEN prototype is a computational fluid dynamics (CFD) solver. The 
underlying data structure is a static, unstructured mesh comprising objects like 
cells, faces, edges, nodes, or boundary faces. The geometric information is 
covered by a list of relations connecting those objects with each other (e.g. a 
relation relating a cell to its faces). Furthermore, for each object, a set of 
properties influencing the simulation is maintained. Those may comprise static 
information like e.g. the volume of a cell, the spatial location of a node or the 
conductivity of a face. However, it may also comprise dynamic information like 
the pressure within cells or the heat flow through a face. The latter is the state of 
the conducted simulation and the result end users are interested in. Finally, to 
aid the effective computation of the desired solution, multiple meshes describing 
the same objects in different resolutions are combined into a hierarchy of 
meshes to facilitate the application of a multigrid solver approach. Thus, the full 
data structure is a hierarchy of meshes, where each mesh comprises various sets 
of objects, each linked through geometric relations and associated with a set of 
static and dynamic properties. 

In each simulation step, updates to the various properties associated to the mesh 
objects are conducted. Updates start in the mesh layer exhibiting the finest 
resolution. Thereby, physical effects are propagated through the connections 
between the various objects on this layer. After a fixed number of iterations, the 
current state of the simulated properties are aggregated and projected to the 
next coarser grained level of the hierarchical mesh. There, the same propagation 
and aggregation operations are repeated. After completing updates on the 
coarsest layer, modifications are projected recursively down towards the finer 
layers and the update starts over again for the next time step. 

All updates are thereby local as defined by the relations formed over the objects 
on the various mesh layers. Since the meshes represent real world physical 
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structures, the resulting updates are representing spatially local interactions. 
The key for the realization of an efficient distributed implementation of this pilot 
application is to minimize data transfers. This is achieved through the 
partitioning of the meshes such that to a high degree updates can be conducted 
locally, minimizing the need of data exchanges. 

 

Technical Realization 

The underlying mesh data structure required by this prototype has to be 
implemented such that it meets the requirements imposed by the data item 
concept of the AllScale Core API. In particular, it has to provide support for 
partitioning. Meshes need to be decomposable into sub-meshes dynamically, to 
be distributed among the available resources. This decomposition has to be 
realized such that the necessary interaction between nodes is minimized.  

To obtain an efficient, close to optimal decomposition we exploit the static 
nature of the simulated mesh. The partitioning of the mesh is computed offline, 
in the form of a pre-processing step. The resulting decomposed meshes, 
including their information regarding their boundary regions and closures, is 
incorporated into the data structure utilized during the actual simulation – and 
thus not required to be computed while running the time-critical part of the 
solver. The resulting available static information is those available during 
runtime for realizing data exchange and migration operations. 

The provided mesh data structure is designed generically to facilitate an 
arbitrary list of objects, relations, hierarchy levels, and properties. Thus, future 
use cases demanding modified mesh variants are implicitly supported by the 
implementation developed for this pilot. While the generic mesh and basic 
operations are part of the User API as a general facility, the specific instantiation 
utilized by the pilot and IO operators are part of the pilot application. 

 

Main Challenge 

The main challenge imposed by this pilot is the complexity of the underlying data 
structure. The need for managing an unstructured mesh, required to be 
dynamically redistributed throughout a system during runtime imposes 
challenges to all layers of the software stack, in particular to the API which is 
required to implement all the necessary data item operations. Furthermore, the 
size of the handled meshes, comprising several billion objects, impose 
algorithmic challenges for the required pre-processing tools. 

Another challenge of this prototype, as described in the requirements 
Deliverable D2.1 is the needed IO support. This problem is to be handled within 
the pilot implementation by customizing the output format of the simulation to 
facilitate high performance IO. In particular, the order of values in the output 
data stream as well as the actual file structure (one or multiple files, e.g. one per 
process) are addressed to that end. By relaxing those constraints, the IO 
performance bottleneck is addressed. 

More details on the AllScale implementation of this pilot application can be 
found in Deliverable D6.4. 
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2.3.3 AMDADOS: Adaptive Meshing and Data Assimilation 

The AMDADOS pilot application is a numerical simulation of an oil spill based on 
a structured, adaptively refined, regular grid, incorporating data assimilation 
events. Thus, the main data structure this pilot is based on is a regular, adaptive 
grid. The number of refinement levels is thereby known during development 
time and can be hard coded within the application. However, coarsening and 
refinement steps are applied dynamically during runtime based on the state of 
the simulation as well as data assimilation events. 

The refinement of the resolution follows a hierarchical pattern. On the top level, 
a fixed size, regular 2D grid defines the domain of the overall simulated area. 
Each of those top-level cells (aka sub-domains) may then be itself recursively 
sub-divided into small regular grids, up to a statically fixed maximum resolution. 

The simulation algorithm is updating each sub-domain independently for one 
time step at the currently active level of resolution. This update operation may 
take several iterations, yet does not necessitate the exchange of any information 
with any other sub-domain. Once completed, boundary information needs to be 
exchanged between adjacent sub-domains utilizing another iterative algorithm. 
This algorithm only requires the localized synchronization between neighboring 
sub-domains. Thus, sub-domains being n global cell-widths apart may be n time 
steps apart in their simulation time. 

The assimilation of data is an optional step after the completion of an update of a 
sub-domain. In this case, the solution obtained for the processed sub-domain is 
combined with some externally obtained measurement before the simulation 
continues with the mutual exchange of information among adjacent cells and the 
next simulation time step. 

An assimilation operation, however, is orders of magnitudes more complex than 
a mere simulation time step for the same sub-domain. Thus, assimilations are 
triggering load imbalance that has to be dealt with. 

 

Technical Realization 

The basic data structure is facilitated by an adaptive grid structure following the 
constraints imposed by the API’s data item concept. This adaptive grid is 
developed as part of the AllScale User API and shares its implementation to a 
large extend with a regular grid, as it is utilized by other pilots. The update 
operations on the grid may be implemented utilizing pfor loop structures, yet 
this pilot is especially eligible for applying recursive space-time decomposition 
to enable the concurrent computation of multiple time steps on spatially 
sufficiently separated sub domains. The corresponding operator for this step is 
offered by the AllScale User API, in a similar generic way as the pfor operator. 

 

Main Challenge 

The main challenge of this pilot is the handling of the dynamic changes in the 
imposed load. Data assimilation steps are sporadic events that can cause unusual 
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high load for a single update operation. Furthermore, the gradual adaptation of 
the grid resolution is continuously altering the distribution of computational 
load throughout the simulated domain.  

The design of the AllScale Environment, which is based on over-provisioning 
tasks for the available resources, mitigates the effects of load imbalance between 
individual tasks in the short term. Long term effects of shifting load can be 
handled due to the capability of dynamically reassigning data fragments – and 
thus ownership to domains – among the participating compute nodes. Finally, 
due to the native support of nested parallelism, the computation of an 
assimilation step can itself be recursively broken apart and distributed e.g. 
among the cores of a node to further mitigate the impact on the load balance of 
such events. In combination, those three techniques should provide the substrate 
for an efficient processing of this pilot. 

More details on the AllScale implementation of this pilot application can be 
found in Deliverable D6.6. 

2.4 AllScale Compiler 

Codes implemented utilizing the AllScale API can be compiled by standard C++ 
tools and executed on parallel, shared memory machines. This mode is intended 
to be used during the development and debugging phases of an application 
development project. However, for obtaining an extreme scale high-performance 
version that benefits from all the novel services offered by the AllScale 
Environment, the same code base has to be compiled by the API-aware AllScale 
Compiler. Unlike standard C++ compilers, the AllScale Compiler is aware of the 
interpretation of the parallel primitives offered by the Core API layer and 
restructures the application by introducing additional versions of encountered 
parallel code fragments. Each version targets a different architecture and/or 
represent a different trade-off between multiple optimization objectives (e.g. 
more parallelism vs. less overhead). Together with information describing the 
specific traits of those versions as well as details regarding their (data) 
dependencies, the resulting set of implementations are forwarded to the AllScale 
runtime system (Section 2.5). The latter dynamically auto-tunes the program for 
adjustable objectives to achieve a desired trade-off among the considered tuning 
objectives.  

The implementation of the AllScale Compiler is based on the Insieme source-to-
source compiler infrastructure. 

2.4.1 Overview 

Figure 2 outlines the internal organization of the AllScale Compiler. In a first step 
a given input code (1) utilizing the AllScale API is parsed by a clang based C++ 
frontend. During this process, the C++ code templates utilized by the User-Level 
API for building user-friendly, domain-specific APIs is unfolded and instantiated. 
As a result their concrete instantiation becomes accessible to the second step, 
namely the semantic frontend. In this step, the instantiated, concrete program 
codes (2) are converted to a high-level, explicit parallel intermediate 
representation (3). Unlike conventional ASTs mirroring the original input 
language, the design of this intermediate representation (IR) is focus on a 
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concise, minimal set of language constructs enabling the development of 
sophisticated analysis and transformations. Furthermore, unlike C++ or most 
other IRs, this IR provides explicit constructs to model parallel control flows and 
their synchronization. Also, the representation comprises the entire program, 
thus providing a global view exceeding the conventional limits of individual 
translation units. Based on this IR, in the third compilation step, parallel tasks 
are analyzed to determine their data requirements (4). These requirements 
describe e.g. the data that needs to be transferred – along with a task – to a 
different address space for the task to be successfully performed remotely, as 
well as the data to be communicated to any code fragment subsequently 
accessing the produced data. This abstract data requirement description is 
exposed to the runtime in the form of a function computing the data 
requirements of a concrete task. It enables the runtime to manage corresponding 
data migration operations between nodes of a cluster, or to move data to and 
from device memory associated to accelerators. Also, to improve the 
application’s resilience, required data may be moved to and from persistent 
storage devices to facilitate checkpointing. 

Furthermore, the compiler’s modular backend generates code versions targeting 
different architectures (CPU, accelerators), as well as different performance 
trait-off objectives (e.g. degree of parallelism). However, the compiler may 
encounter limitations preventing it from being able to obtain accurate enough 
data requirements and/or generating desired code versions. To provide 
feedback regarding encountered obstacles, a report (5) summarizing failed, as 
well as successful code analysis and generation steps, is produced to aid 
debugging and code optimization to be undertaken by the software developer. 
Finally, all the available versions of the tasks are combined and encoded into a 
single C++ output code together with their meta-information (6). The runtime 
system may then flexibly choose among them. 

2.4.2 Compiler Infrastructure 

The internal representation (IR) of the Insieme compiler (Inspire) is an explicit 
parallel high-level IR for C/C++ enabling the analysis and transformation of C++ 
applications exhibiting high-level constructs, including generic types and 
operators. 

 
Figure 2. Overview AllScale Compiler Architecture 
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For the AllScale project, Insieme’s IR is extended by a module2 capable of 
representing the primitives of the AllScale Core API, in particular the generic 
prec operator, the associated treeture and tref ADT and the manageable data 
structure concept. This modular IR extension provides, according to the design of 
the AllScale Compiler, the foundation of program analysis, transformation, and 
code generation steps. 

The following modifications are required: 

 a IR module modelling the AllScale Core operators 
 a frontend extension identifying the corresponding constructs in the 

input code and converting them into the compiler’s intermediate 
representation 

 an extension to the analysis framework enabling the correct 
interpretation of the newly introduced language extensions 

 a backend extension to synthesize code fitting the runtime interface’s 
requirements in a first development step; in a second phase, the 
generation of customized code versions addressing various desired 
objectives (degree of parallelism, target architecture, resilience, 
instrumentation, …) are added incrementally 

All those module extensions are integrated with the Insieme framework to 
produce a compiler executable facilitating the compilation of input applications 
into binaries utilizing the AllScale Runtime System for managing their execution 
on target systems. The combined AllScale toolchain should thereby serve as a 
complete drop-in replacement of a standard GCC or clang based toolchain 
utilized by a development or build system. 

2.4.3 Data Requirement Analysis 

Given a code fragment encoded within Insieme’s parallel intermediate 
representation extended by the AllScale IR module, an analysis step symbolically 
determine the data requirements of the given fragment. For the code fragment 
computing 

for(int i = a .. b ) { 
 A[i] = B[i-1] + B[i] + B[i+1]; 
} 

the analysis determines the following requirements: 

 the array A is written for the range [a..b] 
 the array B is read for the range [a-1…b+1] 

This symbolic representation, parameterized by the free variables A, B, a, and b 
of the code fragment, is obtained by the data requirement analysis within the 
compiler. Within the backend of the compiler, this symbolic formula is converted 
into a function capable to compute the actual data dependencies based on the 
concrete values of the free variables. This function is then offered to the runtime 
system to manage the distribution of data and tasks throughout the system. 

                                                        

2 A module in the Insieme infrastructure is essentially the definition of a set of abstract data types 
and their associated operations. 
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The example above is a simple example to illustrate the general approach. A 
more realistic case is the recursive pfor implementation as covered in Section 
2.2.3.1. In this case the data requirements of some sub-task has to be deduced 
from the captured values and the recursive range parameters. Details of this 
analysis, the internal IR modifications, and the backend code generation are 
covered in the corresponding Deliverables D3.3 and D3.4. 

The more accurate those access patterns can be deduced, the more fine-granular 
data requirements can be forwarded to the runtime system. In cases where the 
analysis fails to obtain sufficiently accurate results, an issue is reported to the 
end-user utilizing the AllScale Compiler, indicating a problem a human user may 
be able to resolve e.g. by restructuring the code or adding hints through 
additional assertions. 

 

2.5 AllScale Runtime System 

2.5.1 Overview 

The resulting C++ output code is compiled by platform specific C++ compilers 
and linked against the AllScale Runtime System. Unlike conventional programs 
orchestrating their own execution, in the AllScale Environment the runtime 
system steers the execution of the resulting program, while the input program 
offers execution options. Figure 3 outlines this process. 

The central element of the runtime system is the dynamic optimizer and 
scheduler: it is the component that steers the execution. Triggered by program 

 
Figure 3. Overview AllScale Runtime System Architecture 
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events (1) like task spawning, suspension or completion, the scheduler conducts 
application managing decisions (2). The available options comprise those offered 
by the input program generated by the compiler (3), as well as the settings of any 
hardware-level actuators provided by the target platform, such as frequency 
scaling. Each task version provided by the compiler is annotated with 
requirements and cost models supporting the optimizer in its evaluation. Based 
on dynamically customizable optimization objectives (4) – like focusing on 
execution time or energy savings – the scheduler issues corresponding steering 
commands (5) to the actuators influencing the execution. These actuators cover 
task, data and resource management operations. Thus, the optimizer may alter 
the assignment of tasks to processors, the location of data elements in the 
system, and hardware parameters such as e.g. the frequency of cores. The actual 
task execution (6) is monitored and performance data is collected (7) which may 
be utilized subsequently as input for future iterations of the runtime system 
control loop. Furthermore, a resilience management component (8) monitors the 
state of the processing application to discover irregularities. Based on this 
monitoring, the manager may suggest corresponding precautionary measures 
(e.g. the creation of local checkpoints) as well as recovery operations to the 
dynamic optimizer. The scheduler is covered by Section 2.6, the monitoring 
system by Section 2.7, and the resilience management by Section 2.8. Due to 
their architectural position, those three components are referred to as runtime 
subsystems. 

Note that, while for simplicity Figure 3 represents the runtime system and its 
control loop as a centralized system, the AllScale Environment utilizes 
distributed, scalable scheduling and management solutions. Specifically due to 
the scalability and minimal induced system performance noise requirements of 
the scheduler and the monitoring service, the design targets distributed 
implementations to offer scalable solutions for those components. 

2.5.2 Runtime Hardware and Application Model 

The foundation of the runtime system’s design is based on two models 
abstracting its environment: 

 the hardware model, describing the structure of the compute 
infrastructure an application is processed on, and 

 the application model, describing the structure of the processed 
application 

It is the runtime’s job to utilize the information it maintains about the available 
hardware to map the computation and data described by the application model 
to the available resources according to some user-specified objectives. 

2.5.2.1 The Hardware Model 

The hardware model utilized by the AllScale Runtime System provides a 
common abstraction of the available hardware resources to be utilized and 
managed by the various runtime subsystems. It those provides a common way of 
addressing those resources throughout the system. 

The hardware model comprises the following entities: 
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 Node: the unit of resource managed by a single AllScale process; each 
node has an associated locality, which can be addressed through the 
network of AllScale processes; also, every node has its own instances of 
runtime-subsystems (e.g. scheduler or resilience manager); 
 

 Compute Unit: a hardware unit capable of processing work (see work item 
below); a CPU core or an accelerator are, for instance, represented as 
compute units; each compute unit belongs to a single node 
 

 Memory Unit: a memory unit is the abstraction of an address space where 
each addressable memory location exhibits the same access behavior as 
any other location within the same space; for instance, NuMA nodes or 
GPU device memory are represented as memory units; each memory unit 
belongs to a single node 
 

 Links: links connect compute and memory units; a link between a 
compute unit A and a memory unit B indicates that code running on A can 
access and manipulate data stored in memory location B. 

 

Additionally we define a machine to be the term utilized for referencing a 
network of resources managed by a connected network of AllScale Runtime 
System process instances. Thus, the term machine references e.g. the part of a 
compute cluster provisioned for the execution of an AllScale application. 

While application code running on a compute unit A may only access data 
located within directly linked memory locations, the runtime system is capable 
of moving data between any pair of memory locations. Thus, the runtime system 
is responsible for actively managing the workload and data distribution such 
that the data required by processed tasks is always located within accessible 
memory units. 

An instance of the hardware model can be considered as a graph like structure, 
where nodes are given by compute and memory units and edges are formed 
through links. A concrete instance of the hardware model is referred to as a 
hardware environment. However, it is important to note that the hardware 
environment is not static over the course of the execution of an application. 
Nodes, links, compute or memory units may be added or removed dynamically – 
active, due to the management of resources by the runtime, or passively due to 
failures or external administrative operations. 

For instance, to save energy the runtime may decide to shut down a number of 
cores during a particular phase of the program execution. This is effecting the 
hardware environment by removing the corresponding compute units. Failing 
nodes or nodes disconnected for maintenance as well as rejoining nodes after 
repair operations are as well altering the hardware environment. 

Non-Functional Information 

The hardware model only specifies the most basic information regarding the 
available hardware resources necessary for successfully processing applications. 
However, additional, non-functional information like the (current) clock rate of 
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compute units, lengths of work queues associated to compute units, the size and 
occupation of memory locations, or the capacity of links are included to aid the 
decision making processes within runtime subsystems. The runtime system 
provides the framework for representing, distributing and querying this kind of 
information. The actual kind of information to be maintained, however, is 
adapted as demanded over the course of the development of the project. 

 

2.5.2.2 The Application Model 

The information about the hardware environment is utilized by the runtime 
system to distribute and balance a running application among the available 
resources. To that end, similar to the hardware model, an abstraction of the 
managed application is required. This abstraction is given by the application 
model. 

The application model describes applications governed by the AllScale Runtime 
System. The two central components are: 

 Work Item: the entity representing work that is utilized by the scheduler 
to distribute computational load among available compute units 

 Data Item: the entity representing data that is utilized by the runtime 
scheduler to distribute data among available memory units 

Work items represent a given amount of work, e.g. the update of a certain set of 
elements or the inspection of a set of configurations in a search. Data items on 
the other hand represent data structures like arrays, trees or meshes.  

In general, both, work and data items, are decomposable into partitions. Thus, a 
work item may be decomposed (up to a certain atomic granularity) into a set of 
smaller sub-items orchestrated to perform the same computation as the original 
item. Similar, data items may be partitioned into smaller structures to be 
distributed among multiple memory units. 

The connection between work and data items is formed by data requirement 
functions associated to each work item instance. Through those, work items 
define the data required for their processing as well as the access mode. For 
instance, a work item copying a range [x,..,y] of elements from a vector A to a 
vector B states that it requires read access to the elements A[x] … A[y] as well as 
write access to the elements B[x] … B[y]. In this case the runtime is required to 
assign this work item to a compute unit exhibiting access to the corresponding 
fractions of the data items A and B. However, to that end, the runtime system 
may decide to move data or fractions of data as well as to split tasks to obtain a 
more efficient execution schedule. This scheduling is the main objective of the 
scheduler subsystem. 

Furthermore, dependencies between work items may be formed to synchronize 
ongoing computation. Thus, work items may be scheduled only upon the 
completion of other work items. Combined with the data requirements, those 
dependencies are the only two means of synchronization offered to an AllScale 
application. Note that only the synchronization of tasks is exposed by the 
AllScale Core API to the user. Data requirements are extracted from the 
implementation code by the compiler through static code analysis. 



D2.3 – AllScale System Architecture 

Copyright © AllScale Consortium Partners 2017 

 
34 

 

Tunning Options 

In addition to the data requirements, a function realizing the partitioning of a 
work item, and a function for processing the work item on some compute unit, 
each work item may be equipped with a set of alternative implementations. Each 
of those implementations is functionally equivalent to the function processing 
the work item. However, those implementations may be tuned for specific 
scenarios or optimization trade-offs. Some may be prepared for utilizing 
accelerator hardware, while others may produce varying degrees of nested 
parallelism, exploit specific hardware available on some systems, or even 
represent different trade-offs between execution speed and energy efficiency. 
The runtime is free to choose any of those variants for processing a given work 
item on a selected compute unit. 

The set of alternatives offered to the runtime is not fixed a priory. Future 
development iterations on the compiler may introduce new code variants to be 
exploited by the runtime. To facilitate the utilization of those variants, additional 
meta-information describing the properties of the various code variants are 
added by the compiler. An example may be versions marked for being utilized on 
certain GPU types. As for the non-functional information maintained for the 
hardware environment, the AllScale toolchain components provide support for a 
generic set of code variants and meta-information properties. The ongoing 
development of the system will show which code variants and properties are 
beneficial for enforcing the objectives defined for the execution of a program. 

2.5.3 Technological Base 

The AllScale Runtime System is based on HPX, extended by the necessary 
infrastructure for fulfilling the requirements imposed on it. The necessary 
modifications and adaptations comprise: 

 the implementation of the work item infrastructure, comprising means 
for the specification, creation, addressing, and synchronization of work 
items; this mainly consisted of mapping those AllScale concepts to 
equivalent constructs offered by the underlying HPX runtime system 
 

 the implementation of a data item manager enabling the creation, 
addressing, manipulation, and localization of data items and partitions of 
those; this service is a new service built on top of the preexisting HPX 
infrastructure 
 

 the implementation of the hardware model, in particular means for 
addressing compute and memory units as well as to query their 
interconnection and non-functional properties 
 

 the logical concentration of management decisions to unite all 
performance impacting decision-making processes into to a single 
scheduler implementation; this requires an adaptation of the HPX 
scheduler to provide access to intra-node scheduling policies, in addition 
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to the inter-node scheduling options to be realized as part of the work 
item infrastructure 
 

 a framework for the monitoring system supporting the collection, 
processing, aggregation, subscription and querying of information 
associated to the various entities in the hardware and application model; 
this sub-system is an extension of a preexisting HPX internal monitoring 
service 
 

 an interface for the resilience manager enabling this component to 
observe the execution state, suggest backup operations and recommend 
recovery operations upon failures; this component is built on top of the 
monitoring framework and in cooperation with the scheduler, which it 
may instruct to perform backup or recovery operations 

A particular challenge for the AllScale Runtime System is imposed by its high 
scalability requirements. To that end, none of aforementioned services and 
infrastructures may rely on centralized knowledge. Distributed, localized means 
for realizing the required work and data item operations, monitoring and 
scheduling services are required. 

For work items, the locality of the recursively decomposed tasks themselves are 
aiding in the design of localized management structures. The likelihood of task 
imposing synchronization constraints collocated on the same node is much 
higher than inter-node dependencies due to the structure of the AllScale 
program model. Those, synchronization on tasks is mostly to be handled within 
nodes and only in rare cases through information exchange between nodes. 

The data items, on the other hand, require a directory maintaining their current 
distribution state that can be accessed by all nodes throughout the system. 
However, the support for a hierarchical partitioning of data items, the favoring of 
localized operations due to the AllScale programming model, and the relatively 
low number of times updates on the data distribution are performed, provide the 
foundation for a scalable implementation of such a global directory. Techniques 
including the distribution of responsibility and local caching are employed to 
provide a scalable implementation of the data item localization and manipulation 
operations. 

 

2.5.4 Failure Tolerance 

An application can only be as resilient as the components it is based on. Thus, the 
projects objective to provide a failure resilient execution environment of large 
scale applications requires the underlying runtime system to be equally resilient. 
Fundamentally, the communication facilities utilized by the runtime must be 
capable of dealing with failing nodes. Additionally, all services built on top of 
those communication primitives must be design such that leaving or joining 
nodes can be handled. 

HPX, the foundation the AllScale Runtime System is based on, provides 
communication layer implementations resilient against node failures. However, 
functionality dealing with failing, leaving and joining nodes needs to be 
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reevaluated and adapted. Furthermore, the work and data item management 
services need to be equipped with means for recovering failures. The 
corresponding features are closely linked to the resilience manager subsystem 
and are thus discussed in detail in the corresponding section (Section 2.8). 
Furthermore, the scheduler and monitoring infrastructure must be design such 
that individual node failures can be recovered. Details on the techniques 
employed for ensuring this property are beyond the scope of this architecture 
deliverable and can be found in the deliverables covering the individual 
contributions. 

 

2.5.5 Scheduler Interface 

One of the key design goals of the AllScale Runtime System is to concentrate all 
the performance impacting decision making processes into a single component. 
This component shall be capable of manipulating the work and data distribution 
of an application throughout the available hardware. Furthermore, it should 
adjusting the hardware environment and hardware parameters as well as 
internal runtime settings as, for instance, the granularity of collected monitoring 
data. The fundamental idea is to have a (logically) central component to conduct 
research on how to most effectively manage the execution of AllScale 
applications. 

The purpose of the other runtime subsystems, as well as the surrounding 
runtime system implementation itself, is to provide the necessary level of 
abstraction to the scheduler component. Scalable, efficient operations to inspect 
and influence work and data items, hardware parameters, and general runtime 
system behavior shall be offered through corresponding interfaces. 

Those operations include: 

 callback operations whenever a work item needs to be scheduled 
 means to run a selected work item variant on a selected compute unit 
 means to examine the data requirements of a work item 
 means to query and manipulate the distribution of data items 
 means to query the system state, e.g. queue lengths 
 means to communicate between scheduler instances of different nodes 
 means to adapt hardware parameters 
 callbacks upon the discovery of leaving and joining nodes 
 means to obtain information regarding possible recovery options 

Those extensive capabilities of the scheduler component make this element the 
central system responsible for the dynamic optimization and tuning of running 
applications. 

 

2.5.6 Resilience Manager Interface 

The resilience manager within the runtime system architecture is designed to 
observe the ongoing computation and produce suggestions on backup and 
recovery operations to be forwarded to the scheduler. For the observation of the 
system it requires access to the monitoring system. This access enables it to 
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observe the state of the application and the hardware components throughout 
the system. Based on those observations suggestions on when to conduct backup 
operations are fed to the scheduler. Furthermore, in case of a failure state it is 
the responsibility of the resilience manager to provide suggestions on recovery 
options to the scheduler. 

Thus, the interface of the resilience manager involves: 

 access to the monitoring system to continuously observe the state of the 
system 

 the possibility to register callbacks to certain events throughout the 
system, e.g. the start / end of a task or an event triggered upon a node 
failure 

 means to communicate with resilience manager instances on other nodes 
throughout the system 

The resilience manager has to provide: 

 an interface to the scheduler enabling the scheduler to request recovery 
operations to compensate for failures 

While the AllScale Runtime System component is establishing those interfaces, it 
is the obligation of the work package associated to the corresponding 
components to provide the actual implementations. 

 

2.5.7 Monitoring Service Interface  

The monitoring subsystem is responsible for collecting, aggregating, distributing 
and maintaining information about the various entities throughout the system. It 
is based on an HPX internal information service, capable of forwarding data. 
However, in addition it has to provide options to selectively enable and disable 
the collection of performance data to support the active minimization of its 
performance impact. Furthermore, the monitoring service has to provide the 
possibility to register call back events triggered upon the occurrence of certain 
conditions. 

The monitoring service therefore requires: 

 access to the HPX monitoring service 
 means to schedule data aggregation and maintenance tasks 

The monitoring service has to provide: 

 an interface for querying (aggregated) information about the various 
entities observed throughout the system 

 means to subscribe for events 
 means to customize the kind and granularity of data to be collected 

The main task of the monitoring component is to provide implementations of 
those interfaces and to populate the list of observed properties with information 
relevant for the subsystems depending on those.  
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2.6 AllScale Scheduler 

As has been outlined within Section 2.5.5, the scheduler component is the central 
component when it comes to decision making processes in the runtime system. 
Among others, it decides: 

 where to place data 
 where to process work 
 how to set up the underlying hardware infrastructure 
 what data should be collected and aggregated by the monitoring system 

All of those decisions have to be made towards a user given object. This objective 
is given through a policy defining the tradeoff among objectives including the 
total execution time, the resource usage, and the energy consumption. 

Objective Function 

While in theory a multi-objective optimization process yields a set of optimal 
configurations (aka Pareto frontier), within the context of the runtime system a 
single configuration out of those optimal configurations has to be selected since 
the application is only processed once. To select among those options, a tie 
breaking weighting function is employed. The system seeks to minimize the 
objective function 

𝑡𝑛𝑒𝑚𝑟𝑘 

where 𝑡 is the total execution time, 𝑒 the total energy requirement, and 𝑟 the 
total resource usage3. The constants 0 ≤ 𝑛, 𝑚, 𝑘 ≤ 2 are chosen by the user to 
weight the various objectives. For instance, if 𝑛 = 1, 𝑚 = 𝑘 = 0 the objective 
function is reduced to the execution time only. Thus, the runtime system would 
seek to process the application as fast as possible. On the other hand, by 
choosing 𝑚 = 1, 𝑛 = 𝑘 = 0 the system would make its decisions such that as 
little energy as possible is consumed. Settings where more than one parameter is 
greater than zero result in trade-off solutions among multiple objectives. 

To simplify the specification of the objective function, predefined parameter 
settings are offered to the end user (e.g. as_fast_as_possible or 
balanced_time_and_energy). The evaluation and investigation of practical use 
cases will provide the necessary default values for the three parameters. 
Furthermore, the runtime provides means to alter the user defined objective 
during runtime. So changed conditions resulting in a change of the objectives can 
be forwarded to the runtime system. 

 

Scheduler Design 

Beside the efficiency of the execution controlled by the scheduler, its own 
efficiency in deriving those scheduling decisions is an important element to be 
considered in the design of the scheduler. A frequent, high delay in scheduling 
decisions due to inter-node communication or complex computation steps is 

                                                        

3 Technically this makes the optimization problem a mono-objective optimization problem; 
however, since dealing with multiple objectives and conducting the tie break during runtime, this 
is known as a multi-objective optimization problem in the context of code optimization 
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negatively effecting the overall execution performance of the application. Thus, a 
two-layer scheduler architecture has been designed: 

 a top layer, strategic scheduler is periodically evaluating the utilization of 
the available hardware and deciding upon the adding, removal, or 
reconfiguration of the available hardware; while each node has its own 
strategic scheduler instance, decisions are made globally due to the 
employment of distributed algorithms; this layer works asynchronously, 
independent of the events within the processed application; it is also the 
layer interpreting the objective function given by the user 
 

 a bottom layer, tactical scheduler is utilizing the resources provisioned by 
the strategic scheduler as efficiently as possible for processing work 
items; it is the layer determining whether to split or process work items, 
selecting which work item implementation variant is to be processed by 
which compute unit under its control, and moving data item fragments as 
needed; each node has its own tactical scheduler, mostly working 
independently of the scheduler of other nodes with the exception of e.g. 
localized work stealing events to facilitate automated inter-node load 
balancing; 

Both layers of the scheduler constitute the implementation of the scheduler 
component. The separation of concerns serves the goal of providing fast 
scheduling decisions while considering global, long-term scheduling objectives. 

Naturally, due to the required resilience towards node failures, the 
communication protocol between scheduler instances of different nodes has to 
be designed stateless. The details of those protocols, as well as the details of the 
inner structure of the scheduling layers is covered in the corresponding 
Deliverable D4.6 and D4.7. 

 

2.7 AllScale Monitoring Service 

The AllScale Monitoring Service is designed to be an extension of the monitoring 
service implementation included within HPX, the system the AllScale Runtime 
System is based on. However, the following modifications and extensions are 
necessary: 

 means to collect hardware information, including the hardware 
configuration (e.g. current DFVS setup) or performance counters need to 
be added; the foundation is provided by the PAPI library, however 
attributing collected data to the corresponding resources remains to be 
the responsibility of the AllScale Monitoring Service; 

 means to collect information on various runtime entities need to be 
integrated; e.g. execution time of work items, work queue lengths, energy 
usage of a work item, allocated memory within a memory unit; 
corresponding hooks and access points have to be integrated into HPX 
and the AllScale Runtime System to enable those observations 

 means to subscribe and unsubscribe to events need to be provided 
 means to query for information need to be provided 
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 means to control the kind and granularity of collected data 
 functionality filtering, aggregating, compressing, and storing monitoring 

data need to be integrated 

While most of this functionality serves the purpose of online-monitoring to 
support decision making processes, the monitoring system is furthermore 
required to provide the foundation of post mortem analysis. Thus, the necessary 
data formats, recording, extraction, and analysis utilities for investigating 
application executions are required. While of interest for the end user for 
investigating the characteristic of the processed application, this toolbox serves 
as well as an important aid for the development process of the AllScale toolchain 
itself. Additional details regarding the design and implementation of the required 
features are covered within Deliverable D5.2 and D5.3. 

 

2.8 AllScale Resilience Manager 

The resilience manager is responsible for providing recovery options to the 
scheduler upon failures. Such failures may range from bit flips in memory, over 
faulty computations in the cores, to whole node or even network failures. 
However, the requirement analysis conducted during the initial phase of the 
project (see Deliverable D5.1) revealed the lack of potential fine-grained 
recovery strategies for soft failures like bit flips. Furthermore the unavailability 
of hardware capable of identifying such problems has been stated as another 
major obstacle for the realization of such failure recovery schemas. Thus, the 
focus in the design of the resilience manager was placed on the much more 
probable case of node failures in extreme scale systems – which may be caused 
by actual hardware failures or failures leading to AllScale processes to terminate 
their execution unexpectedly. 

 

Integrating Resilience 

The design of the AllScale Resilience Manager aims at the handling of node failures 
transparently to the end user. It utilizes the runtime system’s application model as a 
foundation and aims on guaranteeing the proper execution of every work item 
according to the involved work and data item dependencies. 

The basic idea is to have for every node A a protector node B who maintains a backup of 
the work items currently processed by node A. Whenever node A gets a work item 
assigned for processing, it informs node B about this newly gained responsibility. 
Likewise, whenever A finishes a work item, it informs B about this fulfilled obligation. 
Thus, in case node A crashes, node B knows about the tasks being processed on A and 
restarts those tasks. By arranging all nodes in long enough cycles (not necessarily in a 
single one), failures of individual nodes can be recovered through this approach. 
Furthermore, if deemed necessary, the protocol can be extended to guarantee the 
survival of even higher rates of failures by e.g. utilizing two protectors per node. 

One of the major challenges of this approach is the amount of necessary communication 
between a node and its protector. However, a property of the AllScale Runtime System 
application model can help to solve this problem. To avoid updating a node’s protector 
node upon every single processed work item, the hierarchical relation between work 
items can be exploited to significantly reduce the number of necessary updates. 
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Whenever a new work item is assigned to a node, it can locally check whether its 
protector knows already about this responsibility due to a responsibility towards one of 
the parent work items already previously reported. In such a case the new responsibility 
is not required to be reported to the protector since the previously reported 
responsibility towards the larger work item includes the responsibility of the new work 
item. Since most work items processed within a node are likely to be descendants of a 
rather small set of work items, this significantly reduces the number of necessary 
updates.  

Thus, the recursive partitioning of workload inherent in the AllScale application model 
provides means to effectively keep track of the obligations of the various nodes 
throughout the system. By utilizing a distributed scheme for keeping backups 
information exchanges are furthermore localized. 

 

Resilience Protocol Details: 

The overview description provided above is a high-level description of the employed 
algorithm. Various additional problems need to be solved: 

 Before restarting tasks known to be processed by a failed node, the protector 
node has to reset the initial state that has been in place before a potential first 
execution of those work items. Since the progress of the work item evaluation is 
unknown, globally accessible data may have been partially updated. Data may 
also have been lost since it has been located on the failed node. Thus, the backup 
of a task on the protector node is not only comprising the parameters describing 
the task but also a snapshot of the data items read by the backed up task. In case 
of a failure event, this information is used to restore the initial state of the task 
and its input data before restarting the task. 
The backup and restoration of input data can be derived from the data 
requirements associated to the work item. This information, originally included 
for the scheduling process, can be used to back up and restore all the necessary 
information. In the case of data items lost due to node failures, the restoration of 
the task operating on those data fragments implicitly restores them as well. 
 

 The naïve restart of tasks can lead to race conditions and/or duplicated updates 
due to the same task being processed twice. This may happen if a sub-task of a 
backed up task gets stolen to another node. This node would not notice that the 
node the task got stolen from crashed. Thus, it also is not aware that the task it is 
processing is going to be processed again. To eliminate this problem, before a 
work item gets reissued it has to be ensured that no child-task of the recovered 
work item is running anywhere else in the system. This might be realized simply 
through a purge broadcast or, more sophisticated, by tracking steal operations 
and keeping temporary records on nodes who have stolen sub tasks. 
Independently of the actual realization, this additional step in the recovery 
protocol ensures that each task is effectively only processed once. 

Like the scheduler and monitoring subsystem, the resilience subsystem has to be 
designed keeping its own state resilient to node failures. Thus, the creation of links 
connecting nodes to their protectors has to be failure resistant. For instance, upon node 
failures, the node protected by the failed node has to obtain a new protector. 
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Backup Storage 

The designed resilience system does not specify the media utilized for backing up 
information – nor does the protected application need to know about this details (in 
fact, the entire application resilience remains transparent to the application developer). 
Consequently, the backup of work items and their data environment may be conducted 
within the memory of the protector node, one of its local discs, any special, non-volatile 
memory hardware resource, or any other kind of suitable storage device. The backup 
and recovery protocol can be adapted to the target architecture without changing the 
original application code. By design, it may even be adjusted at runtime. 

 

Failure Detection 

A final piece for the design of the resilience manager is the need for a method to 
identify node failures. This method touches the responsibility of three different 
components: naturally the resilience manager, the monitoring service due to its 
responsibility of collecting data about the system state, and the runtime system 
itself since it provides the underlying communication infrastructure and is 
probably the first to notice. 

Since for the overall design of the system the actual implementation is less 
important than the mere fact that such a method is present, the realization 
remains exchangeable. The current design foresees a simple heartbeat signal 
between a protector and its protected node. If this signal detects a failed node, an 
event in the monitoring system signaling a node failure is triggered and – 
through a corresponding subscription – forward to the resident resilience 
manager. 

3 AllScale Component Interfaces 

This section briefly summarizes the interfaces present within the various 
AllScale components. Since many of the referenced interfaces have already been 
discussed in Section 2, this section is a mere summary of the interfaces between 
components. 

 

Application to API Interface 

The API itself constitutes the interface between AllScale applications and the 
underlying AllScale Environment. However, the boundary between what belongs 
to an application and what is part of the user-level API is an open boundary. 
Similar to the design decision of what functionality should be placed in a general 
library like the STL or boost library, and what should remain application code 
specific, this is mostly a semantic and/or technical issue. Within this project we 
tend to move generic utilities that may be utilized in more than a single specific 
use case into the user level API, while all other codes shall remain with the 
application code. Furthermore, the user API is not closed. It may be extended and 
additional third-party libraries may be built on top of it or the AllScale Core API. 
However, the one crucial constraint in all of those implementations is to not 
violate the constraints imposed by the AllScale API regarding the utilization of 
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external resources (e.g. IO) or parallel constructs (e.g. locks, pthreads, OpenMP 
or MPI constructs). 

 

API to Compiler Interface 

The contract between the API and the compiler is defined by the AllScale Core 
API, for which in principle the compiler provides just another implementation. 
This set of constructs comprises the prec operator and the associated treetures 
(Section 2.2.3.1), the data item concepts (2.2.3.2), and the IO primitives (2.2.3.3). 

 

Compiler to Runtime Interface 

The interface between the compiler and the runtime is defined through the 
AllScale Runtime System application model as outlined by Section 2.5.2.2, mainly 
comprising work and data items. It is the compilers objective to generate code 
satisfying the requirements specified by those two concepts to realize parallel 
operations as intended by the code expressed by the application developer. 

 

Monitoring Service Interface 

As a runtime sub-system the monitoring service provides efficient means for 
other subsystems to collect, aggregate, relay and query information regarding 
the state of a processed application and the hardware it is executed on. Thus, 
interfaces for adding sensors and aggregators are required, as well as a query 
and subscription API. Details have been covered in Section 2.5.6. Additionally, 
the monitoring service is required to provide means for the end user (from the 
runtime systems perspective) to enable the inspection of the execution of an 
AllScale application for performance debugging. The corresponding tool and 
visualization support are covered in Deliverable D5.2. 

For its operation the monitoring service requires access to the HPX monitoring 
service, as covered in Section 2.5.7. 

 

Scheduler Interface 

The dynamic optimizer (aka scheduler) is utilizing the interfaces provided by the 
various other runtime subsystems for realizing its task. It thus requires access to 
the work item and data management system (see Section 2.5.5), the monitoring 
interfaces (2.5.7 and 2.7) and the services provided by the resilience manager for 
preparing for and reacting to failures (2.8). Additional interfaces to components 
managing hardware resources may be utilized depending on the implementation 
of the scheduler. However, different implementations may depend on different 
interfaces for manipulating hardware parameters. 

Additionally, the scheduler has to provide a user interface for the specification of 
tuning objectives.  
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Resilience Manager Interfaces 

The resilience manager utilizes the monitoring service for observing the state 
and progress of a managed application. Furthermore, it uses the interface 
provided by work item implementations to backup or restore the state of parts 
of an AllScale application. 

To support the scheduler in managing resilience specific objectives, it is required 
to provide an interface for obtaining suggestions regarding backup and restore 
operations (see Section 2.5.6 and 2.8). 

 

4 Example AllScale Application 

While the previous sections have been detailing the overall structure of the 
AllScale Environment from its architectural point of view, this section addresses 
the behavioral aspects of the various component and their interfaces. For its 
illustration, the process of an example application is described. 

 

4.1 The Example 

To illustrate the contribution and dynamic behavior of all the components of the 
AllScale Environment the processing of a small program is covered step by step 
within this section. 

A typical example for a highly scalable code of great scientific interest are codes 
computing a solution for the field 𝜌(�⃗�, 𝑡) for some space domain �⃗� ∈ ℝ𝑛 and time 
domain 𝑡 ∈ ℝ satisfying the differential equation 

𝑑𝜌(�⃗�, 𝑡)

𝑑𝑡
= 𝑘

𝑑2𝜌(�⃗�, 𝑡)

𝑑2�⃗�
 

where we have an initial state for time 𝑡 = 0. Equations of this shape may, for 
instance, be utilized to model the density of some liquid over time or the heat 
propagation within a solid.  

Typically, to solve the equation numerically, the space/time domains are 
discretized using constant intervals. Let Δ𝑠 and Δ𝑡 be those chosen space and 
time steps. Furthermore, let 𝑢(�⃗�, 𝑡) be the discretized approximate solution 
computed for 𝜌(�⃗�, 𝑡). For the 1-dimensional case, the derivation results into the 
following equation: 

𝑢(𝑥, 𝑡 + Δ𝑡) ∶= 𝑢(𝑥, 𝑡) + 𝑘
𝑢(𝑥 − Δ𝑠, 𝑡) + 𝑢(𝑥 + Δ𝑠, 𝑡) − 2𝑢(𝑥, 𝑡)

Δ𝑠
Δ𝑡 

By defining 𝑐 = 𝑘
Δ𝑡

Δ𝑠
 we obtain 

𝑢(𝑥, 𝑡 + Δ𝑡) ∶= 𝑢(𝑥, 𝑡) + 𝑐(𝑢(𝑥 − Δ𝑠, 𝑡) + 𝑢(𝑥 + Δ𝑠, 𝑡) − 2𝑢(𝑥, 𝑡)) 

Thus, the following code4 computes the solution for 𝑢(𝑥, 𝑇): 

                                                        

4 for clarity we omit the handling of boundary conditions 
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double fieldA[N]; 
double fieldB[N]; 
double* A = fieldA; 
double* B = fieldB; 
 
// initialize the field with the initial state 
for( int x = 0 ; x < N ; ++x) { 
    A[x] = … ;  // some value  
} 
 
// compute the solution over the discrete time steps 
for( int t = 0; t< T; ++t) { 
    for ( int x = 1; x < N – 1 ; ++x) { 
        B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]); 
    } 
    swap(A,B); 
} 
 
// the final solution for u(x,T) is now stored in B[x] 

The following sections illustrate how this code is processed/executed by the 
AllScale Environment. 

4.2 API Support 

By analyzing the initial (sequential) code, it is easy to see that both space loops 
can be processed in parallel. Thus, for the parallelization of the given code the 
pfor construct of the AllScale User API can be employed as follows: 

double fieldA[N]; 
double fieldB[N]; 
double* A = fieldA; 
double* B = fieldB; 
 
// initialize the field with the initial state 
pfor(0,N,[&](int x) { 
    A[x] = … ;  // some value  
}); 
 
// compute the solution over the discrete time steps 
for( int t = 0; t< T; ++t) { 
    pfor(1, N – 1, [&](int x) { 
        B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]); 
    }); 
    swap(A,B); 
} 
 
// the final solution for u(x,T) is now stored in B[x] 
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This parallelizes the given code fragment similar to the way developers would 
handle it utilizing OpenMP or cilk. However, similar to the OpenMP or cilk 
implementation, the given code fragment includes an implicit barrier at the end 
of each parallel loop. For instance, after every call of the pfor loop in the update 
step the main program is waiting until the processing of the pfor is completed 
before swapping the two pointers A and B and starting over with the next time 
step. As a consequence, at each time step, all task queues in the system need to 
be drained before the program may continue. This incurs performance overhead 
we seek to omit. 

The AllScale Monitoring Service provides tools enabling the identification of this 
kind of performance bottlenecks. 

4.2.1 Fine Grained Synchronization 

The fine grained synchronization constructs of the AllScale API provide the 
necessary means to eliminate this bottleneck. The following code fragment 
demonstrates its utilization: 

 

The pfor provides a reference to its parallel loop iterations, which can be utilized 
for orchestrating the fine-grained synchronization of the created tasks.  

Also note that by utilizing the loop references the implicit barrier at the end of a 
loop is gone and the program will not block after every invocation of the pfor. 
Instead, the main program quickly creates a chain of T+1 tasks, each 
representing one pfor invocation and depending on its predecessor. After that, 
the main program does nothing more than waiting for the last task, addressed by 
the final reference, to finish. 

double fieldA[N]; 
double fieldB[N]; 
double* A = fieldA; 
double* B = fieldB; 
 
// initialize the field with the initial state 
auto ref = pfor(0,N,[&](int x) { 
    A[x] = … ;  // some value  
}); 
 
// compute the solution over the discrete time steps 
for( int t = 0; t< T; ++t) { 
    ref = pfor(1, N – 1, [&](int x) { 
        B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]); 
    }, wait_for_neighbors(ref)); 
    swap(A,B); 
} 
ref.wait(); 
// the final solution for u(x,T) is now stored in B[x] 
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4.2.2 Distributed Memory Support 

The presented program now runs efficiently on a shared memory system. The 
AllScale Scheduler takes care of a proper load balance, to not waste resources. 
However, it cannot yet be processed on a distributed memory system. 

By default, the system is not capable of automatically distributing arrays5. Only 
data items can be distributed throughout the nodes of a distributed memory 
system. Thus, one more modification to the code enabling the distribution of the 
field data is required. 

The AllScale User API provides a Grid container representing multi-dimensional 
arrays, satisfying the concept of a data item – which thus can be distributed. The 
modified code looks as follows: 

 

Note that by default the Grid type represents a 1-dimensional array. Also, the 
swap is exchanging references, not the actual data (O(1)). 

All the presented codes can be compiled by any C++14 compliant standard tool 
chain during the development phase and is processed effectively on a shared 
memory architecture. However, all of them can as well be compiled utilizing the 
AllScale toolchain benefiting from all its additional services. Those include the 
advanced scheduler and monitoring support (also on shared memory) and in its 
final version the support of the automated distribution of the execution on a 
distributed memory system and/or GPUs. Furthermore, the resilience manager 
adds transparent resilience towards node failures to the resulting application. 

                                                        

5 A special treatment for scalars and arrays may be added to the compiler, however, this is 
beyond the initial design of the AllScale architecture; 

Grid<double> A(N); 
Grid<double> B(N); 
 
// initialize the field with the initial state 
auto ref = pfor(0,N,[&](int x) { 
    A[x] = … ;  // some value  
}); 
 
// compute the solution over the discrete time steps 
for( int t = 0; t< T; ++t) { 
    ref = pfor(1, N – 1, [&](int x) { 
        B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]); 
    }, wait_for_neighbors(ref)); 
    swap(A,B); 
} 
ref.wait(); 
// the final solution for u(x,T) is now stored in B[x] 
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All those additional features are integrated by the various AllScale components 
covered next. 

4.3 Compilation 

When compiling an AllScale Application utilizing the AllScale Compiler it locates 
the usage of AllScale Core API primitives. While within the given user code those 
are not visible, the implementations of the pfor operator and the Grid container 
are based on those, and the compiler conducts the necessary resolution. 

After locating those, each invocation of the prec operator, which is the unified 
central parallel construct of the Core API, is analyzed and rewritten to fit the 
work item interface required by the runtime system. 

In the given example, the compiler locates the prec calls providing the 
foundation for the implementation of the pfor function utilized in the code. For 
each call site of the pfor another work item is created. 

A work item essentially consists of the following elements: 

 a sequential variant (=implementation) of the represented task, 
conducting the actual computation (the progress variant); for the present 
pfors, those implementations are implementations of simple, sequential 
loops processing the given body statements; 

 a parallel variant of the task splitting a given task into smaller tasks and 
orchestrating their execution (the split variant); for the present pfors, the 
split steps divide the range to be covered in half, followed by spawning 
the two fractions in parallel 

 additional (optional) code variants processing the given task by targeting 
specific hardware (e.g. accelerators) or optimization criteria (e.g. 
restricted instruction set) 

For each of those work item variants a function determining the data 
requirements depending on the closure parameters captured by the task have to 
be provided in the form of an extra function callable by the runtime system. 

In the given case, the captured closures are as follows: 

 The initialization loop captures the start and end values of the iterator x 
as well as a reference to the Grid instance A 

 The update loop captures the start and end values of the iterator x as well 
as a reference to the Grid instance A and B; note that the actual objects 
referenced by A and B switch at each time step; 

The data requirement function obtained through static compiler analysis looks 
as follows: 

 For the initialization loop: given a range (a,b) and grid reference A in the 
closure, the following data requirements are obtained 

o For the progress variant: { (WRITE_FIRST, A, [a,b)) }, stating that 
this variant requires write access to subrange [𝑎, 𝑏) of the Grid A. 
It does not care for the initial content of this fraction of A; 

o For the split variant: {}; no data beyond the parameters in the 
closure are required 
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 For the update loop: given a range (a,b) and grid references A and B in the 
closure, the following data requirements are obtained 

o For the progress variant: { (READ, A, [a-1,b+1)), (WRITE_FIRST, B, 
[a,b)) }, stating that this variant requires read access to the 
subrange [a-1,b+1) of grid A and write access to subrange [a,b) of 
Grid B. It does not care for the initial content of B; 

o For the split variant: {}; no data beyond the parameters in the 
closure are required 

The information regarding the data dependencies is obtained through static code 
analysis in the compiler. If this analysis determines the capture of values that 
cannot be migrated – or it fails to obtain data dependencies automatically – this 
circumstance is reported to the developer. In those cases, the developer may 
eliminate the identified dependencies or try to restructure the code to aid the 
compiler in conducting its analysis. 

As a final step, the compiler converts the entry point of an application – the main 
function – into an additional work item capturing the (optional) command line 
parameters. This main work item is exposed to the runtime as the initial task to 
be processed on startup. It does no support a split option. 

4.4 Execution 

The execution of an application is steered by the AllScale Runtime System. After 
an initial startup phase, where the AllScale processed on the various involved 
nodes are initialized and a communication infrastructure is established, the 
processing of the main-task of the processed application is initiated. 

In our running example, the main task creates the two grid instances A and B, 
followed by the processing of the initialization loop and the iterative update 
steps. 

During the initialization of the grid instances A and B, an identifier for the newly 
created data items is generated by the runtime system and associated with its 
total size (the range [0,N)). Furthermore, management information regarding the 
distribution of those grids is initialized. Initially no fraction of the data is 
available throughout the system. 

The execution of main task continues by creating the string of initialization and 
update work items, as described in Section 4.2. Thus, after a short time we might 
have the following task dependencies in the system: 

 

I U U U 

M 

… 
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Here, each box represents a work item, arrows represent task dependencies. The 
box labeled by I represents the initializing work item, the box labeled M is the 
main work item and each box labeled U is an update work item. 

In the given situation no parallel tasks are present. However, all but the main 
work item can be split, thereby generating more parallelism and finer grained 
dependencies. So the scheduler of the runtime may decide to start splitting tasks 
as follows: 

Each work item annotated with a prime (‘) has been split, and thus replaced by 
fractions. Consequently also their dependencies have been refined. By refining 
tasks to a sufficient level, enough parallelism for the available parallel resources 
will be eventually reached (assuming the application provides sufficient 
parallelism in the first place, hence N is large enough). Simultaneously, task 
dependencies as well as the data dependencies of tasks are reduced consistently. 

The scheduler passes through a phase of splitting and distributing tasks 
throughout the system, thereby gradually refining those. Once a granularity 
deemed suitable by the scheduler is reached, the initialization tasks are assigned 
to some compute unit for being processed. 

Before being able to processed, the data requirements of work items have to be 
satisfied. In our running example, the initialization tasks require WRITE_FIRST 
access to fractions of the grid A. Thus, the runtime may allocate arbitrary buffers 
local to the compute units intended for processing the selected work item, 
register this new fragment within the data item manager keeping track of the 
distribution state of the data item A, and trigger the execution. 

Once the first update tasks get ready for execution due to satisfied dependencies, 
their data dependencies are checked. Since they do have a dependency on the A 
grid, they are either moved to the same location where the corresponding 
fragment is located or, if the scheduler decides so, the data is moved to the 
location of the tasks. The fraction of B required as a target buffer is allocated by 
the runtime wherever necessary (since it is a WRITE_FIRST dependency) and 
registered as a new fragment within the data item manager. 

Starting with the second generation of the update steps, the data dependencies 
begin to reference data item fragments which are potentially not collocated on 
the same node. In those cases the runtime has to collect and transfer the 

I’ U’ U’ U 
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necessary information before being able to processes the depending work items. 
This process is known as the exchange of ghost cells in a conventional MPI based 
implementation. In the AllScale Environment, the data item manager handles this 
kind of information exchange automatically.  

This way, the AllScale Runtime System and its scheduler gradually work through 
the application, having the possibility to overlap time steps, without the inherent 
need of global communication or phases where task queues need to be drained. 

 

4.5 Monitoring 

Throughout the execution of the application, the monitoring service collects data 
on the performance of the application (e.g. execution times of tasks or delays due 
to dependencies), the runtime system (e.g. queue lengths, idle times), and the 
hardware (e.g. cache misses, energy usage). This information is available to the 
scheduler during execution, or, later on, for a post-mortem analysis of the 
processed algorithm.  

To control the behavior of the monitoring service the executable produced by the 
AllScale Compiler exhibits a set of command line options. With those, the 
collection of additional profiling data may, for instance, be triggered. Tools for 
analyzing and visualizing those results are provided as part of the AllScale 
Environment. 

In our running example, the monitoring system could have been utilized to 
identify the bottleneck imposed by the barrier present at the end of each pfor 
invocation, before upgrading the code to utilize fine grained dependencies. 

 

4.6 Scheduling 

The scheduler is an integral part of the runtime system. It steers the work item 
decomposition, relocation and execution as well as the data item distribution. 
Furthermore it manages the configuration and utilization of the underlying 
hardware. It may thus, for instance, adapt the clock frequency of compute units. 

As covered in the previous sections, the scheduler is flexible enough to optimize 
toward different objectives. Trade-offs between execution time, resource usage, 
power dissipation, or energy requirements may be stated. The objective to aim 
for may thereby be passed as a command line parameter to the executable. Thus, 
it is not necessary to recompile an application when adapting optimization 
objectives. There might even be support for altering the objective during 
runtime. 

Since our running example is likely to be a memory bound problem the 
scheduler should be able to steer towards a configuration saturating all available 
memory controllers, while not consuming extra power for any additional cores. 
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4.7 Resilience 

As covered within Section 2.8, AllScale applications processed by the AllScale 
Runtime System are implicitly hardened against node failures. This is achieved 
through backing up the initial state of tasks, such that upon a failure, those task 
may be restarted on a different locality. 

In our running example, the resilience manager within the runtime system is 
selecting a subset of task to be backed up before being processed. It thereby 
ensures that the union of the transitive child-relation closures of the backed up 
tasks are a complete coverage of all active tasks within the system. This way, 
recovery from individual node failures can be guaranteed. 

Whenever a task is backed up, its input values are recorded. This comprises the 
values within the closure of a work item as well as the data within read data item 
fragments. For instance, within the running example 

 for initialization tasks, only the closure has to be backed up 
 for update tasks, the closure and the content of the read fraction of the A 

grid have to be backed up; thus, for a closure covering the range [a,b) and 
the grids A and B, the values for a and b and the grid references A and B 
are backed up; furthermore, the content of the range [a,b) of grid A is 
backed up 

 for the main task, the closure containing the initial command line 
arguments is backed up 

The backup data is kept until the task is completed. In case a node crashes, the 
initial state of all the tasks currently processed by the failed node is recovered 
from the backup data (closure and data item state), before restarting the 
recovered tasks. 

The entire recovery procedure is transparent to the application code develop by 
the end use.  

5 Conclusions and Future Work 

Within this document the architecture of the AllScale system has been covered. 
Details regarding the internal organization of the AllScale pilots, API, Compiler, 
Runtime System, Scheduler, Monitoring Service, and Resilience Manager have 
been elaborated by Section 2. Section 3 summarized the interfaces between the 
various components, before Section 4 demonstrated the contributions of the 
various components based on a concrete example. 

The presented architecture design fulfills the requirements as stated in 
Deliverable D2.1 and provides a guideline for the development of the various 
AllScale components. However, new insights gained over the course of the 
project lead to gradual refinements or modifications of the presented 
architecture, to be reflected in future revisions of this document. 

 


