
Copyright © AllScale Consortium Partners 2017

1

H2020 FETHPC-1-2014

An Exascale Programming, Multi-objective Optimisation and Resilience
Management Environment Based on Nested Recursive Parallelism

Project Number 671603

D2.3 – AllScale System Architecture

WP2: Requirements and overall system
architecture design

Version: 1.0

Author(s): Herbert Jordan (UIBK), Roman Iakymchuk (KTH),
Thomas Fahringer (UIBK), Peter Thoman (UIBK),
Thomas Heller (FAU), Xavi Aguilar (KTH),
Khalid Hasanov (IBM), Kiril Dichev (QUB),
Emanuele Ragnoli (IBM), Benoit Leonard (NUM)

Date: 03/01/17

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

2

Due date: PM16

Submission date: 31/01/2017

Project start date: 01/10/2015

Project duration: 36 months

Deliverable lead
organization

UIBK

Version: 1.0

Status Final

Author(s):

Herbert Jordan (UIBK), Roman Iakymchuk (KTH), Thomas
Fahringer (UIBK), Peter Thoman (UIBK), Thomas Heller
(FAU), Xavi Aguilar (KTH), Khalid Hasanov (IBM), Kiril Dichev
(QUB), Emanuele Ragnoli (IBM), Benoit Leonard (NUM)

Reviewer(s) Person 1 (Org. short name), Person 2 (Org. short name)

Dissemination level

PU PU – Public

Disclaimer

This deliverable has been prepared by the responsible Work Package of the
Project in accordance with the Consortium Agreement and the Grant Agreement
Nr 671603. It solely reflects the opinion of the parties to such agreements on a
collective basis in the context of the Project and to the extent foreseen in such
agreements.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

3

Acknowledgements

The work presented in this document has been conducted in the context of the
EU Horizon 2020. AllScale is a 36-month project that started on October 1st,
2015 and is funded by the European Commission.

The partners in the project are UNIVERSITÄT INNSBRUCK (UBIK), FRIEDRICH-
ALEXANDER-UNIVERSITÄT ERLANGEN NÜRNBERG (FAU), THE QUEEN'S
UNIVERSITY OF BELFAST (QUB), KUNGLIGA TEKNISKA HÖGSKOLAN (KTH),
NUMERICAL MECHANICS APPLICATIONS INTERNATIONAL SA (NUMECA), IBM
IRELAND LIMITED (IBM).

The content of this document is the result of extensive discussions within the
AllScale Consortium as a whole.

More information

Public AllScale reports and other information pertaining to the project are
available through the AllScale public Web site under http://www.allscale.eu.

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 08/01/16 First draft Herbert Jordan

0.2 18/02/16 Added compiler/runtime interface Herbert Jordan

0.3 06/12/16 Updated to match developments Herbert Jordan

0.4 07/12/16 Updated Intro, API and Compiler Herbert Jordan

0.5 09/12/16 Updated Runtime & Subsystems Herbert Jordan

0.6 19/12/16 Added Pilots, IO API, and Section 3 Herbert Jordan

0.7 20/12/16 Added Example Section 4 Herbert Jordan

http://www.allscale.eu/

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

4

0.8 21/12/16 Integrated Feedback Herbert Jordan, Roman
Iakymchuk, Thomas
Fahringer, Kiril Dichev,
Peter Thoman, Thomas
Heller, Xavi Aguilar,
Khalid Hasanov,
Emanuele Ragnoli,
Benoit Leonard

1.0 03/01/17 Final proof reading Herbert Jordan

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

5

Table of Contents

1 Introduction ... 7

1.1 Formalism: .. 7

1.2 Terminology ... 8

2 AllScale System Architecture Design ... 10

2.1 Overview ... 10

2.2 AllScale API .. 12

2.2.1 Overview .. 12

2.2.2 Technological Base ... 13

2.2.3 AllScale Core API ... 14

2.2.4 AllScale User API ... 21

2.3 AllScale Pilot Applications ... 22

2.3.1 iPIC3D: Implicit Particle-in-Cell Code ... 23

2.3.2 FINE™/OPEN: Unstructured CFD solver.. 24

2.3.3 AMDADOS: Adaptive Meshing and Data Assimilation 26

2.4 AllScale Compiler ... 27

2.4.1 Overview .. 27

2.4.2 Compiler Infrastructure ... 28

2.4.3 Data Requirement Analysis .. 29

2.5 AllScale Runtime System .. 30

2.5.1 Overview .. 30

2.5.2 Runtime Hardware and Application Model .. 31

2.5.3 Technological Base ... 34

2.5.4 Failure Tolerance .. 35

2.5.5 Scheduler Interface .. 36

2.5.6 Resilience Manager Interface ... 36

2.5.7 Monitoring Service Interface .. 37

2.6 AllScale Scheduler ... 38

2.7 AllScale Monitoring Service ... 39

2.8 AllScale Resilience Manager .. 40

3 AllScale Component Interfaces .. 42

4 Example AllScale Application ... 44

4.1 The Example .. 44

4.2 API Support .. 45

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

6

4.2.1 Fine Grained Synchronization ... 46

4.2.2 Distributed Memory Support ... 47

4.3 Compilation ... 48

4.4 Execution .. 49

4.5 Monitoring ... 51

4.6 Scheduling .. 51

4.7 Resilience .. 52

5 Conclusions and Future Work .. 52

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

7

1 Introduction

This document provides a complete overview on the architecture of the AllScale
Environment. To that end, Section 2 covers the internal design of the involved
components. The interfaces among those components are covered in Section 3,
while Section 4 provides an example demonstrating the dynamic interaction of
all the involved components.

The architecture presented within this document is the object of ongoing
development and can thus, necessarily, only provides a snapshot of the AllScale
system design. Details of interfaces or internal details of the components’ design
may diverge from the content presented within this document as deemed
necessary for fulfilling the project’s objectives.

Before getting to the details of the AllScale components, this introduction section
is providing a summary of the formalism and terminology utilized through the
rest of this document.

1.1 Formalism:

To describe the design of concepts within this document the concept of abstract
data types (ADT) is utilized. Thus, objects within the system specification are
associated with abstract types on which (equally abstract) operations may be
performed. While the details of the actual implementation of those types and
operations are negligible for the overall system architecture, their signatures
define the means for the interaction of components. Furthermore those
constructs provide the level of abstraction needed by this document to focus on
the high-level design concepts of the AllScale Environment. The actual
implementation details of the various abstract types and operators are found
within the corresponding deliverables and/or the actual source code realizing
those concepts. Where necessary, those deliverables are referenced.

To specify abstract types and operators throughout this document, the following
symbols and type constructors are utilized:

Symbol Interpretation

𝒃𝒐𝒐𝒍 abstract type for Boolean values

𝒊𝒏𝒕 abstract types for natural numbers

𝒖𝒏𝒊𝒕 abstract type for the unit constant (void type in C/C++)

𝜶, 𝜷, 𝜸, 𝜹, … type variables

(𝑻𝟏, 𝑻𝟐, … , 𝑻𝒏) tuple type with n components; component 𝑖 is of type 𝑇𝑖

𝑻𝟏 → 𝑻𝟐 type of a function accepting a value of type 𝑇1 as an
argument and returning a value of type 𝑇2

𝟐𝑻 the power set of elements of type T

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

8

𝑻∗ a list of elements of type T, may be empty

𝑻+ a list of elements of type T, not empty

1.2 Terminology

The following table provides a summary of the terms utilized throughout this
document to address various components and aspects of the overall AllScale
architecture:

Term Description

AllScale the entire project, comprising the AllScale
Environment, pilots, and infrastructure

AllScale API the AllScale component to be utilized by end users to
develop applications, comprising the necessary
parallel primitives

AllScale application a program utilizing the AllScale Environment for
implementing a solution for some particular, domain
specific problem

AllScale Compiler the compiler component of the AllScale Toolchain
analyzing and transforming end user code to convert
it to code processible by the AllScale Runtime System

AllScale Core API a fix set of basic parallel primitives for the creation of
AllScale applications; part of the AllScale API

AllScale Environment the entire AllScale software stack, comprising the API,
compiler, runtime system, and runtime system
subsystems

AllScale Infrastructure the hardware and software resources utilized for the
development of AllScale, including source repositories
and their configuration scripts, the AllScale website,
and build, test, and benchmark servers

AllScale Monitoring
Service

a runtime subsystem collecting information on a
processed application as well as properties of the
utilized hardware infrastructure

AllScale pilot one of the three AllScale applications (iPIC3D,
AMDADOS, or Fine/Open) created to demonstrate the
abilities of the AllScale Environment

AllScale Resilience
Manager

a runtime subsystem managing backup and recovery
operations of an AllScale application during execution

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

9

AllScale Runtime short form for AllScale Runtime System

AllScale Runtime
System

the component managing the execution of an AllScale
Application by controlling the distribution of
computation and data among available hardware
resources as well as hardware parameters

AllScale Scheduler the runtime subsystem deciding on the workload and
data distribution as well as the utilization and
configuration of the available hardware resources

AllScale SDK an empty AllScale application providing a template for
building new AllScale applications

AllScale Toolchain the AllScale Compiler and the AllScale Runtime
System utilized to compile and run applications

AllScale User API a freely extensible set of higher level parallel
primitives built on top of the Core API providing
convenience functionality to end users; a basic set of
constructs is provided as part of the AllScale API

data item the unit of data managed by the runtime system; data
items can be uniquely addressed and actively
distributed among nodes by the runtime system

dynamic optimizer an alternative designation of the AllScale Scheduler
component stressing its central obligation of steering
an application execution towards a given optimization
objective (e.g. low execution time or low energy)

end user in the context of the API and compiler: a developer
utilizing the AllScale Environment for developing an
application; in the context of the pilots, the runtime
system and its sub-components: the person executing
an AllScale application

locality a AllScale Runtime System process participating in the
computation of an AllScale application, providing and
managing an address space for data items

node a physical entity of a target architecture, governed by
a single OS image

runtime subsystem components embedded within the AllScale Runtime
System providing services to the processed
application; this includes the scheduler, the
monitoring system and the resilience manager

standard toolchain a C++ build environment capable of compiling and

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

10

running C++14 applications; e.g. setups utilizing the
GCC or clang compiler

target architecture a computer utilized for running an AllScale application

task in the API layer: the unit of work; in the runtime layer:
synonym to work item

work item the unit of work managed by the runtime system;
work items can be uniquely addressed, have
associated data requirements, may be split into
smaller work items and migrated among nodes

2 AllScale System Architecture Design

In this chapter the overall system architecture of the AllScale Environment and
pilots is covered. Section 2.1 starts with a general overview, enumerating the
main components and outlining their interaction. It is followed by Sections 2.2 -
2.8 elaborating on the architectural details of the individual system components.

2.1 Overview

Figure 1 outlines the overall architecture of the AllScale Environment and pilots.
The architecture comprises seven components:

 The AllScale API (see Section 2.2)
 The AllScale Pilot Applications (see Section 2.3)
 The AllScale Compiler (see Section 2.4)
 The AllScale Runtime System (see Section 2.5)
 The AllScale Scheduler (see Section 2.6)
 The AllScale Monitoring Service (see Section 2.7)
 The AllScale Resilience Manager (see Section 2.8)

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

11

The pilot applications are implemented based on a set of generic parallel APIs
offered by the AllScale API. The API itself is subdivided into two layers: the User-
Level API and the Core API. The Core API layer covers a small, concise set of
essential primitives: constructs for expressing data structures, parallel control
flows, and synchronization operations. While concise and expressive, the core
API is not supposed to be directly utilized by application developers due the
complex nature of included constructs. Their main purpose is to provide a
compact interface for actual implementations, in particular the one realized by
the AllScale compiler. To support application developers, the User API layer is
introduced and maintained by expert developers. It maps common parallel
patterns to the Core-API primitives. Thus, the User-Level API is a flexible, open
layer that can be extended and customized without requiring any changes in the
AllScale Environment.

Codes implemented utilizing the AllScale API can be compiled by standard C++
tools and executed on parallel, shared memory machines. This modus is intended
for use during the development and debugging phases of an application
development project. However, for obtaining an extreme scale high-performance
version that benefits from all the services offered by the AllScale Environment,
the same code base has to be compiled by the API-aware AllScale Compiler.
Unlike standard C++ compilers, the AllScale Compiler is aware of the
interpretation of the parallel primitives offered by the Core API layer and
restructures the application by introducing additional versions of encountered
parallel code fragments. Each version targets a different architecture and/or
represent a different trade-off between multiple optimization objectives (e.g.
more parallelism vs. less overhead). Together with information describing the
specific traits of the versions – such as the scenario they have been tuned for – as

Figure 1. Overview on AllScale Architecture

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

12

well as details regarding their (data) dependencies, the resulting set of
implementations are forwarded to the AllScale Runtime System.

The AllScale Runtime System provides the infrastructure for the AllScale
Dynamic Optimizer (aka the scheduler) to dynamically auto-tune a running
program for multiple objectives to achieve a desired trade-off among the
considered tuning objectives. It does so, by distributing workload and data
dynamically throughout the system, coordinating the exchange of information,
and continuously adjusting performance relevant hardware parameters. The
scheduler can, for this purpose, rely on dynamically updated knowledge
provided by the AllScale Monitoring Service capturing the state of the target
system as well as the managed program execution. Furthermore, the AllScale
Resilience Manager aids the scheduler in preparing for and responding to errors
occurring during the program execution. Therefore, it coordinates the utilization
of self-healing and self-stabilizing mechanisms integrated in or revealed by the
AllScale Environment.

Further details about these interactions and the internal design of the involved
component are covered in the following sections.

2.2 AllScale API

2.2.1 Overview

The AllScale API is the façade of the AllScale Environment towards end-user
applications. It provides the necessary primitives to express parallelism, data
dependencies, and needed synchronization steps within application code. The
API is subdivided into two layers:

 The AllScale Core API
 The AllScale User API

The Core API provides a concise set of basic generic primitives, comprising
parallel control flow, synchronization, and communication constructs. The User
API is harnessing the expressive power of the Core API to provide specialized
primitives for particular use cases, including basic constructs like parallel loops
as well as more sophisticated functionality offering efficient implementations of
e.g. stencil operations.

The purpose of the subdivision into a Core and User API is to enable the
implementation of a variety of parallel primitives on top of a small, concise set of
central constructs which can be utilized to provide portability among different
implementations of the AllScale Core API. In particular, within the AllScale
project, two implementations are developed:

 a shared memory, pure C++ implementation which can be compiled by
any C++14 compatible compiler which furthermore serves as a reference
implementation and development platform for the pilot applications, and

 the implementation utilizing the AllScale Compiler and Runtime System,
utilizing a combination of static program analysis, code generation,
scheduling, and resilience techniques to provide a highly scalable and
portable implementation of the Core API

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

13

Additional parallel constructs may be introduced in the AllScale User API
without the necessity of altering the underlying Core API implementation. Thus,
the User API layer provides an effective way of extending the range of supported
parallel patterns.

Furthermore, by introducing the User API, application developers are shielded
from the complexity of the Core API constructs. Due to the introduction of the
User API efficient implementations of primitives native to the domain of the
applications can be provided by parallelization experts. Thus, the overall task of
providing efficient parallel codes is distributed among three contributors:

 the domain expert aiming on obtaining the most effective algorithmic
solution for the problem of interest

 the high performance computing expert able to develop efficient domain
specific primitives to be utilized by the domain expert, focusing on e.g.
communication and synchronization overheads and cache efficiency

 the system level expert focusing on providing the most flexible and
portable implementation of the Core API, thereby handling load
management, scheduling, resilience, and hardware management
obligations

The separation of responsibilities also effects the code base. By shielding the
domain expert from all the underlying details (synchronization, communication,
cache efficiency, scheduling, utilization of low-level parallel APIs …), the
resulting application code remains free of the otherwise necessary management
code. This positively affects the maintainability of the resulting applications and
thus the productivity of the domain expert.

2.2.2 Technological Base

The AllScale API makes heavy use of C++’s code template based meta-
programming feature. This build-in language feature of C++ enables the scripted
generation of code during the first stages of the compilation process. Widely
utilized examples include the generation of data structures like vectors, sets, or
maps specialized to specific type parameters. However, the capabilities of this
features reach much further. Type parameters may be inspected, and cases may
be distinguished. Thus, the meta-programming feature can be utilized to
synthesize specialized code. It also enables the generic implementation of
primitives, where a single primitive may cover a wide range of use cases, without
the introduction of any abstraction overhead.

All primitives of the AllScale Core API are generic primitives making heavy use of
C++ meta-programming features for the automated synthetization of program
code. So may all of the AllScale User API constructs, to improve their usability,
reusability, and flexibility.

The AllScale API utilizes C++ template features introduced by the C++14
standard revision, supported by recent versions of GCC, Clang, and Visual Studio.
No additional libraries or system dependencies are required.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

14

2.2.3 AllScale Core API

The AllScale Core API provides a concise set of generic primitives for expressing
parallel control flows, communication, and synchronization operations.

2.2.3.1 Parallel Control Flow and Synchronization Primitives

The AllScale Core API provides a single primitive for running concurrent tasks.
This primitive, the prec operator, is a higher order function combining three
given functions into a new, recursive function1. The three combined input
functions are:

 a function testing for the base case of a recursion
 a function processing the base case of a recursion
 a function processing the recursive step case

The prec operator combines those functions into a new recursive function which,
for a given input parameter, conducts the specified computation accordingly.
Thereby sub-tasks invoked by the step case function may be processed in
parallel.

To support an arbitrary input type, the prec operator has the type

(𝛼 → 𝑏𝑜𝑜𝑙, 𝛼 → 𝛽, (𝛼, 𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) → (𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉)

where 𝛼 is the parameter type of the resulting recursive function and
𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉 is a parameterized abstract data type (ADT) modeling a handle on
parallel tasks (see below). The parameter of the prec operator are:

 a function of type 𝛼 → 𝑏𝑜𝑜𝑙 identifying base cases
 a function of type 𝛼 → 𝛽 computing base cases
 a function of type (𝛼, 𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉) → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉 computing a step

cases where
o the first parameter is the parameter for the recursive step and
o the second parameter is a reference to the recursive function

created by the prec call itself to compute sub-task

The resulting value of type 𝛼 → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉 is a function which, upon invocation,
spawns a new task conducting the specified recursive operation in parallel. The
resulting task handle can be utilized to orchestrate the parallel execution of
additional tasks.

For the 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒 ADT, the following operators are defined:

NAME TYPE DESCRIPTION

wait (𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉) → 𝑢𝑛𝑖𝑡 Waits for the referenced task to be
completed.

get (𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉) → 𝛼 Waits for the referenced task to be
finished and obtains the computed result

1 For clarity we focus on the non-mutual recursive case in this document. The actual
implementation provides support for the mutual recursive case as well.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

15

done (𝛼) → 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉 A function referencing a finished task
which has produced the given value.

par

(

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉,
(𝛼, 𝛽) → 𝛾

)

→ 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛾〉

A function creating a new task waiting for
the result of the two given treetures and
computing a new result using the given
combination function; the subtasks are
processed in parallel

seq

(

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉

𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛽〉,
(𝛼, 𝛽) → 𝛾

)

→ 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛾〉

A function creating a new task waiting for
the result of the two given treetures and
computing a new result using the given
combination function; the subtasks are
processed in sequence

The function created by the prec operator is – beside the 𝑑𝑜𝑛𝑒, 𝑠𝑒𝑞 and 𝑝𝑎𝑟
operators – the only constructor for tasks. The 𝑠𝑒𝑞 and 𝑝𝑎𝑟 operators can be
utilized for orchestrating the parallel control flow within the implementation of
the step case of a parallel function, while the operators 𝑤𝑎𝑖𝑡 and 𝑔𝑒𝑡 can be used
for synchronization and data transfers, similar to futures.

Within this document, we omit the third argument of the par and seq operator
whenever it is a mere value consumption of the treeture results, not conducting
any aggregation.

Due to the restriction of tasks being composed using the presented primitives,
hierarchies of tasks can only be formed utilizing the 𝑝𝑎𝑟 and 𝑠𝑒𝑞 operator
recursively – both connecting two sub-tasks. Consequently, all task hierarchies
are binary hierarchies, where each task has either no child task or two child
tasks. Those child tasks are referred to as the left and right child task.

With the given primitives synchronization schemes equivalent to those of
futures can be realized. However, for finer-grained dependencies, 𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒𝑠
allow to obtain references to sub-tasks. Those references are modeled by the
𝑡𝑟𝑒𝑓 (task reference) ADT and the following operators:

NAME TYPE DESCRIPTION

toRef (𝑡𝑟𝑒𝑒𝑡𝑢𝑟𝑒〈𝛼〉) → 𝑡𝑟𝑒𝑓 Converts a treeture to a task reference

getLeft 𝑡𝑟𝑒𝑓 → 𝑡𝑟𝑒𝑓 Obtains a reference to the (logical) left
sub-task of the referenced task.

getRight 𝑡𝑟𝑒𝑓 → 𝑡𝑟𝑒𝑓 Obtains a reference to the (logical) right
sub-task of the referenced task.

wait 𝑡𝑟𝑒𝑓 → 𝑢𝑛𝑖𝑡 Waits for the referenced subtask to be
completed (blocking).

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

16

A logical sub-task is thereby the sub-task of a task that might in reality not yet or
not ever exist. This may happen since it is left to the runtime to decide upon the
granularity of the recursive tasks to be actually processed. Dependencies may
address a finer grained granularity than the task which are actually processed. In
those cases, task references are supposed to reference the task with the finest
granularity comprising the workload of the intended task.

With those primitives more fine-grained synchronization between tasks within a
single or across multiple task hierarchies can be realized. The following example
outlines its application within the context of parallel loops.

Example:

To illustrate the interaction of the prec operator and the operators defined on
tasks consider the following example. The objective is to initialize all elements of
an array with 0. The sequential code is given by the following code fragment:

for(i = 0 … N) {
 A[i] = 0;
}

For a nested recursive parallel implementation, the full range of N elements can
be recursively sub-divided and recursive calls can be processed in parallel. This
operation can be encoded utilizing the Core API primitives defined above as
follows (in C++14 like syntax):

using range = pair<int,int>;
auto init = prec(
 [&](const range& r) { return r.second - r.first <= 1; },
 [&](const range& r) { for(i = r.first … r.second) A[i] = 0; },
 [&](const range& r, const auto& rec) {
 int mid = r.first + (r.second – r. first) / 2;
 return par(
 rec(range(r.first, mid)),
 rec(range(mid, r.second)),
);
 }
);
wait(init(0,N));

The prec operator call combines the base case test (at most one element), the
base case computation step, and a function processing the step case into a
function capable of initializing the entire array. The call to the init function
(init(0,N)) triggers the parallel processing of the initialization and the concluding
wait call awaits the completion of the task.

Notice, that the given code example demonstrates a general template for
describing parallel loops based on the prec operator. This general pattern can be
extracted into a generic function pfor of type

(𝛼, 𝛼, 𝛼 → 𝛽) → 𝑡𝑎𝑠𝑘

defined by

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

17

task pfor(𝛼 l, 𝛼 u, 𝛼 → 𝛽 body) {
 using range = pair< 𝛼, 𝛼 >;
 auto loop = prec(
 [&](const range& r) { return r.second - r.first <= 1; },
 [&](const range& r) { for(i = r.first … r.second) body(i); },
 [&](const range& r, const auto& pfor) {
 int mid = r.first + (r.second – r. first) / 2;
 return par(
 pfor(range(r.first, mid)),
 pfor(range(mid, r.second)),
);
 }
);
 return init(0,N);
}

which can be utilized for running parallel loops by invoking

wait(pfor(0,N,[&](int i) {
 A[i] = 0;
}));

which, when defining task handles as being implicitly synced upon destruction
(C++ feature) can be further reduced to

pfor(0,N,[&](int i) {
 A[i] = 0;
});

The presented pfor function is one of the operators provided by the AllScale User
API layer. It demonstrates the realization of a parallel pattern by utilizing the
underlying Core API constructs.

Fine Grained Synchronization

In addition to enabling the awaiting of the completion of all the parallel loop
iterations, the treeture returned by the pfor call can furthermore be utilized to
synchronize on sub-sets of the iteration range. For instance, by utilizing the task
reference operations getLeft and getRight references to the tasks processing the
left and right half of the iteration space can be obtained. By applying this
operation recursively, smaller subsets can be addressed. As a consequence, fine-
grained synchronization between consecutive parallel loops can be realized.

For instance, in the code fragment

auto As = pfor(0,N,[&](int i) {
 A[i] = f(..);
});
pfor(1,N-1,[&](int i) {
 A[i] = f(A[i-1], A[i], A[i+1]);
}, wait_for_neighbors(As));

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

18

the treeture obtained from the first parallel loop is utilized as an additional input
for the second loop describing execution dependencies to be considered. In this
particular case each iteration i of the second loop may only be processed once
the iterations i-1, i, and i+1 of the first loop have been completed. The operators
supported on task references facilitate the implementation of such operations
within the AllScale User API. The corresponding details as well as the C++
specification of the described operators and ADTs is covered in the AllScale API
specification deliverables (D2.5 and D2.6).

2.2.3.2 Data Structure Primitives

As for the description of the control flow, data structures, to be managed by any
underlying runtime system implementation, need to be equally specified
utilizing a uniform set of primitives. As for the design of the control flow
primitives, the objective for the data structure primitives is to provide a flexible
generic interface such that expert developers of the User Level API have a
maximum of flexibility to express data structures to be managed by the
underlying system.

To this end, the data structure primitives offered by the core are a mere
specification of any potential type’s interfaces and behaviors – in C++ terms a
concept. Any type T to be managed by an AllScale API implementation has to
provide the following properties:

 type T has to specify the following types:
o a type F for fragments of the data storage
o a type R for addressing sub-ranges of the data structure

Each of those types has to provide the following operators:

 for the fragment type F:
o create of type 𝑅 → 𝐹 creating a fragment covering (at least) the

specified range
o delete of type 𝐹 → 𝑢𝑛𝑖𝑡 deleting the given fragment
o resize of type (𝐹, 𝑅) → 𝑢𝑛𝑖𝑡 altering the capacity of the given

fragment to cover at least the range given by the second parameter
o mask of type 𝐹 → 𝑇 providing access to the data stored in the

fragment F via the interface defined by type T
o extract of type (𝐹, 𝑅) → 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 extracting the data addressed by

the second parameters from the fragment given by the first
parameter and packing it into an archive; Archive is a generic type
of a utility provided by the API implementations to serialize data
to be transferred between address spaces;

o insert of type (𝐹, 𝑅, 𝐴𝑟𝑐ℎ𝑖𝑣𝑒) → 𝑢𝑛𝑖𝑡 importing the data stored in
the given archive into the given fragment at the specified range R.

 for the range type R:
o union of type (𝑅, 𝑅) → 𝑅 computing (a super-set of) the union of

the two ranges covered by the two parameters
o intersect of type (𝑅, 𝑅) → 𝑅 computing (a super-set of) the

intersection of the two ranges covered by the two parameters
o empty of type (𝑅) → 𝑏𝑜𝑜𝑙 determining whether the given range is

empty, thus contains no elements to be stored

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

19

o pack of type (𝑅) → 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 to serialize instances
o unpack of type (𝐴𝑟𝑐ℎ𝑖𝑣𝑒) → 𝑅 to deserialize instances

Those concepts and interfaces are covered by corresponding C++ type
requirements checked during the compilation process.

Example:

To illustrate the design of data structures to be managed by AllScale API
implementations, consider the example of storing a 2D grid of doubles. The
corresponding types could be:

 T = Grid2D<double> offering operators for accessing elements within a
2D structure, indexed by coordinates of type R, where the storage is
provided by an instance of type F;

 F = GridFragment2D<double> realizing the actual storage of fragments of
the data stored in Grid2D instances; the implementation may hold a
reference to allocated memory plus the coordinates of the covered ranges

 R = Range2D consisting of the conjunction of 2D-coordinate pairs
describing axis-aligned boxes covering the range to be described

The implementations of the corresponding operations are then realizing
according to the requirements specified above.

2.2.3.3 IO Primitives

All sensible applications require IO for their operations. While high-performance
IO is a research topic on its own, the AllScale Core API provides basic primitives
to facilitate high-performance IO while keeping actual implementations abstract.

There are two different kind of IO operations supported:

 Streaming, supported through an AllScale IO interface facilitating e.g. the
writing of simulation results to output streams

 Memory mapped IO for the structured loading of static input data for
which efficient random access operations are required

The following sections cover the corresponding interfaces.

Stream Based IO

The underlying concept of the AllScale streaming IO interface is an out-of-order
stream. Data entries can be atomically read from or written to such a stream.
However, the order in which entries show up in the stream is undefined.
Although tasks may be restricted due to imposed synchronization constraints to
write data in a certain order to a stream pointing e.g. to a file, the resulting file
may contain the written data in an arbitrary order. Furthermore, the API only
guarantees the eventual visibility of a written element within an output stream,
before the application terminates – not any particular timing. Thus, in particular,
stream IO primitives may not be utilized for realizing synchronization operations
among tasks.

Within the API we utilize the abstract types istream and ostream as a
representation of an input or output stream. Furthermore, the following
operators are offered:

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

20

NAME TYPE DESCRIPTION

read (𝑖𝑠𝑡𝑟𝑒𝑎𝑚) → 𝛼 Atomically reads an element of type 𝛼
from the given input stream

write (𝑜𝑠𝑡𝑟𝑒𝑎𝑚, 𝛼) → 𝑢𝑛𝑖𝑡 Atomically writes the given element of
type 𝛼 to the given output stream, where
it will be visible eventually

Additionally, a few operations for the global management of streams and their
association to files are offered:

NAME TYPE DESCRIPTION

create_in (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑖𝑠𝑡𝑟𝑒𝑎𝑚 Opens an input file with the given name
and provides a stream to read from it; the
file format is implementation specific and
data may only be read and written using
the AllScale IO API

create_out (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑜𝑠𝑡𝑟𝑒𝑎𝑚 Creates a new empty file under the given
name and provides an output stream to
write information to the file; the file
format is implementation specific and
may only be read using AllScale IO
primitives

get_in (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑖𝑠𝑡𝑟𝑒𝑎𝑚 Obtains an input stream to a previously
opened input file which might be
concurrently read

get_out (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑜𝑠𝑡𝑟𝑒𝑎𝑚 Obtains an output stream of a previously
opened output file which might be
concurrently written to

Streams are designed to be the main facility to be utilized by application
developers to produce output data without the artificial introduction of extra
synchronization overhead. Furthermore, the abstraction to streams, their global
addressing through names, and the lack of guarantees on the output order
enables the flexible migration of tasks throughout the system. Tasks holding a
stream to a file X on some node may be moved to another node, where they get
assigned a new stream pointing to the logically same file. However, in reality the
stream may point to a physically different output file maintained by the local
runtime process. The concatenation of all the locally maintained output files
controlled by the various AllScale Runtime System instances on a system are
logically forming the actual output file. Thus, no synchronization beyond the
boundaries of an AllScale node is every required to facilitate streaming IO.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

21

Memory Mapped IO

However, in some cases more complex input data structures need to be loaded.
For instance, indexed files providing efficient access to desired sub-fractions may
be loaded by an application. Since the sequential access through streams would
impose a mayor performance penalty for accessing such a file, memory mapped
IO is offered for read only files.

The abstract type referencing a memory mapped IO file is mmfile. The following
operations are supported on those:

NAME TYPE DESCRIPTION

open (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑚𝑚𝑓𝑖𝑙𝑒 Globally opens a memory mapped file
with the given path.

get (𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑚𝑚𝑓𝑖𝑙𝑒 Obtains a reference to a previously
opened memory mapped file.

access (𝑚𝑚𝑓𝑖𝑙𝑒) → 𝛼 Interprets the content of the memory
mapped file as a value of type 𝛼

close (𝑚𝑚𝑓𝑖𝑙𝑒) → 𝑢𝑛𝑖𝑡 Globally closes a memory mapped file
such that it is no longer available for any
process in the application.

Opening and closing memory mapped files is a global operation throughout the
system. Once a file is opened, it is available within the address spaces of all
runtime system processes, although not necessarily at the same address range.
The task migration makes sure that references to such files are adapted
accordingly whenever a task is migrated between nodes.

Memory mapped IO is mainly considered a facility for special use cases in the
construction of efficient data structures within the AllScale User API layer. An
example is the static graph structure of a mesh, as it is required by one of the
pilot applications. While it might also be utilized by the end user, it will always
be strictly limited to read-only use cases. Write operations are restricted to the
steam based IO API.

2.2.4 AllScale User API

The generic nature of the Core API exceeds the complexity which could be
effectively handled by domain experts for implementing parallel algorithms.
Thus, it is the objective of the AllScale User API layer to provide a set of more
user-friendly constructs for the composition of parallel applications. The
implementation of those constructs are carried out by high-performance and
C++ experts utilizing the primitives offered by the Core API. An example for this
approach has been provided by Section 2.2.3.1 covering the implementation of a
generic parallel loop.

The list of constructs covered by the AllScale User API comprises:

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

22

 parallel control flow primitives:
o parallel loops with support for fine-grained dependency

 over numerical ranges (e.g. 1 – 10)
 over arbitrary ranges defined by C++ iterators

o parallel reductions as an extension to parallel loops
o a stencil API utilizing a recursive space-time decomposition

schema
o an adaptive grid refinement stencil as an extension to the standard

stencil
 data structures:

o multi-dimensional static and dynamically sized grids (utilized by
iPIC3D and AMDADOS)

o an adaptive refine-able grid (utilized by AMDADOS)
o an unstructured multi-grid mesh (utilized by Fine/Open)

All of those are solely based on the constructs of the AllScale Core API and
standard C++ features and are thus portable among different AllScale API
implementations.

Since the User API layer is open for future extensions, the given list of example
constructs comprises only those explicitly required in order to meet the projects
objectives. Additional operators for other types of parallel applications, including
e.g. branch and bound or MapReduce use cases may be implemented during the
course of the development and tuning of the AllScale Environment.

2.3 AllScale Pilot Applications

In the context of the AllScale project, the AllScale User API is developed in
particular to support three pilot applications. Those applications have been
specifically chosen due to their high demand of computational resources,
combined with dynamic load management requirements, reasonable scalability
potential and scientific relevance. A general description of those application, as
well as an assessment of their characteristics can be found in chapter 4 of
Deliverable D2.1.

Within this section the architecture of the AllScale implementations of those
prototypes are outlined. Thereby, the focus is placed in particular on the
interaction between those pilot applications and the AllScale API.

As a general observation, all pilots are built around a central data structure on
which properly orchestrated concurrent updates are iteratively applied.
However, due to those updates, the underlying data structure may be gradually
altered such that the necessary computational workload required for updating
individual partitions of the data structure may significantly vary over time.

The following subsections summarize the underlying data structure as well as
the necessary update operations for the individual pilots. Furthermore, the
implementation of those constructs based on the AllScale API is outlined.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

23

2.3.1 iPIC3D: Implicit Particle-in-Cell Code

The iPIC3D pilot application is a Particle-in-Cell code. As such, its underlying
data structure is given by a three-dimensional, regular, equidistant grid where
each cell maintains a dynamically sized list of particles. For each particle its
species (e.g. electron or proton), and physical properties (location, velocity,
charge and mass) is stored. The cells within the grid are partitioning the three-
dimensional space in equally sized sub-regions. As an invariant, each particle
stored within a cell has to be located within the sub-region represented by the
cell.

In each iteration of the simulation, the physical effects of the simulated particles
are aggregated to compute a set of induced force fields. Those fields are
described by their strength on the corner nodes of the grid structure. In a next
step, the forces affecting each particle due to the aggregated fields are computed
and a resulting acceleration obtained. This acceleration is utilized to update the
velocity and location of each individual particle. To preserve the particle location
invariant, particles moving beyond the boundary of a cell need to be migrated.
Once the migration of particles is completed, the next iteration can be computed.

The simulation is set up such that particles may never move fast enough to skip a
full cell over the duration of a single time step (=iteration step). This property is
effectively restricting communication patterns, such that e.g. regions that are 𝑛
cells apart may differ in their simulation time by up to 𝑛 time steps. It also
localizes communication since particles may only be exchanged between
adjacent cells.

Technical Realization

The iPIC3D prototype utilizes two main data structures: three-dimensional grids
and particle lists. For both data structures it is necessary to provide the
possibility of applying parallel operations upon, to exploit the inherent
scalability of the application. Thus, for both, implementations fitting the data
item concept imposed by the AllScale Core API have to be provided. Since regular
n-dimensional grids and lists are general concepts, both of them are developed
as part of the AllScale User API in the form of generic container-like data
structures.

Those data structures are utilized to represent the grid, its particles, and the
induced fields within the prototype. On top of those, parallel update operations
are supported utilizing e.g. higher-dimensional variations of the pfor construct
outlined within the API section above. Thus, the resulting simulation code is
structured like a list of update loops, enclosed within a single time step loop
(similar to the example covered in Section 4).

The algorithm utilized for solving the field equations after aggregating the effects
of all particles within the simulation remains exchangeable within this pilot
implementation. The alternative solvers represent different trade-offs between
communication demands and the length of a simulation time step – and thus the
number of iterations required for simulating a given physical process. For field
solver algorithms exhibiting similar localized communication properties than the
rest of the application, a recursive space-time division may be attempted. This

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

24

would, in theory, maximize the computational load per memory unit transferred
through the memory hierarchy and thus lead to highest resource efficiency. This
space-time decomposition will be supported by another User API primitive.

Main Challenge

The main challenge imposed by the iPIC3D pilot is its dynamic load. Large groups
of particles are likely to dynamically form clusters. In fact, the resulting
application is intended to study this kind of clustering phenomena. In those
cases, the occupied cells exhibit orders of magnitudes higher computational load
than relatively empty cells. The AllScale Environment is challenged to realize the
necessary load balancing capability on an inter-node level to be able to distribute
the load evenly among the available computational resources, while dynamically
adapting upon the continuously mutating distribution of particles within the
simulation.

More details on the AllScale implementation of this pilot application can be
found in Deliverable D6.2.

2.3.2 FINE™/OPEN: Unstructured CFD solver

The FINE™/OPEN prototype is a computational fluid dynamics (CFD) solver. The
underlying data structure is a static, unstructured mesh comprising objects like
cells, faces, edges, nodes, or boundary faces. The geometric information is
covered by a list of relations connecting those objects with each other (e.g. a
relation relating a cell to its faces). Furthermore, for each object, a set of
properties influencing the simulation is maintained. Those may comprise static
information like e.g. the volume of a cell, the spatial location of a node or the
conductivity of a face. However, it may also comprise dynamic information like
the pressure within cells or the heat flow through a face. The latter is the state of
the conducted simulation and the result end users are interested in. Finally, to
aid the effective computation of the desired solution, multiple meshes describing
the same objects in different resolutions are combined into a hierarchy of
meshes to facilitate the application of a multigrid solver approach. Thus, the full
data structure is a hierarchy of meshes, where each mesh comprises various sets
of objects, each linked through geometric relations and associated with a set of
static and dynamic properties.

In each simulation step, updates to the various properties associated to the mesh
objects are conducted. Updates start in the mesh layer exhibiting the finest
resolution. Thereby, physical effects are propagated through the connections
between the various objects on this layer. After a fixed number of iterations, the
current state of the simulated properties are aggregated and projected to the
next coarser grained level of the hierarchical mesh. There, the same propagation
and aggregation operations are repeated. After completing updates on the
coarsest layer, modifications are projected recursively down towards the finer
layers and the update starts over again for the next time step.

All updates are thereby local as defined by the relations formed over the objects
on the various mesh layers. Since the meshes represent real world physical

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

25

structures, the resulting updates are representing spatially local interactions.
The key for the realization of an efficient distributed implementation of this pilot
application is to minimize data transfers. This is achieved through the
partitioning of the meshes such that to a high degree updates can be conducted
locally, minimizing the need of data exchanges.

Technical Realization

The underlying mesh data structure required by this prototype has to be
implemented such that it meets the requirements imposed by the data item
concept of the AllScale Core API. In particular, it has to provide support for
partitioning. Meshes need to be decomposable into sub-meshes dynamically, to
be distributed among the available resources. This decomposition has to be
realized such that the necessary interaction between nodes is minimized.

To obtain an efficient, close to optimal decomposition we exploit the static
nature of the simulated mesh. The partitioning of the mesh is computed offline,
in the form of a pre-processing step. The resulting decomposed meshes,
including their information regarding their boundary regions and closures, is
incorporated into the data structure utilized during the actual simulation – and
thus not required to be computed while running the time-critical part of the
solver. The resulting available static information is those available during
runtime for realizing data exchange and migration operations.

The provided mesh data structure is designed generically to facilitate an
arbitrary list of objects, relations, hierarchy levels, and properties. Thus, future
use cases demanding modified mesh variants are implicitly supported by the
implementation developed for this pilot. While the generic mesh and basic
operations are part of the User API as a general facility, the specific instantiation
utilized by the pilot and IO operators are part of the pilot application.

Main Challenge

The main challenge imposed by this pilot is the complexity of the underlying data
structure. The need for managing an unstructured mesh, required to be
dynamically redistributed throughout a system during runtime imposes
challenges to all layers of the software stack, in particular to the API which is
required to implement all the necessary data item operations. Furthermore, the
size of the handled meshes, comprising several billion objects, impose
algorithmic challenges for the required pre-processing tools.

Another challenge of this prototype, as described in the requirements
Deliverable D2.1 is the needed IO support. This problem is to be handled within
the pilot implementation by customizing the output format of the simulation to
facilitate high performance IO. In particular, the order of values in the output
data stream as well as the actual file structure (one or multiple files, e.g. one per
process) are addressed to that end. By relaxing those constraints, the IO
performance bottleneck is addressed.

More details on the AllScale implementation of this pilot application can be
found in Deliverable D6.4.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

26

2.3.3 AMDADOS: Adaptive Meshing and Data Assimilation

The AMDADOS pilot application is a numerical simulation of an oil spill based on
a structured, adaptively refined, regular grid, incorporating data assimilation
events. Thus, the main data structure this pilot is based on is a regular, adaptive
grid. The number of refinement levels is thereby known during development
time and can be hard coded within the application. However, coarsening and
refinement steps are applied dynamically during runtime based on the state of
the simulation as well as data assimilation events.

The refinement of the resolution follows a hierarchical pattern. On the top level,
a fixed size, regular 2D grid defines the domain of the overall simulated area.
Each of those top-level cells (aka sub-domains) may then be itself recursively
sub-divided into small regular grids, up to a statically fixed maximum resolution.

The simulation algorithm is updating each sub-domain independently for one
time step at the currently active level of resolution. This update operation may
take several iterations, yet does not necessitate the exchange of any information
with any other sub-domain. Once completed, boundary information needs to be
exchanged between adjacent sub-domains utilizing another iterative algorithm.
This algorithm only requires the localized synchronization between neighboring
sub-domains. Thus, sub-domains being n global cell-widths apart may be n time
steps apart in their simulation time.

The assimilation of data is an optional step after the completion of an update of a
sub-domain. In this case, the solution obtained for the processed sub-domain is
combined with some externally obtained measurement before the simulation
continues with the mutual exchange of information among adjacent cells and the
next simulation time step.

An assimilation operation, however, is orders of magnitudes more complex than
a mere simulation time step for the same sub-domain. Thus, assimilations are
triggering load imbalance that has to be dealt with.

Technical Realization

The basic data structure is facilitated by an adaptive grid structure following the
constraints imposed by the API’s data item concept. This adaptive grid is
developed as part of the AllScale User API and shares its implementation to a
large extend with a regular grid, as it is utilized by other pilots. The update
operations on the grid may be implemented utilizing pfor loop structures, yet
this pilot is especially eligible for applying recursive space-time decomposition
to enable the concurrent computation of multiple time steps on spatially
sufficiently separated sub domains. The corresponding operator for this step is
offered by the AllScale User API, in a similar generic way as the pfor operator.

Main Challenge

The main challenge of this pilot is the handling of the dynamic changes in the
imposed load. Data assimilation steps are sporadic events that can cause unusual

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

27

high load for a single update operation. Furthermore, the gradual adaptation of
the grid resolution is continuously altering the distribution of computational
load throughout the simulated domain.

The design of the AllScale Environment, which is based on over-provisioning
tasks for the available resources, mitigates the effects of load imbalance between
individual tasks in the short term. Long term effects of shifting load can be
handled due to the capability of dynamically reassigning data fragments – and
thus ownership to domains – among the participating compute nodes. Finally,
due to the native support of nested parallelism, the computation of an
assimilation step can itself be recursively broken apart and distributed e.g.
among the cores of a node to further mitigate the impact on the load balance of
such events. In combination, those three techniques should provide the substrate
for an efficient processing of this pilot.

More details on the AllScale implementation of this pilot application can be
found in Deliverable D6.6.

2.4 AllScale Compiler

Codes implemented utilizing the AllScale API can be compiled by standard C++
tools and executed on parallel, shared memory machines. This mode is intended
to be used during the development and debugging phases of an application
development project. However, for obtaining an extreme scale high-performance
version that benefits from all the novel services offered by the AllScale
Environment, the same code base has to be compiled by the API-aware AllScale
Compiler. Unlike standard C++ compilers, the AllScale Compiler is aware of the
interpretation of the parallel primitives offered by the Core API layer and
restructures the application by introducing additional versions of encountered
parallel code fragments. Each version targets a different architecture and/or
represent a different trade-off between multiple optimization objectives (e.g.
more parallelism vs. less overhead). Together with information describing the
specific traits of those versions as well as details regarding their (data)
dependencies, the resulting set of implementations are forwarded to the AllScale
runtime system (Section 2.5). The latter dynamically auto-tunes the program for
adjustable objectives to achieve a desired trade-off among the considered tuning
objectives.

The implementation of the AllScale Compiler is based on the Insieme source-to-
source compiler infrastructure.

2.4.1 Overview

Figure 2 outlines the internal organization of the AllScale Compiler. In a first step
a given input code (1) utilizing the AllScale API is parsed by a clang based C++
frontend. During this process, the C++ code templates utilized by the User-Level
API for building user-friendly, domain-specific APIs is unfolded and instantiated.
As a result their concrete instantiation becomes accessible to the second step,
namely the semantic frontend. In this step, the instantiated, concrete program
codes (2) are converted to a high-level, explicit parallel intermediate
representation (3). Unlike conventional ASTs mirroring the original input
language, the design of this intermediate representation (IR) is focus on a

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

28

concise, minimal set of language constructs enabling the development of
sophisticated analysis and transformations. Furthermore, unlike C++ or most
other IRs, this IR provides explicit constructs to model parallel control flows and
their synchronization. Also, the representation comprises the entire program,
thus providing a global view exceeding the conventional limits of individual
translation units. Based on this IR, in the third compilation step, parallel tasks
are analyzed to determine their data requirements (4). These requirements
describe e.g. the data that needs to be transferred – along with a task – to a
different address space for the task to be successfully performed remotely, as
well as the data to be communicated to any code fragment subsequently
accessing the produced data. This abstract data requirement description is
exposed to the runtime in the form of a function computing the data
requirements of a concrete task. It enables the runtime to manage corresponding
data migration operations between nodes of a cluster, or to move data to and
from device memory associated to accelerators. Also, to improve the
application’s resilience, required data may be moved to and from persistent
storage devices to facilitate checkpointing.

Furthermore, the compiler’s modular backend generates code versions targeting
different architectures (CPU, accelerators), as well as different performance
trait-off objectives (e.g. degree of parallelism). However, the compiler may
encounter limitations preventing it from being able to obtain accurate enough
data requirements and/or generating desired code versions. To provide
feedback regarding encountered obstacles, a report (5) summarizing failed, as
well as successful code analysis and generation steps, is produced to aid
debugging and code optimization to be undertaken by the software developer.
Finally, all the available versions of the tasks are combined and encoded into a
single C++ output code together with their meta-information (6). The runtime
system may then flexibly choose among them.

2.4.2 Compiler Infrastructure

The internal representation (IR) of the Insieme compiler (Inspire) is an explicit
parallel high-level IR for C/C++ enabling the analysis and transformation of C++
applications exhibiting high-level constructs, including generic types and
operators.

Figure 2. Overview AllScale Compiler Architecture

Shared
Memory

Distributed
Memory

Accelerators

Resilience

C++
AST

High-Level parallel IRHigh-Level parallel IR
C/C++

AllScale Compiler

Parsed
Input Code

Unified Parallel
Representation

Annotated
Intermediate Code

Multi-Versioned
Target Code

Input
Codes

User API

Core API

Code

C
+

+
Fr

o
n

te
n

d

Se
m

an
ti

c
Fr

o
n

te
n

d

A
n

al
ys

is

Versioning
Report

Shared
Memory

Distributed
Memory

Accelerators

Resilience

Modular
Backend1 2 3 4

5

6

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

29

For the AllScale project, Insieme’s IR is extended by a module2 capable of
representing the primitives of the AllScale Core API, in particular the generic
prec operator, the associated treeture and tref ADT and the manageable data
structure concept. This modular IR extension provides, according to the design of
the AllScale Compiler, the foundation of program analysis, transformation, and
code generation steps.

The following modifications are required:

 a IR module modelling the AllScale Core operators
 a frontend extension identifying the corresponding constructs in the

input code and converting them into the compiler’s intermediate
representation

 an extension to the analysis framework enabling the correct
interpretation of the newly introduced language extensions

 a backend extension to synthesize code fitting the runtime interface’s
requirements in a first development step; in a second phase, the
generation of customized code versions addressing various desired
objectives (degree of parallelism, target architecture, resilience,
instrumentation, …) are added incrementally

All those module extensions are integrated with the Insieme framework to
produce a compiler executable facilitating the compilation of input applications
into binaries utilizing the AllScale Runtime System for managing their execution
on target systems. The combined AllScale toolchain should thereby serve as a
complete drop-in replacement of a standard GCC or clang based toolchain
utilized by a development or build system.

2.4.3 Data Requirement Analysis

Given a code fragment encoded within Insieme’s parallel intermediate
representation extended by the AllScale IR module, an analysis step symbolically
determine the data requirements of the given fragment. For the code fragment
computing

for(int i = a .. b) {
 A[i] = B[i-1] + B[i] + B[i+1];
}

the analysis determines the following requirements:

 the array A is written for the range [a..b]
 the array B is read for the range [a-1…b+1]

This symbolic representation, parameterized by the free variables A, B, a, and b
of the code fragment, is obtained by the data requirement analysis within the
compiler. Within the backend of the compiler, this symbolic formula is converted
into a function capable to compute the actual data dependencies based on the
concrete values of the free variables. This function is then offered to the runtime
system to manage the distribution of data and tasks throughout the system.

2 A module in the Insieme infrastructure is essentially the definition of a set of abstract data types
and their associated operations.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

30

The example above is a simple example to illustrate the general approach. A
more realistic case is the recursive pfor implementation as covered in Section
2.2.3.1. In this case the data requirements of some sub-task has to be deduced
from the captured values and the recursive range parameters. Details of this
analysis, the internal IR modifications, and the backend code generation are
covered in the corresponding Deliverables D3.3 and D3.4.

The more accurate those access patterns can be deduced, the more fine-granular
data requirements can be forwarded to the runtime system. In cases where the
analysis fails to obtain sufficiently accurate results, an issue is reported to the
end-user utilizing the AllScale Compiler, indicating a problem a human user may
be able to resolve e.g. by restructuring the code or adding hints through
additional assertions.

2.5 AllScale Runtime System

2.5.1 Overview

The resulting C++ output code is compiled by platform specific C++ compilers
and linked against the AllScale Runtime System. Unlike conventional programs
orchestrating their own execution, in the AllScale Environment the runtime
system steers the execution of the resulting program, while the input program
offers execution options. Figure 3 outlines this process.

The central element of the runtime system is the dynamic optimizer and
scheduler: it is the component that steers the execution. Triggered by program

Figure 3. Overview AllScale Runtime System Architecture

Processing Architecture
(utilised via: MPI / Infiniband / OpenCL / CUDA / …)

A
llS

ca
le

 R
u

n
ti

m
e

 S
ys

te
m

R
e

so
u

rc
e

 H
an

d
lin

g

D
at

a
H

an
d

lin
g

Ta
sk

 H
an

d
lin

g

P
ro

gr
am

 E
ve

n
ts

M
o

n
it

o
ri

n
g

Se
n

so
rs

A
ct

u
at

o
rs

Se
n

so
rs

Distributed
Work & Data

Entities processed
by Resources

Resilience
Manager

Optimisation
Objectives

Input
Code

Multi-Objective
Dynamic Optimiser

and Scheduler

Continuous
Steering Process

Events
& Data

Steering
Cmds

Resilience
Instructions

1

2

4

3

5

6

7

8

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

31

events (1) like task spawning, suspension or completion, the scheduler conducts
application managing decisions (2). The available options comprise those offered
by the input program generated by the compiler (3), as well as the settings of any
hardware-level actuators provided by the target platform, such as frequency
scaling. Each task version provided by the compiler is annotated with
requirements and cost models supporting the optimizer in its evaluation. Based
on dynamically customizable optimization objectives (4) – like focusing on
execution time or energy savings – the scheduler issues corresponding steering
commands (5) to the actuators influencing the execution. These actuators cover
task, data and resource management operations. Thus, the optimizer may alter
the assignment of tasks to processors, the location of data elements in the
system, and hardware parameters such as e.g. the frequency of cores. The actual
task execution (6) is monitored and performance data is collected (7) which may
be utilized subsequently as input for future iterations of the runtime system
control loop. Furthermore, a resilience management component (8) monitors the
state of the processing application to discover irregularities. Based on this
monitoring, the manager may suggest corresponding precautionary measures
(e.g. the creation of local checkpoints) as well as recovery operations to the
dynamic optimizer. The scheduler is covered by Section 2.6, the monitoring
system by Section 2.7, and the resilience management by Section 2.8. Due to
their architectural position, those three components are referred to as runtime
subsystems.

Note that, while for simplicity Figure 3 represents the runtime system and its
control loop as a centralized system, the AllScale Environment utilizes
distributed, scalable scheduling and management solutions. Specifically due to
the scalability and minimal induced system performance noise requirements of
the scheduler and the monitoring service, the design targets distributed
implementations to offer scalable solutions for those components.

2.5.2 Runtime Hardware and Application Model

The foundation of the runtime system’s design is based on two models
abstracting its environment:

 the hardware model, describing the structure of the compute
infrastructure an application is processed on, and

 the application model, describing the structure of the processed
application

It is the runtime’s job to utilize the information it maintains about the available
hardware to map the computation and data described by the application model
to the available resources according to some user-specified objectives.

2.5.2.1 The Hardware Model

The hardware model utilized by the AllScale Runtime System provides a
common abstraction of the available hardware resources to be utilized and
managed by the various runtime subsystems. It those provides a common way of
addressing those resources throughout the system.

The hardware model comprises the following entities:

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

32

 Node: the unit of resource managed by a single AllScale process; each
node has an associated locality, which can be addressed through the
network of AllScale processes; also, every node has its own instances of
runtime-subsystems (e.g. scheduler or resilience manager);

 Compute Unit: a hardware unit capable of processing work (see work item
below); a CPU core or an accelerator are, for instance, represented as
compute units; each compute unit belongs to a single node

 Memory Unit: a memory unit is the abstraction of an address space where
each addressable memory location exhibits the same access behavior as
any other location within the same space; for instance, NuMA nodes or
GPU device memory are represented as memory units; each memory unit
belongs to a single node

 Links: links connect compute and memory units; a link between a
compute unit A and a memory unit B indicates that code running on A can
access and manipulate data stored in memory location B.

Additionally we define a machine to be the term utilized for referencing a
network of resources managed by a connected network of AllScale Runtime
System process instances. Thus, the term machine references e.g. the part of a
compute cluster provisioned for the execution of an AllScale application.

While application code running on a compute unit A may only access data
located within directly linked memory locations, the runtime system is capable
of moving data between any pair of memory locations. Thus, the runtime system
is responsible for actively managing the workload and data distribution such
that the data required by processed tasks is always located within accessible
memory units.

An instance of the hardware model can be considered as a graph like structure,
where nodes are given by compute and memory units and edges are formed
through links. A concrete instance of the hardware model is referred to as a
hardware environment. However, it is important to note that the hardware
environment is not static over the course of the execution of an application.
Nodes, links, compute or memory units may be added or removed dynamically –
active, due to the management of resources by the runtime, or passively due to
failures or external administrative operations.

For instance, to save energy the runtime may decide to shut down a number of
cores during a particular phase of the program execution. This is effecting the
hardware environment by removing the corresponding compute units. Failing
nodes or nodes disconnected for maintenance as well as rejoining nodes after
repair operations are as well altering the hardware environment.

Non-Functional Information

The hardware model only specifies the most basic information regarding the
available hardware resources necessary for successfully processing applications.
However, additional, non-functional information like the (current) clock rate of

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

33

compute units, lengths of work queues associated to compute units, the size and
occupation of memory locations, or the capacity of links are included to aid the
decision making processes within runtime subsystems. The runtime system
provides the framework for representing, distributing and querying this kind of
information. The actual kind of information to be maintained, however, is
adapted as demanded over the course of the development of the project.

2.5.2.2 The Application Model

The information about the hardware environment is utilized by the runtime
system to distribute and balance a running application among the available
resources. To that end, similar to the hardware model, an abstraction of the
managed application is required. This abstraction is given by the application
model.

The application model describes applications governed by the AllScale Runtime
System. The two central components are:

 Work Item: the entity representing work that is utilized by the scheduler
to distribute computational load among available compute units

 Data Item: the entity representing data that is utilized by the runtime
scheduler to distribute data among available memory units

Work items represent a given amount of work, e.g. the update of a certain set of
elements or the inspection of a set of configurations in a search. Data items on
the other hand represent data structures like arrays, trees or meshes.

In general, both, work and data items, are decomposable into partitions. Thus, a
work item may be decomposed (up to a certain atomic granularity) into a set of
smaller sub-items orchestrated to perform the same computation as the original
item. Similar, data items may be partitioned into smaller structures to be
distributed among multiple memory units.

The connection between work and data items is formed by data requirement
functions associated to each work item instance. Through those, work items
define the data required for their processing as well as the access mode. For
instance, a work item copying a range [x,..,y] of elements from a vector A to a
vector B states that it requires read access to the elements A[x] … A[y] as well as
write access to the elements B[x] … B[y]. In this case the runtime is required to
assign this work item to a compute unit exhibiting access to the corresponding
fractions of the data items A and B. However, to that end, the runtime system
may decide to move data or fractions of data as well as to split tasks to obtain a
more efficient execution schedule. This scheduling is the main objective of the
scheduler subsystem.

Furthermore, dependencies between work items may be formed to synchronize
ongoing computation. Thus, work items may be scheduled only upon the
completion of other work items. Combined with the data requirements, those
dependencies are the only two means of synchronization offered to an AllScale
application. Note that only the synchronization of tasks is exposed by the
AllScale Core API to the user. Data requirements are extracted from the
implementation code by the compiler through static code analysis.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

34

Tunning Options

In addition to the data requirements, a function realizing the partitioning of a
work item, and a function for processing the work item on some compute unit,
each work item may be equipped with a set of alternative implementations. Each
of those implementations is functionally equivalent to the function processing
the work item. However, those implementations may be tuned for specific
scenarios or optimization trade-offs. Some may be prepared for utilizing
accelerator hardware, while others may produce varying degrees of nested
parallelism, exploit specific hardware available on some systems, or even
represent different trade-offs between execution speed and energy efficiency.
The runtime is free to choose any of those variants for processing a given work
item on a selected compute unit.

The set of alternatives offered to the runtime is not fixed a priory. Future
development iterations on the compiler may introduce new code variants to be
exploited by the runtime. To facilitate the utilization of those variants, additional
meta-information describing the properties of the various code variants are
added by the compiler. An example may be versions marked for being utilized on
certain GPU types. As for the non-functional information maintained for the
hardware environment, the AllScale toolchain components provide support for a
generic set of code variants and meta-information properties. The ongoing
development of the system will show which code variants and properties are
beneficial for enforcing the objectives defined for the execution of a program.

2.5.3 Technological Base

The AllScale Runtime System is based on HPX, extended by the necessary
infrastructure for fulfilling the requirements imposed on it. The necessary
modifications and adaptations comprise:

 the implementation of the work item infrastructure, comprising means
for the specification, creation, addressing, and synchronization of work
items; this mainly consisted of mapping those AllScale concepts to
equivalent constructs offered by the underlying HPX runtime system

 the implementation of a data item manager enabling the creation,
addressing, manipulation, and localization of data items and partitions of
those; this service is a new service built on top of the preexisting HPX
infrastructure

 the implementation of the hardware model, in particular means for
addressing compute and memory units as well as to query their
interconnection and non-functional properties

 the logical concentration of management decisions to unite all
performance impacting decision-making processes into to a single
scheduler implementation; this requires an adaptation of the HPX
scheduler to provide access to intra-node scheduling policies, in addition

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

35

to the inter-node scheduling options to be realized as part of the work
item infrastructure

 a framework for the monitoring system supporting the collection,
processing, aggregation, subscription and querying of information
associated to the various entities in the hardware and application model;
this sub-system is an extension of a preexisting HPX internal monitoring
service

 an interface for the resilience manager enabling this component to
observe the execution state, suggest backup operations and recommend
recovery operations upon failures; this component is built on top of the
monitoring framework and in cooperation with the scheduler, which it
may instruct to perform backup or recovery operations

A particular challenge for the AllScale Runtime System is imposed by its high
scalability requirements. To that end, none of aforementioned services and
infrastructures may rely on centralized knowledge. Distributed, localized means
for realizing the required work and data item operations, monitoring and
scheduling services are required.

For work items, the locality of the recursively decomposed tasks themselves are
aiding in the design of localized management structures. The likelihood of task
imposing synchronization constraints collocated on the same node is much
higher than inter-node dependencies due to the structure of the AllScale
program model. Those, synchronization on tasks is mostly to be handled within
nodes and only in rare cases through information exchange between nodes.

The data items, on the other hand, require a directory maintaining their current
distribution state that can be accessed by all nodes throughout the system.
However, the support for a hierarchical partitioning of data items, the favoring of
localized operations due to the AllScale programming model, and the relatively
low number of times updates on the data distribution are performed, provide the
foundation for a scalable implementation of such a global directory. Techniques
including the distribution of responsibility and local caching are employed to
provide a scalable implementation of the data item localization and manipulation
operations.

2.5.4 Failure Tolerance

An application can only be as resilient as the components it is based on. Thus, the
projects objective to provide a failure resilient execution environment of large
scale applications requires the underlying runtime system to be equally resilient.
Fundamentally, the communication facilities utilized by the runtime must be
capable of dealing with failing nodes. Additionally, all services built on top of
those communication primitives must be design such that leaving or joining
nodes can be handled.

HPX, the foundation the AllScale Runtime System is based on, provides
communication layer implementations resilient against node failures. However,
functionality dealing with failing, leaving and joining nodes needs to be

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

36

reevaluated and adapted. Furthermore, the work and data item management
services need to be equipped with means for recovering failures. The
corresponding features are closely linked to the resilience manager subsystem
and are thus discussed in detail in the corresponding section (Section 2.8).
Furthermore, the scheduler and monitoring infrastructure must be design such
that individual node failures can be recovered. Details on the techniques
employed for ensuring this property are beyond the scope of this architecture
deliverable and can be found in the deliverables covering the individual
contributions.

2.5.5 Scheduler Interface

One of the key design goals of the AllScale Runtime System is to concentrate all
the performance impacting decision making processes into a single component.
This component shall be capable of manipulating the work and data distribution
of an application throughout the available hardware. Furthermore, it should
adjusting the hardware environment and hardware parameters as well as
internal runtime settings as, for instance, the granularity of collected monitoring
data. The fundamental idea is to have a (logically) central component to conduct
research on how to most effectively manage the execution of AllScale
applications.

The purpose of the other runtime subsystems, as well as the surrounding
runtime system implementation itself, is to provide the necessary level of
abstraction to the scheduler component. Scalable, efficient operations to inspect
and influence work and data items, hardware parameters, and general runtime
system behavior shall be offered through corresponding interfaces.

Those operations include:

 callback operations whenever a work item needs to be scheduled
 means to run a selected work item variant on a selected compute unit
 means to examine the data requirements of a work item
 means to query and manipulate the distribution of data items
 means to query the system state, e.g. queue lengths
 means to communicate between scheduler instances of different nodes
 means to adapt hardware parameters
 callbacks upon the discovery of leaving and joining nodes
 means to obtain information regarding possible recovery options

Those extensive capabilities of the scheduler component make this element the
central system responsible for the dynamic optimization and tuning of running
applications.

2.5.6 Resilience Manager Interface

The resilience manager within the runtime system architecture is designed to
observe the ongoing computation and produce suggestions on backup and
recovery operations to be forwarded to the scheduler. For the observation of the
system it requires access to the monitoring system. This access enables it to

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

37

observe the state of the application and the hardware components throughout
the system. Based on those observations suggestions on when to conduct backup
operations are fed to the scheduler. Furthermore, in case of a failure state it is
the responsibility of the resilience manager to provide suggestions on recovery
options to the scheduler.

Thus, the interface of the resilience manager involves:

 access to the monitoring system to continuously observe the state of the
system

 the possibility to register callbacks to certain events throughout the
system, e.g. the start / end of a task or an event triggered upon a node
failure

 means to communicate with resilience manager instances on other nodes
throughout the system

The resilience manager has to provide:

 an interface to the scheduler enabling the scheduler to request recovery
operations to compensate for failures

While the AllScale Runtime System component is establishing those interfaces, it
is the obligation of the work package associated to the corresponding
components to provide the actual implementations.

2.5.7 Monitoring Service Interface

The monitoring subsystem is responsible for collecting, aggregating, distributing
and maintaining information about the various entities throughout the system. It
is based on an HPX internal information service, capable of forwarding data.
However, in addition it has to provide options to selectively enable and disable
the collection of performance data to support the active minimization of its
performance impact. Furthermore, the monitoring service has to provide the
possibility to register call back events triggered upon the occurrence of certain
conditions.

The monitoring service therefore requires:

 access to the HPX monitoring service
 means to schedule data aggregation and maintenance tasks

The monitoring service has to provide:

 an interface for querying (aggregated) information about the various
entities observed throughout the system

 means to subscribe for events
 means to customize the kind and granularity of data to be collected

The main task of the monitoring component is to provide implementations of
those interfaces and to populate the list of observed properties with information
relevant for the subsystems depending on those.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

38

2.6 AllScale Scheduler

As has been outlined within Section 2.5.5, the scheduler component is the central
component when it comes to decision making processes in the runtime system.
Among others, it decides:

 where to place data
 where to process work
 how to set up the underlying hardware infrastructure
 what data should be collected and aggregated by the monitoring system

All of those decisions have to be made towards a user given object. This objective
is given through a policy defining the tradeoff among objectives including the
total execution time, the resource usage, and the energy consumption.

Objective Function

While in theory a multi-objective optimization process yields a set of optimal
configurations (aka Pareto frontier), within the context of the runtime system a
single configuration out of those optimal configurations has to be selected since
the application is only processed once. To select among those options, a tie
breaking weighting function is employed. The system seeks to minimize the
objective function

𝑡𝑛𝑒𝑚𝑟𝑘

where 𝑡 is the total execution time, 𝑒 the total energy requirement, and 𝑟 the
total resource usage3. The constants 0 ≤ 𝑛, 𝑚, 𝑘 ≤ 2 are chosen by the user to
weight the various objectives. For instance, if 𝑛 = 1, 𝑚 = 𝑘 = 0 the objective
function is reduced to the execution time only. Thus, the runtime system would
seek to process the application as fast as possible. On the other hand, by
choosing 𝑚 = 1, 𝑛 = 𝑘 = 0 the system would make its decisions such that as
little energy as possible is consumed. Settings where more than one parameter is
greater than zero result in trade-off solutions among multiple objectives.

To simplify the specification of the objective function, predefined parameter
settings are offered to the end user (e.g. as_fast_as_possible or
balanced_time_and_energy). The evaluation and investigation of practical use
cases will provide the necessary default values for the three parameters.
Furthermore, the runtime provides means to alter the user defined objective
during runtime. So changed conditions resulting in a change of the objectives can
be forwarded to the runtime system.

Scheduler Design

Beside the efficiency of the execution controlled by the scheduler, its own
efficiency in deriving those scheduling decisions is an important element to be
considered in the design of the scheduler. A frequent, high delay in scheduling
decisions due to inter-node communication or complex computation steps is

3 Technically this makes the optimization problem a mono-objective optimization problem;
however, since dealing with multiple objectives and conducting the tie break during runtime, this
is known as a multi-objective optimization problem in the context of code optimization

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

39

negatively effecting the overall execution performance of the application. Thus, a
two-layer scheduler architecture has been designed:

 a top layer, strategic scheduler is periodically evaluating the utilization of
the available hardware and deciding upon the adding, removal, or
reconfiguration of the available hardware; while each node has its own
strategic scheduler instance, decisions are made globally due to the
employment of distributed algorithms; this layer works asynchronously,
independent of the events within the processed application; it is also the
layer interpreting the objective function given by the user

 a bottom layer, tactical scheduler is utilizing the resources provisioned by
the strategic scheduler as efficiently as possible for processing work
items; it is the layer determining whether to split or process work items,
selecting which work item implementation variant is to be processed by
which compute unit under its control, and moving data item fragments as
needed; each node has its own tactical scheduler, mostly working
independently of the scheduler of other nodes with the exception of e.g.
localized work stealing events to facilitate automated inter-node load
balancing;

Both layers of the scheduler constitute the implementation of the scheduler
component. The separation of concerns serves the goal of providing fast
scheduling decisions while considering global, long-term scheduling objectives.

Naturally, due to the required resilience towards node failures, the
communication protocol between scheduler instances of different nodes has to
be designed stateless. The details of those protocols, as well as the details of the
inner structure of the scheduling layers is covered in the corresponding
Deliverable D4.6 and D4.7.

2.7 AllScale Monitoring Service

The AllScale Monitoring Service is designed to be an extension of the monitoring
service implementation included within HPX, the system the AllScale Runtime
System is based on. However, the following modifications and extensions are
necessary:

 means to collect hardware information, including the hardware
configuration (e.g. current DFVS setup) or performance counters need to
be added; the foundation is provided by the PAPI library, however
attributing collected data to the corresponding resources remains to be
the responsibility of the AllScale Monitoring Service;

 means to collect information on various runtime entities need to be
integrated; e.g. execution time of work items, work queue lengths, energy
usage of a work item, allocated memory within a memory unit;
corresponding hooks and access points have to be integrated into HPX
and the AllScale Runtime System to enable those observations

 means to subscribe and unsubscribe to events need to be provided
 means to query for information need to be provided

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

40

 means to control the kind and granularity of collected data
 functionality filtering, aggregating, compressing, and storing monitoring

data need to be integrated

While most of this functionality serves the purpose of online-monitoring to
support decision making processes, the monitoring system is furthermore
required to provide the foundation of post mortem analysis. Thus, the necessary
data formats, recording, extraction, and analysis utilities for investigating
application executions are required. While of interest for the end user for
investigating the characteristic of the processed application, this toolbox serves
as well as an important aid for the development process of the AllScale toolchain
itself. Additional details regarding the design and implementation of the required
features are covered within Deliverable D5.2 and D5.3.

2.8 AllScale Resilience Manager

The resilience manager is responsible for providing recovery options to the
scheduler upon failures. Such failures may range from bit flips in memory, over
faulty computations in the cores, to whole node or even network failures.
However, the requirement analysis conducted during the initial phase of the
project (see Deliverable D5.1) revealed the lack of potential fine-grained
recovery strategies for soft failures like bit flips. Furthermore the unavailability
of hardware capable of identifying such problems has been stated as another
major obstacle for the realization of such failure recovery schemas. Thus, the
focus in the design of the resilience manager was placed on the much more
probable case of node failures in extreme scale systems – which may be caused
by actual hardware failures or failures leading to AllScale processes to terminate
their execution unexpectedly.

Integrating Resilience

The design of the AllScale Resilience Manager aims at the handling of node failures
transparently to the end user. It utilizes the runtime system’s application model as a
foundation and aims on guaranteeing the proper execution of every work item
according to the involved work and data item dependencies.

The basic idea is to have for every node A a protector node B who maintains a backup of
the work items currently processed by node A. Whenever node A gets a work item
assigned for processing, it informs node B about this newly gained responsibility.
Likewise, whenever A finishes a work item, it informs B about this fulfilled obligation.
Thus, in case node A crashes, node B knows about the tasks being processed on A and
restarts those tasks. By arranging all nodes in long enough cycles (not necessarily in a
single one), failures of individual nodes can be recovered through this approach.
Furthermore, if deemed necessary, the protocol can be extended to guarantee the
survival of even higher rates of failures by e.g. utilizing two protectors per node.

One of the major challenges of this approach is the amount of necessary communication
between a node and its protector. However, a property of the AllScale Runtime System
application model can help to solve this problem. To avoid updating a node’s protector
node upon every single processed work item, the hierarchical relation between work
items can be exploited to significantly reduce the number of necessary updates.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

41

Whenever a new work item is assigned to a node, it can locally check whether its
protector knows already about this responsibility due to a responsibility towards one of
the parent work items already previously reported. In such a case the new responsibility
is not required to be reported to the protector since the previously reported
responsibility towards the larger work item includes the responsibility of the new work
item. Since most work items processed within a node are likely to be descendants of a
rather small set of work items, this significantly reduces the number of necessary
updates.

Thus, the recursive partitioning of workload inherent in the AllScale application model
provides means to effectively keep track of the obligations of the various nodes
throughout the system. By utilizing a distributed scheme for keeping backups
information exchanges are furthermore localized.

Resilience Protocol Details:

The overview description provided above is a high-level description of the employed
algorithm. Various additional problems need to be solved:

 Before restarting tasks known to be processed by a failed node, the protector
node has to reset the initial state that has been in place before a potential first
execution of those work items. Since the progress of the work item evaluation is
unknown, globally accessible data may have been partially updated. Data may
also have been lost since it has been located on the failed node. Thus, the backup
of a task on the protector node is not only comprising the parameters describing
the task but also a snapshot of the data items read by the backed up task. In case
of a failure event, this information is used to restore the initial state of the task
and its input data before restarting the task.
The backup and restoration of input data can be derived from the data
requirements associated to the work item. This information, originally included
for the scheduling process, can be used to back up and restore all the necessary
information. In the case of data items lost due to node failures, the restoration of
the task operating on those data fragments implicitly restores them as well.

 The naïve restart of tasks can lead to race conditions and/or duplicated updates
due to the same task being processed twice. This may happen if a sub-task of a
backed up task gets stolen to another node. This node would not notice that the
node the task got stolen from crashed. Thus, it also is not aware that the task it is
processing is going to be processed again. To eliminate this problem, before a
work item gets reissued it has to be ensured that no child-task of the recovered
work item is running anywhere else in the system. This might be realized simply
through a purge broadcast or, more sophisticated, by tracking steal operations
and keeping temporary records on nodes who have stolen sub tasks.
Independently of the actual realization, this additional step in the recovery
protocol ensures that each task is effectively only processed once.

Like the scheduler and monitoring subsystem, the resilience subsystem has to be
designed keeping its own state resilient to node failures. Thus, the creation of links
connecting nodes to their protectors has to be failure resistant. For instance, upon node
failures, the node protected by the failed node has to obtain a new protector.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

42

Backup Storage

The designed resilience system does not specify the media utilized for backing up
information – nor does the protected application need to know about this details (in
fact, the entire application resilience remains transparent to the application developer).
Consequently, the backup of work items and their data environment may be conducted
within the memory of the protector node, one of its local discs, any special, non-volatile
memory hardware resource, or any other kind of suitable storage device. The backup
and recovery protocol can be adapted to the target architecture without changing the
original application code. By design, it may even be adjusted at runtime.

Failure Detection

A final piece for the design of the resilience manager is the need for a method to
identify node failures. This method touches the responsibility of three different
components: naturally the resilience manager, the monitoring service due to its
responsibility of collecting data about the system state, and the runtime system
itself since it provides the underlying communication infrastructure and is
probably the first to notice.

Since for the overall design of the system the actual implementation is less
important than the mere fact that such a method is present, the realization
remains exchangeable. The current design foresees a simple heartbeat signal
between a protector and its protected node. If this signal detects a failed node, an
event in the monitoring system signaling a node failure is triggered and –
through a corresponding subscription – forward to the resident resilience
manager.

3 AllScale Component Interfaces

This section briefly summarizes the interfaces present within the various
AllScale components. Since many of the referenced interfaces have already been
discussed in Section 2, this section is a mere summary of the interfaces between
components.

Application to API Interface

The API itself constitutes the interface between AllScale applications and the
underlying AllScale Environment. However, the boundary between what belongs
to an application and what is part of the user-level API is an open boundary.
Similar to the design decision of what functionality should be placed in a general
library like the STL or boost library, and what should remain application code
specific, this is mostly a semantic and/or technical issue. Within this project we
tend to move generic utilities that may be utilized in more than a single specific
use case into the user level API, while all other codes shall remain with the
application code. Furthermore, the user API is not closed. It may be extended and
additional third-party libraries may be built on top of it or the AllScale Core API.
However, the one crucial constraint in all of those implementations is to not
violate the constraints imposed by the AllScale API regarding the utilization of

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

43

external resources (e.g. IO) or parallel constructs (e.g. locks, pthreads, OpenMP
or MPI constructs).

API to Compiler Interface

The contract between the API and the compiler is defined by the AllScale Core
API, for which in principle the compiler provides just another implementation.
This set of constructs comprises the prec operator and the associated treetures
(Section 2.2.3.1), the data item concepts (2.2.3.2), and the IO primitives (2.2.3.3).

Compiler to Runtime Interface

The interface between the compiler and the runtime is defined through the
AllScale Runtime System application model as outlined by Section 2.5.2.2, mainly
comprising work and data items. It is the compilers objective to generate code
satisfying the requirements specified by those two concepts to realize parallel
operations as intended by the code expressed by the application developer.

Monitoring Service Interface

As a runtime sub-system the monitoring service provides efficient means for
other subsystems to collect, aggregate, relay and query information regarding
the state of a processed application and the hardware it is executed on. Thus,
interfaces for adding sensors and aggregators are required, as well as a query
and subscription API. Details have been covered in Section 2.5.6. Additionally,
the monitoring service is required to provide means for the end user (from the
runtime systems perspective) to enable the inspection of the execution of an
AllScale application for performance debugging. The corresponding tool and
visualization support are covered in Deliverable D5.2.

For its operation the monitoring service requires access to the HPX monitoring
service, as covered in Section 2.5.7.

Scheduler Interface

The dynamic optimizer (aka scheduler) is utilizing the interfaces provided by the
various other runtime subsystems for realizing its task. It thus requires access to
the work item and data management system (see Section 2.5.5), the monitoring
interfaces (2.5.7 and 2.7) and the services provided by the resilience manager for
preparing for and reacting to failures (2.8). Additional interfaces to components
managing hardware resources may be utilized depending on the implementation
of the scheduler. However, different implementations may depend on different
interfaces for manipulating hardware parameters.

Additionally, the scheduler has to provide a user interface for the specification of
tuning objectives.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

44

Resilience Manager Interfaces

The resilience manager utilizes the monitoring service for observing the state
and progress of a managed application. Furthermore, it uses the interface
provided by work item implementations to backup or restore the state of parts
of an AllScale application.

To support the scheduler in managing resilience specific objectives, it is required
to provide an interface for obtaining suggestions regarding backup and restore
operations (see Section 2.5.6 and 2.8).

4 Example AllScale Application

While the previous sections have been detailing the overall structure of the
AllScale Environment from its architectural point of view, this section addresses
the behavioral aspects of the various component and their interfaces. For its
illustration, the process of an example application is described.

4.1 The Example

To illustrate the contribution and dynamic behavior of all the components of the
AllScale Environment the processing of a small program is covered step by step
within this section.

A typical example for a highly scalable code of great scientific interest are codes
computing a solution for the field 𝜌(�⃗�, 𝑡) for some space domain �⃗� ∈ ℝ𝑛 and time
domain 𝑡 ∈ ℝ satisfying the differential equation

𝑑𝜌(�⃗�, 𝑡)

𝑑𝑡
= 𝑘

𝑑2𝜌(�⃗�, 𝑡)

𝑑2�⃗�

where we have an initial state for time 𝑡 = 0. Equations of this shape may, for
instance, be utilized to model the density of some liquid over time or the heat
propagation within a solid.

Typically, to solve the equation numerically, the space/time domains are
discretized using constant intervals. Let Δ𝑠 and Δ𝑡 be those chosen space and
time steps. Furthermore, let 𝑢(�⃗�, 𝑡) be the discretized approximate solution
computed for 𝜌(�⃗�, 𝑡). For the 1-dimensional case, the derivation results into the
following equation:

𝑢(𝑥, 𝑡 + Δ𝑡) ∶= 𝑢(𝑥, 𝑡) + 𝑘
𝑢(𝑥 − Δ𝑠, 𝑡) + 𝑢(𝑥 + Δ𝑠, 𝑡) − 2𝑢(𝑥, 𝑡)

Δ𝑠
Δ𝑡

By defining 𝑐 = 𝑘
Δ𝑡

Δ𝑠
 we obtain

𝑢(𝑥, 𝑡 + Δ𝑡) ∶= 𝑢(𝑥, 𝑡) + 𝑐(𝑢(𝑥 − Δ𝑠, 𝑡) + 𝑢(𝑥 + Δ𝑠, 𝑡) − 2𝑢(𝑥, 𝑡))

Thus, the following code4 computes the solution for 𝑢(𝑥, 𝑇):

4 for clarity we omit the handling of boundary conditions

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

45

double fieldA[N];
double fieldB[N];
double* A = fieldA;
double* B = fieldB;

// initialize the field with the initial state
for(int x = 0 ; x < N ; ++x) {
 A[x] = … ; // some value
}

// compute the solution over the discrete time steps
for(int t = 0; t< T; ++t) {
 for (int x = 1; x < N – 1 ; ++x) {
 B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]);
 }
 swap(A,B);
}

// the final solution for u(x,T) is now stored in B[x]

The following sections illustrate how this code is processed/executed by the
AllScale Environment.

4.2 API Support

By analyzing the initial (sequential) code, it is easy to see that both space loops
can be processed in parallel. Thus, for the parallelization of the given code the
pfor construct of the AllScale User API can be employed as follows:

double fieldA[N];
double fieldB[N];
double* A = fieldA;
double* B = fieldB;

// initialize the field with the initial state
pfor(0,N,[&](int x) {
 A[x] = … ; // some value
});

// compute the solution over the discrete time steps
for(int t = 0; t< T; ++t) {
 pfor(1, N – 1, [&](int x) {
 B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]);
 });
 swap(A,B);
}

// the final solution for u(x,T) is now stored in B[x]

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

46

This parallelizes the given code fragment similar to the way developers would
handle it utilizing OpenMP or cilk. However, similar to the OpenMP or cilk
implementation, the given code fragment includes an implicit barrier at the end
of each parallel loop. For instance, after every call of the pfor loop in the update
step the main program is waiting until the processing of the pfor is completed
before swapping the two pointers A and B and starting over with the next time
step. As a consequence, at each time step, all task queues in the system need to
be drained before the program may continue. This incurs performance overhead
we seek to omit.

The AllScale Monitoring Service provides tools enabling the identification of this
kind of performance bottlenecks.

4.2.1 Fine Grained Synchronization

The fine grained synchronization constructs of the AllScale API provide the
necessary means to eliminate this bottleneck. The following code fragment
demonstrates its utilization:

The pfor provides a reference to its parallel loop iterations, which can be utilized
for orchestrating the fine-grained synchronization of the created tasks.

Also note that by utilizing the loop references the implicit barrier at the end of a
loop is gone and the program will not block after every invocation of the pfor.
Instead, the main program quickly creates a chain of T+1 tasks, each
representing one pfor invocation and depending on its predecessor. After that,
the main program does nothing more than waiting for the last task, addressed by
the final reference, to finish.

double fieldA[N];
double fieldB[N];
double* A = fieldA;
double* B = fieldB;

// initialize the field with the initial state
auto ref = pfor(0,N,[&](int x) {
 A[x] = … ; // some value
});

// compute the solution over the discrete time steps
for(int t = 0; t< T; ++t) {
 ref = pfor(1, N – 1, [&](int x) {
 B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]);
 }, wait_for_neighbors(ref));
 swap(A,B);
}
ref.wait();
// the final solution for u(x,T) is now stored in B[x]

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

47

4.2.2 Distributed Memory Support

The presented program now runs efficiently on a shared memory system. The
AllScale Scheduler takes care of a proper load balance, to not waste resources.
However, it cannot yet be processed on a distributed memory system.

By default, the system is not capable of automatically distributing arrays5. Only
data items can be distributed throughout the nodes of a distributed memory
system. Thus, one more modification to the code enabling the distribution of the
field data is required.

The AllScale User API provides a Grid container representing multi-dimensional
arrays, satisfying the concept of a data item – which thus can be distributed. The
modified code looks as follows:

Note that by default the Grid type represents a 1-dimensional array. Also, the
swap is exchanging references, not the actual data (O(1)).

All the presented codes can be compiled by any C++14 compliant standard tool
chain during the development phase and is processed effectively on a shared
memory architecture. However, all of them can as well be compiled utilizing the
AllScale toolchain benefiting from all its additional services. Those include the
advanced scheduler and monitoring support (also on shared memory) and in its
final version the support of the automated distribution of the execution on a
distributed memory system and/or GPUs. Furthermore, the resilience manager
adds transparent resilience towards node failures to the resulting application.

5 A special treatment for scalars and arrays may be added to the compiler, however, this is
beyond the initial design of the AllScale architecture;

Grid<double> A(N);
Grid<double> B(N);

// initialize the field with the initial state
auto ref = pfor(0,N,[&](int x) {
 A[x] = … ; // some value
});

// compute the solution over the discrete time steps
for(int t = 0; t< T; ++t) {
 ref = pfor(1, N – 1, [&](int x) {
 B[x] = A[x] + c * (A[x-1] + A[x+1] – 2*A[x]);
 }, wait_for_neighbors(ref));
 swap(A,B);
}
ref.wait();
// the final solution for u(x,T) is now stored in B[x]

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

48

All those additional features are integrated by the various AllScale components
covered next.

4.3 Compilation

When compiling an AllScale Application utilizing the AllScale Compiler it locates
the usage of AllScale Core API primitives. While within the given user code those
are not visible, the implementations of the pfor operator and the Grid container
are based on those, and the compiler conducts the necessary resolution.

After locating those, each invocation of the prec operator, which is the unified
central parallel construct of the Core API, is analyzed and rewritten to fit the
work item interface required by the runtime system.

In the given example, the compiler locates the prec calls providing the
foundation for the implementation of the pfor function utilized in the code. For
each call site of the pfor another work item is created.

A work item essentially consists of the following elements:

 a sequential variant (=implementation) of the represented task,
conducting the actual computation (the progress variant); for the present
pfors, those implementations are implementations of simple, sequential
loops processing the given body statements;

 a parallel variant of the task splitting a given task into smaller tasks and
orchestrating their execution (the split variant); for the present pfors, the
split steps divide the range to be covered in half, followed by spawning
the two fractions in parallel

 additional (optional) code variants processing the given task by targeting
specific hardware (e.g. accelerators) or optimization criteria (e.g.
restricted instruction set)

For each of those work item variants a function determining the data
requirements depending on the closure parameters captured by the task have to
be provided in the form of an extra function callable by the runtime system.

In the given case, the captured closures are as follows:

 The initialization loop captures the start and end values of the iterator x
as well as a reference to the Grid instance A

 The update loop captures the start and end values of the iterator x as well
as a reference to the Grid instance A and B; note that the actual objects
referenced by A and B switch at each time step;

The data requirement function obtained through static compiler analysis looks
as follows:

 For the initialization loop: given a range (a,b) and grid reference A in the
closure, the following data requirements are obtained

o For the progress variant: { (WRITE_FIRST, A, [a,b)) }, stating that
this variant requires write access to subrange [𝑎, 𝑏) of the Grid A.
It does not care for the initial content of this fraction of A;

o For the split variant: {}; no data beyond the parameters in the
closure are required

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

49

 For the update loop: given a range (a,b) and grid references A and B in the
closure, the following data requirements are obtained

o For the progress variant: { (READ, A, [a-1,b+1)), (WRITE_FIRST, B,
[a,b)) }, stating that this variant requires read access to the
subrange [a-1,b+1) of grid A and write access to subrange [a,b) of
Grid B. It does not care for the initial content of B;

o For the split variant: {}; no data beyond the parameters in the
closure are required

The information regarding the data dependencies is obtained through static code
analysis in the compiler. If this analysis determines the capture of values that
cannot be migrated – or it fails to obtain data dependencies automatically – this
circumstance is reported to the developer. In those cases, the developer may
eliminate the identified dependencies or try to restructure the code to aid the
compiler in conducting its analysis.

As a final step, the compiler converts the entry point of an application – the main
function – into an additional work item capturing the (optional) command line
parameters. This main work item is exposed to the runtime as the initial task to
be processed on startup. It does no support a split option.

4.4 Execution

The execution of an application is steered by the AllScale Runtime System. After
an initial startup phase, where the AllScale processed on the various involved
nodes are initialized and a communication infrastructure is established, the
processing of the main-task of the processed application is initiated.

In our running example, the main task creates the two grid instances A and B,
followed by the processing of the initialization loop and the iterative update
steps.

During the initialization of the grid instances A and B, an identifier for the newly
created data items is generated by the runtime system and associated with its
total size (the range [0,N)). Furthermore, management information regarding the
distribution of those grids is initialized. Initially no fraction of the data is
available throughout the system.

The execution of main task continues by creating the string of initialization and
update work items, as described in Section 4.2. Thus, after a short time we might
have the following task dependencies in the system:

I U U U

M

…

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

50

Here, each box represents a work item, arrows represent task dependencies. The
box labeled by I represents the initializing work item, the box labeled M is the
main work item and each box labeled U is an update work item.

In the given situation no parallel tasks are present. However, all but the main
work item can be split, thereby generating more parallelism and finer grained
dependencies. So the scheduler of the runtime may decide to start splitting tasks
as follows:

Each work item annotated with a prime (‘) has been split, and thus replaced by
fractions. Consequently also their dependencies have been refined. By refining
tasks to a sufficient level, enough parallelism for the available parallel resources
will be eventually reached (assuming the application provides sufficient
parallelism in the first place, hence N is large enough). Simultaneously, task
dependencies as well as the data dependencies of tasks are reduced consistently.

The scheduler passes through a phase of splitting and distributing tasks
throughout the system, thereby gradually refining those. Once a granularity
deemed suitable by the scheduler is reached, the initialization tasks are assigned
to some compute unit for being processed.

Before being able to processed, the data requirements of work items have to be
satisfied. In our running example, the initialization tasks require WRITE_FIRST
access to fractions of the grid A. Thus, the runtime may allocate arbitrary buffers
local to the compute units intended for processing the selected work item,
register this new fragment within the data item manager keeping track of the
distribution state of the data item A, and trigger the execution.

Once the first update tasks get ready for execution due to satisfied dependencies,
their data dependencies are checked. Since they do have a dependency on the A
grid, they are either moved to the same location where the corresponding
fragment is located or, if the scheduler decides so, the data is moved to the
location of the tasks. The fraction of B required as a target buffer is allocated by
the runtime wherever necessary (since it is a WRITE_FIRST dependency) and
registered as a new fragment within the data item manager.

Starting with the second generation of the update steps, the data dependencies
begin to reference data item fragments which are potentially not collocated on
the same node. In those cases the runtime has to collect and transfer the

I’ U’ U’ U

M

…

U’ U

U U

U U I’

I I

I’

I I

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

51

necessary information before being able to processes the depending work items.
This process is known as the exchange of ghost cells in a conventional MPI based
implementation. In the AllScale Environment, the data item manager handles this
kind of information exchange automatically.

This way, the AllScale Runtime System and its scheduler gradually work through
the application, having the possibility to overlap time steps, without the inherent
need of global communication or phases where task queues need to be drained.

4.5 Monitoring

Throughout the execution of the application, the monitoring service collects data
on the performance of the application (e.g. execution times of tasks or delays due
to dependencies), the runtime system (e.g. queue lengths, idle times), and the
hardware (e.g. cache misses, energy usage). This information is available to the
scheduler during execution, or, later on, for a post-mortem analysis of the
processed algorithm.

To control the behavior of the monitoring service the executable produced by the
AllScale Compiler exhibits a set of command line options. With those, the
collection of additional profiling data may, for instance, be triggered. Tools for
analyzing and visualizing those results are provided as part of the AllScale
Environment.

In our running example, the monitoring system could have been utilized to
identify the bottleneck imposed by the barrier present at the end of each pfor
invocation, before upgrading the code to utilize fine grained dependencies.

4.6 Scheduling

The scheduler is an integral part of the runtime system. It steers the work item
decomposition, relocation and execution as well as the data item distribution.
Furthermore it manages the configuration and utilization of the underlying
hardware. It may thus, for instance, adapt the clock frequency of compute units.

As covered in the previous sections, the scheduler is flexible enough to optimize
toward different objectives. Trade-offs between execution time, resource usage,
power dissipation, or energy requirements may be stated. The objective to aim
for may thereby be passed as a command line parameter to the executable. Thus,
it is not necessary to recompile an application when adapting optimization
objectives. There might even be support for altering the objective during
runtime.

Since our running example is likely to be a memory bound problem the
scheduler should be able to steer towards a configuration saturating all available
memory controllers, while not consuming extra power for any additional cores.

D2.3 – AllScale System Architecture

Copyright © AllScale Consortium Partners 2017

52

4.7 Resilience

As covered within Section 2.8, AllScale applications processed by the AllScale
Runtime System are implicitly hardened against node failures. This is achieved
through backing up the initial state of tasks, such that upon a failure, those task
may be restarted on a different locality.

In our running example, the resilience manager within the runtime system is
selecting a subset of task to be backed up before being processed. It thereby
ensures that the union of the transitive child-relation closures of the backed up
tasks are a complete coverage of all active tasks within the system. This way,
recovery from individual node failures can be guaranteed.

Whenever a task is backed up, its input values are recorded. This comprises the
values within the closure of a work item as well as the data within read data item
fragments. For instance, within the running example

 for initialization tasks, only the closure has to be backed up
 for update tasks, the closure and the content of the read fraction of the A

grid have to be backed up; thus, for a closure covering the range [a,b) and
the grids A and B, the values for a and b and the grid references A and B
are backed up; furthermore, the content of the range [a,b) of grid A is
backed up

 for the main task, the closure containing the initial command line
arguments is backed up

The backup data is kept until the task is completed. In case a node crashes, the
initial state of all the tasks currently processed by the failed node is recovered
from the backup data (closure and data item state), before restarting the
recovered tasks.

The entire recovery procedure is transparent to the application code develop by
the end use.

5 Conclusions and Future Work

Within this document the architecture of the AllScale system has been covered.
Details regarding the internal organization of the AllScale pilots, API, Compiler,
Runtime System, Scheduler, Monitoring Service, and Resilience Manager have
been elaborated by Section 2. Section 3 summarized the interfaces between the
various components, before Section 4 demonstrated the contributions of the
various components based on a concrete example.

The presented architecture design fulfills the requirements as stated in
Deliverable D2.1 and provides a guideline for the development of the various
AllScale components. However, new insights gained over the course of the
project lead to gradual refinements or modifications of the presented
architecture, to be reflected in future revisions of this document.

