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Abstract—Optimizing programs for modern distributed mem-
ory parallel architectures is a notoriously difficult task that gener-
ated the need for modeling tools that can estimate the execution
time and energy consumption for message passing programs.
Many prediction tools require substantial manual effort, excessive
training for every given architecture or limit the class of input
programs that can be handled. We present a compiler-based
approach that automatically generates parametrized analytical
models. While requiring only a minimum training overhead on
target architectures it still provides reasonably accurate models
for execution time and energy consumption of message passing
programs.

Our method uses compiler analyses to identify the structure
of code regions of input programs, and extracts important
parameters such as loop iteration counts or message buffer sizes.
We can then predict the performance of these code regions for
new problem sizes and target machines.

We show that compiler knowledge can be effectively used
to minimize training overhead and evaluate our approach on
multiple target applications with varying problem and machine
sizes. Initial results obtained with our prototype implementation
show a mean coefficient of determination (R2) of 0.93 over 7
input programs.

Index Terms—prediction, performance, energy, static analysis,
compiler

I. INTRODUCTION

Optimizing message passing parallel programs is a wide-
spread topic of interest and research, whether done manually
by developers or automatically by tools such as compilers or
runtime systems. Many optimization and parallelization efforts
are guided by performance analysis or prediction. Whereas
performance analysis [1] is often dynamic in nature and
therefore applicable to wide classes of applications (as it is
based on program executions), performance prediction can be
invoked statically [2] with a reduced runtime overhead at the
cost of a more restricted class of target applications.

For example, modern auto-tuning tuning techniques [3],
[4], [5] could greatly benefit from low overhead performance
prediction methods to speed up performance evaluation be-
cause they commonly invoke large numbers of program exe-
cutions [6]. Performance prediction is a useful technology to
reduce the effort in the search for effective code optimizations.

To be automatic in nature, many prediction approaches —
whether incorporating static, analytical information or purely
observation-based— themselves rely on a series of program
executions to train their models. In this paper, we introduce a
novel prediction method that incorporates compiler knowledge
about the target application and uses compiler transformations
to reduce model training overhead to a single program exe-
cution. We consider a large class of iterative message passing
parallel programs that follow the bulk synchronous parallel
(BSP) and single program multiple data (SPMD) models.

We use the Insieme research compiler and runtime sys-
tem [7], capable of compiling most C/C++ language con-
structs, and its INSPIRE intermediate representation to an-
alyze an input program. It extracts static information such
as the structure and boundaries of loops, or message sizes
of communication primitives. The compiler then invokes a
single execution of the input program for a small problem and
machine size on a target architecture. Combining the static
analysis data with runtime data from this single execution,
a parametrized model can be generated to predict execution
time and energy for larger problem and machine sizes. The
model can be ported to a new target architecture with a single
execution of the input program. Additionally, only a handful
of offline-measurable hardware parameters are required that
specify cache properties, as well as bandwidths and latencies
for the memory hierarchy and network.

The major contributions of this work are:
• a definition and automatic localization of target code re-

gions that matches a large number of distributed memory
parallel programs,

• a new method for the automatic generation of
parametrized performance models for execution time and
energy that is problem and machine size sensitive based
on compiler analysis and a single program execution, and

• evaluation of this model for several target applications
and a wide set of problem and target machine sizes on
two hardware architectures.

The paper is structured as follows: Section II lists and
compares work related to our method, presented in Section III.
Section IV introduces our evaluation methodology and exper-



imental setup, Section V provides results and model output
analysis. Finally, Section VI concludes and provides future
work.

II. RELATED WORK

There is a plethora of related work in the field of predictive
modeling, however we focus on key aspects relevant to our
work. First, there are a number of automatic approaches such
as COMPASS [8], PEMOGEN [9], [10], or Kerncraft [2].
Like ours, these methods are designed for automatic modeling
with little to no user interaction. PEMOGEN is of particular
relevance since it is an LLVM-based prediction method. Em-
ploying a regression approach, it requires a series of training
executions of the target program, whereas we target a single
training execution only. Moreover, contrary to our work, the
main aim of PEMOGEN is the reduction of storage costs.
There are also semi-automatic approaches such as PALM [11]
that rely on user annotations for describing models or model
parameters. To the best of our knowledge, none of the afore-
mentioned methods have targeted energy consumption predic-
tion. A recent work using ExaSAT [12] includes limited energy
concerns, however, lacks actual measured energy consumption
data. Additional automatic approaches and tools exist, but they
focus on hardware characterization [13], low-level assembler
prediction [14] or purely sequential programs [15].

By contrast, a number of models focus more strongly on
energy prediction, whether built empirically in an analytical
fashion [16], regression-based [17] or using machine learn-
ing [18], [19]. However, they do not provide automatically
derived execution time and energy predictions for message
passing programs.

Moreover, there are a number of works that provide pre-
dictive models although specifically tailored to aid in aspects
such as task aggregation [20], or resilience and reliability [21],
[22], whereas we aim for a more generic model design.

Finally, there are a number of invaluable pen-and-paper
model works that alone cannot predict execution time for code
regions or full programs but aim at characterizing hardware
behavior under certain conditions such as Roofline [23], [24]
or ECM [25]. We use their concepts as the foundation for our
proposed method as mentioned throughout this work.

III. MODEL

In order to properly motivate the presented model, we first
need to establish several goals that we aim for:

1 build parametrized, analytical models that require only a
few constants to be filled in for evaluation, rendering them
automatically applicable to a range of iterative distributed
memory parallel programs without user interaction,

2 minimize model generation and training overhead (i.e.
compilation time) to facilitate the integration of such
modeling techniques in existing compilers, and

3 show a proof-of-concept of our approach by applying
the presented modeling technique to a range of input
programs for multiple machine and problem sizes, and
validating all predictions with measurements

We meet Goal 1 by designing our modeling technique from
a compiler’s point of view, without involving the user in
the generation of the parametrized models. Goal 2 can be
achieved by partly shifting the requirements of large training
data sets to static analysis performed during compilation.
The compiler can inspect the input program with regard to
properties such as the structure of loops and communication
points, loop iteration counts, or message buffer sizes. This
allows us to reduce the number of training runs otherwise
needed to e.g., obtain supporting points for regression models.
We further ensure the compiler considers all known major
factors that affect a message passing program’s behavior, such
as computational boundness, memory hierarchy boundness
and communication boundness. Finally, Goal 3 is covered
by showing the evaluation of our model using a prototype
implementation in a research compiler.

A. Software Model

While our method works on the INSPIRE intermediate
representation of the Insieme compiler, we introduce a more
compact software model for describing our work here. A target
code region is defined as a tree

S ::= exp
| for( var = exp .. exp : exp ) S
| f( exp, exp, . . ., exp )
| { S; S; . . .; S }

exp ::= a( exp, { exp, . . ., exp}, { exp, . . ., exp })
| var
| num

where S is a statement, exp an expression, var a variable,
and a an accessor function. This grammar allows us to form
code regions that consist of loops (for) with an iterator
variable and fixed (but not necessarily known) lower and upper
bounds and step expressions, external function calls (f()) and
compound statements ({. . .}). We choose this selection of
statements since for loops and external function calls (whose
definition is unknown to the compiler) are good candidates
for high resource consumption, whereas compound statements
allow composition. We also include an accessor function a to
model array and pointer subscript expressions, with a base
expression (i.e. the pointer or array) and two lists of index
expressions as arguments, the first for read operations and the
second for write operations. This accessor function aids us in
identifying loops with steady-state cache properties (further
detailed in Section III-D).

B. Automatic Code Region and Parameter Detection

Figure 1 illustrates the overall architecture, the use of which
is briefly outlined here. A more elaborate description of the
work performed by each component follows in the remainder
of this section. The compiler loads an input program and au-
tomatically identifies target regions and derives static analysis
information, based on the INSPIRE intermediate representa-
tion of the compiler. The program is then instrumented to be
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Fig. 1: Workflow of our prediction approach.

executed on the target machine using a small reference prob-
lem size and reference machine size. The collected reference
measurement data is handed to the predictor in combination
with the static analysis information and the reference problem
and machine sizes, allowing it to predict the measured metrics
for larger problem sizes and machine sizes.

As a first step, we use a pattern-based approach [26] to
search the INSPIRE intermediate representation for target code
regions at compile-time. For this work, we consider loop nests
that meet the following criteria:
• all loops in the nest have fixed (but not necessarily

known) lower and upper bounds and increments, and
• there are communication primitives anywhere within the

loop nest.
Communication primitives are external function calls, iden-

tified by their signature (function identifier and parameter
types). This allows easy porting of our region detection to sup-
port new communication libraries. For this work, we explore
MPI blocking and non-blocking communication primitives.
For the latter, we capture both the non-blocking commu-
nication operation itself, as well as the corresponding wait
function call (identified by the compiler via its matching
MPI Request* argument) and treat them as a single unit.

After detecting these target regions, we need to automati-
cally pinpoint their code parameters that are crucial for our
model. For loops, these parameters include the bounds as
well as the increment expression, allowing us to compute the
iteration space of the loop. The parameters of communication
primitives include their names (which indicates the type of
communication operation they implement), involved source
buffers, target buffers, and ranks, as well as size and type
of the data transmitted.

C. Automatic Parameter Extraction

The aforementioned parameters of loops and communica-
tion primitives have been identified at this stage, but we still
need to link them to the input parameters of the entire program
for our approach to be fully automatic. Hence, we employ

a work-in-progress compiler integrated analysis framework
that provides various data-flow analyses (DFA) based on the
constraint-based analysis approach described in [27]. It is
capable of inter-procedural analyses, which is essential for
fulfilling Goal 1.

The analysis framework models identified parameters such
as loop boundaries, loop step expressions, and communication
buffer sizes as symbolic formulas Such a symbolic formula
is constructed by traversing the input code from a parameter
back to its declaration and keeping track of applied operations
and operands. This is done automatically by the compiler
without any user interaction required, and yields arithmetic
expressions that compute e.g., loop boundaries as a function
of given input parameters of the program. The framework
computes multiple arithmetic formulas, one for each possible
control-flow. Therefore, given the full parameter assignments
at prediction time, the control-flow with respect to an identified
model parameter must be fully determined. Otherwise, the
prediction model cannot pick the correct arithmetic formula
from the set returned by the analysis.

Currently, only basic integer arithmetic is supported (i.e.
addition, subtraction, multiplication, modulo, and division if
the remainder evaluates to zero), while support for floating-
point arithmetic is under development. Nevertheless, integer
operations are sufficient for our use case of evaluating ex-
pressions that compute e.g., grid slice sizes, the MPI ranks of
neighbors, and similar parameters.

D. Execution Time Prediction

While our method can be extended to a number of metrics,
without loss of generality, we present predictors for execution
time here and energy in Section III-E.

To predict a metric for a given target code region, we predict
this metric in parametrized fashion for its individual statements
and then aggregate the metric data to obtain values for the
entire code region. Our execution time prediction follows the
idea of the Roofline model [23] and ECM [2] since we attribute
individual busy times for all hardware components involved
and interpret these results as the lower bound of the overall
execution time:

Tall = max
(
φ(Tcomp, Tmem), Tcomm

)
Tmem = φ(Tcache0 , Tcache1 , . . . , TRAM)

where φ is a metric-specific aggregation function, with φ =
max for execution time prediction. Tcomp represents the time
a core is busy with computation, Tmem is the active time of
the memory hierarchy (includes caches and RAM) and Tcomm
is the amount of time for which messages are exchanged.
Throughout the remainder of this section, we will detail on
predicting these metrics.

1) Computation time: For Tcomp we employ a two-stage
approach: First, we collect a single measurement —so-called
reference measurement— for the previously selected state-
ments in our target code region for a small problem and ma-
chine size on a given machine architecture. This is necessary
since our work is based on a source-to-source compiler, and



therefore we lack any knowledge about to-binary compiler
optimizations (e.g., vectorization, software prefetching, etc.)
or hardware computing speeds. We can then use static analysis
information from the compiler to extrapolate the behavior
of these statements for larger target problem and machine
sizes. Knowing all loop iteration counts for both the reference
and the target problem and machine sizes (obtained via the
analysis described in Section III-C), we can compute Tcomp
assuming ideal scaling and hence equal memory hierarchy
or communication contention. Naturally, this ignores e.g.,
increased memory hierarchy traffic for larger problem sizes
or increased per-rank cache sizes for larger machines.

2) Memory hierarchy time: Hence, we require a prediction
of Tmem. Since we want to cover as many applications as
possible without limiting the acceptable input structure or
syntax (as often required by analytical models), we employ
ready-to-use cache simulators to obtain cache miss data and
combine these with measured cache bandwidth information
to arrive at Tmem. However, the large overhead of cache
simulators requires us to perform overhead reduction for this
approach to be practical.

For this reason, we introduce a new compiler analysis
component. Let S be the set of all statements, then

σ : S→ P(S)

is a function that, for a given statement S, returns a set
holding all statements contained within S. Second, let S be a
statement, then

isTimeLoop(S) =true, if S = for(x = l..u : s) S′

and a( , R,W ) /∈ σ(S′), x ∈ R ∪W
false, otherwise

is a function which identifies a for loop with l ≤ x < u
and step size s as a time loop if the loop iterator x does
not appear in any accessor function (i.e. does not occur in
any array or pointer subscript) within the body of the loop.
We hypothesize that, first, many HPC codes have loops that
iteratively compute e.g., physical processes over time. Second,
we further hypothesize these loops to have foreseeable cache
effects, as the first iteration warms up the CPU caches after
which the system is in a steady state (barring any noise from
the OS). Therefore, it should be possible to simulate the first
few iterations only and extrapolate to the full number assuming
a simple linear relationship. Hence, for a time loop with n > 1
iterations, its overall misses can be approximated by

n∑
i=0

Mi ≈ (n− 1) ·

n−k∑
i=1

Mi

n− k − 1
+M0

where Mi denotes the number of cache misses induced by loop
iteration i, and k is the number of omitted loop iterations. If
our assumptions hold, the compiler can transform the target
code regions to reduce the number of time loop iterations and
yet obtain well-approximated cache miss counts. However,

there is a trade-off between large k (causing less overhead)
and small k (yielding higher accuracy).

Figure 2 shows the results of evaluating this hypothesis with
Cachegrind for decreasing k for a naı̈ve jacobi implementa-
tion. We simulated the L3 cache of an Intel Xeon E5-4650,
and chose two problem sizes, one smaller and one larger than
the cache size. Our expectations are confirmed, as using only
a single time loop iteration (k = n − 1) is not sufficient for
problem sizes that fit in the cache (yielding a relative error of
1.27·102), however increasing the number of iterations beyond
2 (k = n−2) does not amortize the increase in overhead, with
a relative error of already only −5.47 ·10−3. Since we verified
similar behavior for all our input programs, we always choose
k = n− 2 for this work.

However, there are additional opportunities for decreasing
overhead. Since our input programs follow the BSP/SPMD
models, we can simulate a single MPI rank and extrapolate to
the full target machine, reducing simulation time by a factor
of the target machine size. As it is impossible to execute
arbitrary MPI programs with a single rank, the communication
primitives require special treatment — we want to remove
them while preserving the cache behavior of the primitives and
the surrounding code region (e.g., buffer reuse for computation
and communication). For this reason, we define a compiler
transformation function as follows (for brevity we only show
the semantics of send and receive primitives):

transformCommPrimitive(S)=

for(x = 0..s : 1) a(b, {x}, {}),
if S =

f( , b, s, , , , )
and f = MPI Send

for(x = 0..s : 1) a(b, {}, {x}),
if S =

f( , b, s, , , , , )
and f = MPI Recv

...
S, otherwise

It replaces all communication primitives with corresponding
linear reads and writes of buffer b as they are expected to
occur in the actual library calls.

Furthermore, since our input programs are homogeneous
in their workload but lack application data sharing (contrary
to e.g., OpenMP programs), we hypothesize that shared cache
effects can be simulated by reducing the available shared cache
size per core by the factor of the number of cores sharing this
cache and participating in the computation. Figure 3 confirms
this theory, as the predicted Tmem of the target code region
matches the actual execution time when the code region is
memory bound (machine sizes 8–64).

It should be noted that one could also think of simply
executing the transformed application on the target hardware
instead of executing it in a cache simulator for performance
reasons. However, we aim at minimizing the use of the target
hardware (a key motivation of predictive modeling to begin
with). Additionally, using real hardware would remove the



n−
1
n−

2
n−

4
n−

8

n−
16

n−
32

n−
64

n−
12
8

−1

−0.75

−0.5

−0.25

0

0.25

0.5
·10−2

1.27 · 102

k

re
l.

er
ro

r

10242

20482

Fig. 2: Relative L3 miss prediction error for jacobi for n = 128
and decreasing k.

possibility of simulating the effect of reduced cache sizes and
hardware-specific performance counters would be required to
ascertain e.g., the number of cache misses. Contrary to that,
we only rely on information that can be obtained automatically
via the cpuid instruction (cache levels, cache sizes, line sizes,
associativities). Finally, using a cache simulator allows us to
evaluate our model for multiple target problem and machine
sizes in parallel without the risk of measurement perturbation,
increasing model prediction throughput.

The compiler also confines cache simulation to the target
code regions by inserting control statements that start the
cache simulation only prior to execution of the first target
regions, and exit the input program after the last one. The final
cache miss data is then combined with cache and memory
bandwidth information (obtained via offline measurements,
once per target architecture) to compute Tmem.

3) Communication time: Finally, we need to predict Tcomm,
which we only outline due to spatial constraints. The compiler
extracts arithmetic formulas for source and target ranks as
well as message sizes from communication primitives in the
target code region. We require these to depend only on integer
operations as described in Section III-C and program param-
eters, MPI comm rank, and MPI comm size. We then
examine these formulas for popular communication patterns
such as neighbor exchange. Collective operations can also be
handled assuming their communication pattern is known for
a given message and rank size [28]. We use this information
in combination with bandwidth and latency information (to be
measured once per target architecture) and a given rank-core
mapping policy to compute the data transfer time Tcomm.

4) Aggregation: At this stage, we predicted Tcomp, Tmem,
Tcomm and hence Tall for individual statements. To get predic-
tions for the entire target code region, we require a recursive
aggregation function. Let A be the type of the metric to
be predicted and eval an evaluation function for arithmetic
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Fig. 3: Time prediction details of jacobi for N = 32768 for
increasing machine sizes

expressions. Then

get(S)=

{
data, if data available

p(S), otherwise

p(S)=


get(S′) · eval(u−ls ), if S = for(x = l..u : s) S′
n∑

i=0

get(Si), if S = {S0, S1, . . . , Sn}

0 otherwise

are functions retrieving and aggregating data for loops and
compound statements, returning the identity element (0 for
this work) for all other cases.

E. Energy Prediction
Energy prediction is done similarly to the one described in

Section III-D, except that we use energy measurements as the
reference, and we choose φ =

∑
to express each hardware

component’s contribution to the overall energy consumption
(contrary to busy times of hardware components, which can
overlap):

Eall =
∑(∑

(Ecomputational, Ememory), Ecommunication

)
while for each hardware component x we consider

Ex = P x,idle · Tx,idle + P x,load · Tx,load

P
ref
x,load =

Eref
x,load

T ref
x,load

Tx,idle =

{
Tall − Tx, if Tx < Tall

0, otherwise

where P x,idle is the average idle power consumption of hard-
ware component x (to be measured offline, once per target
architecture), Tx,load is obtained via prediction as described
in Section III-D, and T ref

x,load and Eref
x,load are execution time

and energy consumption of our reference measurement. Note
that this implies that P x,load ≈ P

ref
x,load. We then predict P

target
x

of hardware component x of reference machine M and a target
machine M ′ as

P
target
x =

P
ref
x

|{y ∈M |y = x}|
· |{y′ ∈M ′|y′ = x}|.



TABLE I: Machine characteristics.

name nodes CPUs per node cores per node cache sizes RAM OS compiler MPI/network

ortlerSandy 4 4x E5-4650 2.7 GHz 32 priv.: 32 KB, 256 KB,
shared: 20 MB 256 GB CentOS 6.7,

2.6.32-573
gcc 5.1 -O3

Open MPI 1.10.2
on Gigabit Ethernet

ortlerIvy 4 2x E5-2690 v2 3.0 GHz 20 priv.: 32 KB, 256 KB,
shared: 25 MB 128 GB CentOS 6.5,

2.6.32-431

TABLE II: Input programs, properties and problem sizes.

program description comp. memory. iter. problem sizes (S: ortlerSandy, I: ortlerIvy)

cg conjugate gradient O(N2) O(N2) 1000 S: 1024 2048 3072 4096 5120 6144 7168 8192
I: 1040 2080 3120 4160 5200 6240 7280 8320

homb laplace solver O(N2) O(N2) 100 S: 1024 2048 4096 8192 16384 32768
I: 960 1920 3840 7680 15360 30720

jacobi 2d jacobi solver O(N2) O(N2) 128 S: 1024 2048 4096 8192 16384 32768
I: 960 1920 3840 7680 15360 30720

mm ijk matrix multiplication, ijk loop order O(N3) O(N2) 50 S: 448 640 960 1280 1600 1920 2240 2560 2880
I: 400 600 800 1000 1200 1400 1600 1800 2000

mm ikj matrix multiplication, ikj loop order O(N3) O(N2) 50 S: 448 640 960 1280 1600 1920 2240 2560 2880
I: 400 600 800 1000 1200 1400 1600 1800 2000

shs simple hyperbolic solver O(N2) O(N2) 40 S: 128 256 512 1024 2048 4096
I: 80 160 320 640 1280 2560

stencil3d generic 3x3x3 3d stencil O(N3) O(N3) 100 S: 128 256 384 512 640
I: 160 240 320 400 480

Using the aggregation formula of Section III-D4, we are able
to predict Eall for a given target code region.

IV. EXPERIMENTAL SETUP

We implemented a prototype of our method in C++ as part
of the Insieme research compiler and runtime system [7]. This
research compiler provides all facilities required to analyze
an input program, transform it, and generate an instrumented
version. The runtime system then executes the instrumented
application and feeds back all measured data to the compiler.
To increase prediction throughput of the model, our prototype
implementation relies on std::async for simultaneous predic-
tion of multiple problem and machine sizes.

The experimental testbed used for our experiments consists
of two distributed memory machines named ortlerSandy and
ortlerIvy, Table I lists their characteristics. The CPU clock
frequency was fixed as listed in Table I, and Hyperthreading
was disabled on all machines. The nodes are connected via
a dedicated Gigabit Ethernet network. We enforced process
binding to cores, with a mapping that uses at least 2 nodes with
one core each (machine size 2), and then increasing first the
number of cores on sockets already in use before employing
new sockets. Similarly, new nodes are only added when all
current sockets are fully utilized.

Measurements were obtained via x86’s rdtsc instruction for
execution time and Intel’s RAPL interface for energy consump-
tion. The latter offers a data resolution of 15.3 microjoules and
time resolution of 1 millisecond, and related work has shown
it to be accurate enough for our purpose [29]. Since RAPL
only captures the CPU package, we present energy prediction
results of the CPUs. Note that our method does not specifically
rely on RAPL or Intel-based micro-architectures, but works
with any energy instrumentation infrastructure that provides
the desired accuracy. However, for availability reasons, we
employ Intel hardware. The cache simulator in use for cache
miss prediction is Cachegrind 3.11 [30].

A selection of input programs for our work, their basic
properties as well as tested problem sizes are listed in Ta-
ble II. Since our work is based on a research compiler, we
employ such representative proxy apps instead of full-sized
applications for validation. cg is an iterative conjugate gradient
solver, homb [31] the Hybrid OpenMP MPI Benchmark, jacobi
a 2D jacobi solver, shs [32] the Simple Hyperbolic Solver,
and stencil3d a generic 3x3x3 3D stencil. We also include
two matrix multiplication kernels, mm ijk and mm ikj, which
exhibit substantially different cache behavior due to their
respective loop orders. All of these codes are written in C
and rely on MPI for parallelism (homb also offers OpenMP
parallelism, which we disabled for this work). We do not
consider workloads stressing hardware components such as
the IO subsystem of a parallel computer, as we lack the
capabilities for measuring the energy consumption of the
respective hardware components.

To validate the model, we predict time and energy for
multiple target problem and machine size parameter combina-
tions and verify our predictions with measurements. The tested
machine sizes have been selected with respect to the available
resources in our experimental testbed, and the selection of
input program problem sizes reflect execution times in the
order of several minutes. To reduce any inaccuracy caused
by external load such as the OS, all reported measurement
data represents the median over 5 runs. For predicted data
however, since our model is fully deterministic, a single run
is sufficient. We furthermore evaluate the accuracy of the
model by computing the normalized root-mean-square error
(NRMSE) and the coefficient of determination (R2).

V. RESULTS

To illustrate and analyze the predictions, we focus on the
first of our input programs, a simple 2D Jacobi (jacobi), since
it is well-studied and shows all our considered aspects of mod-
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TABLE III: Overall model errors.

ortlerSandy ortlerIvy
time energy time energy

code NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2

cg 0.018 0.978 0.038 0.928 0.025 0.984 0.028 0.979
homb 0.035 0.955 0.047 0.929 0.008 0.996 0.045 0.947
jacobi 0.020 0.980 0.068 0.905 0.014 0.995 0.091 0.849

mm ijk 0.044 0.929 0.080 0.812 0.068 0.856 0.078 0.840
mm ikj 0.025 0.980 0.053 0.931 0.031 0.975 0.076 0.893

shs 0.082 0.945 0.068 0.947 0.060 0.971 0.058 0.932
stencil3d 0.053 0.940 0.092 0.839 0.016 0.995 0.064 0.921

mean 0.040 0.950 0.064 0.899 0.032 0.967 0.063 0.909

eling distributed memory parallel applications. Subsequently,
we will show results for all other input programs.

Figure 4 presents the results of predicting execution time for
jacobi with a reference problem size of 1024 and a reference
machine size of 2 (two nodes with one core each, as per
our mapping policy detailed in Section IV) on ortlerSandy.
The shading denotes the relative error of predicting Tcomp,
max(Tcomp, Tmem), and

∑
(max(Tcomp, Tmem), Tcomm) com-

pared to actual measurements, and illustrates the incremental
increase in accuracy for each prediction step added. The
shapes indicate a mainly memory-hierarchy-bound program,
with prediction of only Tcomp yielding a mean relative error of
0.69. The memory contention is evident by the visible column-
like separation of machine sizes 2–4, 8 and 16–64, due to the
fact that jacobi is already memory bound at machine size 8
(as also indicated by Figure 3) for problem sizes larger or
equal to 4096 (resulting in a working set of 32 MB for 20
MB of L3 cache on ortlerSandy). Including the prediction of
Tmem already substantially improves accuracy for these cases,
lowering the overall mean error to 0.25. However, a number of
cases with small problem but large machine sizes are naturally
not predicted well, as communication time contributes a major
part of Tall here. Including Tcomm in our prediction also covers
these cases, lowering the overall mean error to 0.06.

Table III presents the overall results for time and energy for
all input programs over all problem sizes on both machines.
As the data illustrates, our prediction generally achieves higher
accuracy across all input programs for execution time (mean

R2 of 0.95) compared to energy consumption (mean R2 of
0.90). This is a result of the mapping of our φ function,
partially described by the differences between Roofline [23]
and ECM [25]. When predicting the execution time and thus
aggregating the maximum over multiple sub-predictions, only
the largest element directly impacts the result, provided the
relative order of the sub-predictions is correct. In contrast,
energy consumption is aggregated as the sum over all sub-
predictions, requiring high-quality predictions for all of them
for high overall accuracy.

The highest error case for our method is mm ijk, explained
by its expensive column-wise matrix traversal. The results for
mm ikj confirms this, performing better without this expen-
sive traversal. While Cachegrind is likely more precise than
many analytical models, it is limited to assuming idealized
caches without noise, only considers two cache levels, an
LRU replacement policy, and lacks advanced knowledge about
hardware prefetching. Furthermore, the results on ortlerIvy do
not always correlate with the ones obtained on ortlerSandy.
Apart from different memory controller speeds and CPU clock
frequencies, the former holds CPUs with 25 MB of 20-way
associative L3 cache — a parameter combination that results
in set sizes other than powers of two, which Cachegrind cannot
simulate. For these reasons, we simulate the first and last
level cache, and as a fallback switch to 25-way associativity
whenever required. Overall, our method achieves a mean
NRMSE of 0.036 for execution time and 0.064 for energy
consumption across all benchmarks and both architectures.



VI. CONCLUSION

We presented a novel compiler-based prediction method
that automatically generates models for execution time and
energy for a large set of message passing parallel programs.
We introduced a code region definition matching the structure
of these programs, and illustrated the benefits of using com-
piler analysis for deriving analytical models and minimizing
model generation overhead. We demonstrated that a single
reference execution per input program and target architecture
is sufficient for training. Our prototype implementation showed
the validity of our approach, with a mean coefficient of
determination of 0.93 over 7 input programs. Future work
includes examining the prediction accuracy with regard to
varying the reference problem and machine sizes, improving
cache miss prediction, supporting derived data types in MPI,
and exploring new hardware architectures and input programs.
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