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Abstract—Contemporary state-of-the-art runtime systems un-
derlying widely utilized general purpose parallel programming
languages and libraries like OpenMP, MPI, or OpenCL provide
the foundation for accessing the parallel capabilities of modern
computing architectures. In the tradition of their respective
imperative host languages those runtime systems’ main focus is
on providing means for the distribution and synchronization of
operations — while the organization and management of ma-
nipulated data is left to application developers. Consequently,
the distribution of data remains inaccessible to those runtime
systems. However, many desirable system-level features depend
on a runtime system’s ability to exercise control on the distri-
bution of data. Thus, program models underlying traditional
systems lack the potential for the support of those features.

In this paper, we present a novel application model
granting parallel runtime systems system-wide control over
the distribution of user-defined shared data structures. Our
model utilizes the high-level nature of parallel programming
languages, in particular, the usage of well-typed data structures
and the associated hiding of implementation details from the
application developers. By being based on a generalization of
such data structures and extending the resulting abstraction
with features facilitating the automated management of the
distribution of those, our model enables runtime systems to
dynamically influence the placement and replication of shared
data. This paper covers a rigorous formal description of our
application model, as well as details on our prototype imple-
mentation and experimental results demonstrating its ability
to efficiently and scalably manage various data structures in
real-world environments.

1. Introduction

The vast majority of programming languages used today
for the development of high performance applications are
imperative languages. Their core features comprise means
to express the order of operations to be performed to achieve
the desired objective. Parallel libraries and language ex-
tensions like pthreads, OpenMP, MPI, OpenCL, or CUDA
extend those capabilities by enabling the specification of
partial orders of operations, facilitating the effective utiliza-
tion of parallel resources. Following the tradition of their

respective host languages, these extensions are themselves
focused on the orchestration of operations.

However, besides operations, every computation process
needs to be concerned with data. Data constitutes the in-
put and output of programs and provides the substrate all
operations act upon. To ease the task of programming, data
gets organized in data structures — higher level abstractions
enabling modular reasoning over applications. Only a few,
simple data structures like arrays are directly supported by
common programming languages. More complex structures
like lists, trees, graphs, sets, maps, or meshes are emergent
features supported by programming languages through the
power of composition.

A common practice for the development of parallel high
performance (HPC) codes is to start the design of programs
by outlining an essential data structure the program will
operate on. For instance, a finite element simulation will
perform its operations on some sort of mesh, while the simu-
lation of the gravitational forces between stars will be based
on some tree structure grouping elements by their spatial
relation. In a subsequent step, a partitioning scheme for the
envisioned data structure is devised and finally implemented
using a parallel language. The actual computation will then
build on top of the designed structure.

Consequentially, the data structure design forms the
foundation of many high-performance applications. How-
ever, due to being an emergent feature of the composition
of language features, these structures are beyond the reach
of contemporary parallel runtime systems. In fact, none of
the parallel languages enumerated above provide any direct
support for data structures beyond arrays — coinciding
with the level of data structure support provided by their
host languages. Higher level constructs are to be obtained
through composition.

As it constitutes the foundation of HPC applications, the
management of data structures, in particular, their distribu-
tion among address spaces, is essential for the realization
of a variety of desirable system-level features. Inter-node
load balancing, the offloading of computation to GPUs, the
dynamic adaptation to changes in resource availability, or
the checkpointing and restarting of computation all depend
on the manipulation of the distribution of the underlying
data structure. Contemporary general-purpose runtime sys-



Figure 1: Standard vs. data aware runtime systems.

tem designs have limited potential for these operations, due
to their lack of influence on and control over the data
structures used. As such, application developers generally
need to integrate these features manually as required.

In this paper, we present the AllScale runtime appli-
cation model, one of the theoretical foundations of the
AllScale runtime system. Its key novelty is the provision-
ing of generic support for the dynamic distribution and
management of user-defined data structures for distributed
memory environments, as outlined by Fig. 1. Its utilization
relieves developers from the associated data management
responsibilities, without losing flexibility in the design of
partitioning schemes. Furthermore, by taking control of
this crucial aspect of HPC applications, the potential for
the integration of advanced runtime-system-level services is
introduced. Our key contributions are:
• formalization of a novel parallel application model

providing unprecedented management access to user-
defined data structures to the runtime system,

• provisioning of a programming API and source-to-
source compiler interfacing with a prototype implemen-
tation of our runtime model, and

• evaluation of the capabilities of our approach through
a set of example applications.

Our model has been developed in the context of the AllScale
project [1], aiming for the research of improved program-
ming models for HPC applications based on advanced com-
piler and runtime technology.

The remainder of this paper is structured as follows:
Section 2 provides a formal specification of our application
model, before Section 3 describes its implementation in our
prototype runtime system. Section 4 shows the performance
evaluation of three example codes and Section 5 compares
our approach with related work. Finally, Section 6 provides
conclusive remarks and an outlook towards future work.

2. Application Model

The AllScale Runtime Application Model comprises
three major components: a data model, a task model and
an architecture model. The former two describe data objects
and tasks managed during the execution of an application,
while the architecture model provides an abstraction of the
underlying hardware infrastructure.

In this section we provide a rigorous abstract formal
definition of the main elements of the utilized models, fol-
lowed by a specification of the full application state model
and valid state transitions – thus valid application/runtime
interactions. The resulting model constitutes a specification
for implementations and provides a reference to reason
about valid system states, state transitions, invariants, and
dynamic system properties.

2.1. Data Model

The first model provides an abstraction of data objects to
be managed by the runtime system. For the model covered in
this section we focus on the bare essential requirements the
runtime imposes on concrete implementations of data struc-
tures following this model. Nevertheless, examples outlining
concrete implementations are provided. Section 3 covers
actual implementation details.

The foundation of the data model is an abstraction of
arbitrary data structure instances referred to as data items.
Instances of data structures like arrays, trees, maps, or
graphs provide means to organize sets of logically address-
able data elements. This basic concept is covered by the
following definition.

Definition 2.1 (Data Item). Let D be the set of all data
structure instances, E the set of all logical addresses of data
elements within those, 2E the power set of E, and elems :
D→ 2E a function assigning each data item d ∈ D its finite
set of element addresses elems(d) ⊆ E.

Example 2.1 (Data Items). Let da ∈ D represent a 1D
array A of 20 data elements (A[0] = e1, . . . , A[19] = e20),
then elems(da) = {e1, . . . , e20}. Similar, let dt ∈ D be
a balanced binary tree T of height 4 containing 15 nodes
n1, . . . , n15. Then elems(dt) = {n1, . . . , n15}.

Due to their property of being assemblies of individually
addressable data elements, data items can be decomposed
and distributed among multiple address spaces. This is the
implicit basic principle of all HPC applications sharing a
global view on common data.

To facilitate the automated management of the distribu-
tion of data items, subsets of addressable elements need to
be addressable. Such an addressable subset is referred to as
a region.

Definition 2.2 (Region). Let d ∈ D be a data item. Then a
set of element addresses r ⊆ elems(d) ⊆ E is a region of
data item d. Let the set of all regions be denoted by R.

Example 2.2 (Regions). Let da ∈ D be a 3D array of
1003 addressable elements {e(0,0,0), . . . , e(99,99,99)}. Then
the box of elements {e(i,j,k) | 10 ≤ i, j, k ≤ 20} is a region
of da. So is the set {e(i,i,i) | 14 ≤ i ≤ 30}.

Since there might be billions of addressable elements
for individual data items, enumerating them explicitly is not
very efficient and in many cases prohibitively expensive.
Thus, efficient means for defining regions, as hinted by
the implicit notation utilized in Example 2.2, are required.



Section 3 provides examples of such. In this section we
focus on functional aspects of our model.

Note that our definitions target the logical addresses
of stored elements, not their physical or virtual memory
addresses, nor their values. Actual values can be modeled
by a function val : D × E → X for some value domain X.
This value function would then have to be updated along
the evolution of the system state whenever the state of an
addressed element is updated. However, since this is not
relevant for the content of this paper we omit the evolution
of the value state of data items from our model.

2.2. Task Model

The second part of our model covers tasks. Tasks are
the active entities of applications performing operations on
data items. In the AllScale model, each task can be specified
through one or more alternative implementations, referred to
as (task) variants.

Definition 2.3 (Task). Let T be the set of all tasks, V be
the set of all (task) variants, and var : T → 2V \ ∅ be the
function assigning each task its finite set of variants.

Example 2.3 (Task). Let t ∈ T be a task computing the sum
of a sub-range of array elements, vs ∈ V be a sequential
implementation and vp ∈ V be a parallel variant dividing
the task in half and spawning two sub-tasks to perform the
computation. Then var(t) = {vs, vp} reflects the fact that
the runtime may choose between these two alternatives.

Without loss of generality we can assume that

∀t1, t2 ∈ T : t1 6= t2 ⇒ var(t1) ∩ var(t2) = ∅

is satisfied. Thus, there is no pair of tasks sharing a common
variant. Furthermore, we generally assume that the different
variants of a task are computationally equivalent. Thus, the
evaluation of a variant of a task leads to the same result
as any other variant of the same task. While a rigorous
formalization of this property is beyond the scope of this
paper and not essential for its content, we would like to point
out one of its consequences: if any variant is terminating,
all variants are required to do so.

In each program, an entry-point task will form the initial
point of an application.

Definition 2.4 (Program). A program is given by its entry
point task t0 ∈ T. The set of all programs is denoted as
P ⊂ T.

To accomplish their objectives, tasks can interact with
the runtime system to request runtime-coordinated services.
These operations are referred to as actions.

Definition 2.5 (Action). The set of actions A is defined by

A = {spawn(t), sync(t), create(d), destroy(d), end}

for all tasks t ∈ T \ P and data items d ∈ D.

Actions are service requests toward the runtime system
triggered by tasks. The spawn action requests the runtime

system to schedule a new task, while sync requests the
suspension of the current task until a given task has been
completed. The action create introduces a new data item to
the runtime system, while its counterpart destroy requests
the destruction of a data item. Finally, the action end signals
the termination of the current task.

The following definition covers means to model the
evaluation of tasks and the triggering of actions.

Definition 2.6 (Task Execution). Let S be a set of abstract
task-local execution states, init : V→ S a function assigning
each variant an initial state, and the function step : V×S→
S× A describe the transition function of task variants.

A state s ∈ S summarizes the task-local state informa-
tion maintained by a task e.g. on the stack or heap. Given a
terminating task variant v ∈ V, its execution trace is defined
by a sequence of states s0, . . . , sn, where s0 := init(v) and
for all 0 ≤ i < n we have (si+1, ai+1) := step(v, si), and
an = end. The action sequence a1, . . . , an is the sequence
of commands issued to the runtime system.

Finally, to allow the runtime system to associate tasks
with their required data, variants are needed to state their
data requirements. Here, we distinguish between read-only
and read/write access.

Definition 2.7 (Data Requirements). Let v ∈ V be a variant
and d ∈ D be a data item. The function read : V×D→ 2E

obtains the set of elements read(v, d) ⊆ elems(d) ⊆ E in
data item d during the execution of v. Correspondingly, the
function write : V × D → 2E obtains the set write(v, d) ⊆
elems(d) ⊆ E of updated elements in data item d.

Note that for the vast majority of pairs (v, d) ∈ V × E
the read sets read(v, d) and write sets write(v, d) will be
empty. Only for actually accessed data items this will not
be the case.

Finally, w.l.o.g. we impose the following restrictions on
tasks:

∃f ∈ T→ V× S : ∀t ∈ T \ P : step(f(t)) = (s′, spawn(t))

Thus, every task t that is not the entry point of a program
has a unique spawn point f(t).

2.3. Architecture Model

The third component of our model provides an abstract
description of the hardware architecture. The key elements
required for a functional description are compute units (e.g.
CPU cores, GPUs,. . . ) for processing tasks, memory address
spaces (e.g. main memory, GPU device memory,. . . ), and
edges between those two to describe which compute unit
can directly access data in which memory unit.

Definition 2.8 (Architecture Model). Let C be a set of
compute units, M be a set of address spaces, and L ⊆ C×M
a set of links connecting compute units with accessible
address spaces. Then the system model is given by the
bipartite graph (C ]M,L)1.

1. we use ] to denote the union of disjoint sets



Example 2.4 (Architecture). A distributed memory sys-
tem comprising 2 nodes, each forming its own address
space mA and mB , and being equipped with 4 CPU cores
– cA1, . . . , cA4 and cB1, . . . , cB4 respectively – can be
modeled as the bipartite graph (C ] M,L) where C =
{cA1, . . . , cB4}, M = {mA,mB} and L = {(cxi,mx) |
x ∈ {A,B} ∧ 1 ≤ i ≤ 4}.

As for other components, we restricted the architecture
model in this section to the strictly necessary functional
details. In particular, we do not include network topology
details or cache hierarchies in our model. Nevertheless, those
details are considered by our implementation covered by
Section 3.

2.4. Execution Model

The definitions so far covered static aspects of appli-
cations. To model the dynamic evolution of an application
managed by the AllScale runtime system, the state space of
the evaluation as well as state transitions are defined.

Definition 2.9 (System State). The state of an application
processed by the AllScale runtime system is given by a tuple

(Q,R,B,D,Lr, Lw, (C ]M,L))

where
• Q ⊆ T is a set of enqueued, yet not started tasks
• R ⊆ C × V× S describes the state of running variant

executions; an entry (c, v, s) ∈ R describes a variant v
running on compute unit c with its current state s

• B ⊆ C ×V× S× T lists suspended variants; an entry
(c, v, s, t) ∈ B describes a variant v with its state s
waiting on compute unit c for the completion of task t

• D ⊆ M × D × E describes the distribution state of
data; an entry (m, d, e) ∈ D states that element e of
data item d is present in address space m

• Lr ⊆ V×M × D× E enumerates data elements read
locked; an entry (v,m, d, e) states that in address space
m the element e of data item d is read locked for the
duration of the execution of v

• Lw ⊆ V×M ×D×E analogous to Lr for write locks
• (C ]M,L) the model of the hardware architecture a

program is processed on
The set of all system states is denoted by S.

Each state summarizes a snapshot of the management
information to be maintained by the runtime system for
processing an AllScale application at each moment in time.
It covers the execution state of tasks, the distribution of
data items, as well as active access permissions to data in
the various address spaces.

To cover the dynamic behavior over time, valid state
transitions are specified.

Definition 2.10 (State Transitions). The binary state tran-
sition relation →: S × S is defined by the inference rules
enumerated in Fig. 2 and Fig. 3.

Each rule in Fig. 2 and Fig. 3 specifies the effect of
an active or passive interaction of the processed application
with the underlying AllScale runtime system. There are five
task-scheduling related operations:
• (start) . . . at any time the runtime system is allowed to

take a task t from Q, pick one of its variants v ∈ var(t),
and start processing it on a compute unit c having v’s
data requirements satisfied; by doing so, all the data
elements accessed by v get locked

• (spawn) . . . during processing, any variant v may spawn
a new task t, which gets enqueued in Q

• (sync) . . . variants may also synchronize on other tasks,
moving the synchronizing variant from the set of run-
ning variants R to the set of blocked variants B

• (continue) . . . whenever the runtime system discovers
that the task t a blocked variant v is waiting on has been
completed, it may continue processing v by moving it
back to R

• (end) . . . once a task is completed, its state information
is discarded and its held data element locks are released

Furthermore, five additional rules cover data management
issues:
• (create) . . . tasks may dynamically create new data

items during execution; initially no locks will be
granted, nor will memory space be allocated

• (init) . . . the runtime may, at any time, allocate memory
in address spaces for data elements not yet allocated
anywhere throughout the system

• (migrate) . . . the runtime may also move data from a
source memory space ms to a destination memory
space md in case no locks are currently held on the
corresponding elements

• (replicate) . . . the runtime may, furthermore, replicate
data in case there is no write lock on the source
locations

• (destroy) . . . tasks may release data items when no
longer needed; all associated data elements and locks
are deleted

Operations spawn, sync, end, create, and destroy are trig-
gered by the processing of tasks, while start, continue, init,
migrate, and replicate are controlled by the runtime system.
While the runtime system has to react upon the former, the
latter can be utilized to (pro-)actively enforce scheduling
and data management policies.

For clarity and brevity we assume a static architecture
model in this section. Extension of our model covering
dynamic environments where compute nodes may join or
leave (crash) can be formulated, but exceed the scope of
this paper.

Finally, the execution of a program is modeled by its
traces.

Definition 2.11 (Trace). Let (C ]M,L) be an architecture
and t0 ∈ P be a program. A trace of t0 is a sequence
s0, s1, . . . ∈ S where s0 = ({t0}, ∅, ∅, ∅, ∅, ∅, (C ]M,L))
and ∀i > 0 : si−1 → si. A trace terminates by reach-
ing a state st = (∅, ∅, ∅, Dt, ∅, ∅, (C ] M,L)) for some
Dt ⊆M × D× E.



t ∈ Q v ∈ var(t) ∃c ∈ C : ∃m ∈ D→M : ∀d ∈ D : (c,m(d)) ∈ L ∧ ∀e : read(v, d) ∪ write(v, d) : (m(d), d, e) ∈ D D ∩Dw = ∅
(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q \ {t}, R ] {(c, v, init(v))}, B,D,L′r, L

′
w, (C ]M,L))

(start)

where Dw =
⋃

d∈D {(m, d, e) | m ∈M \ {m(d)} ∧ e ∈ write(v, d)}
and L′r = Lr ]

⋃
d∈D {(v,m(d), d, e) | e ∈ read(v, d)}

and L′w = Lw ]
⋃

d∈D {(v,m(d), d, e) | e ∈ write(v, d)}

(c, v, s) ∈ R step(v, s) = (s′, spawn(t))

(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q ∪ {t}, (R \ {(c, v, s)}) ] {(c, v, s′)}, B,D,Lr, Lw, (C ]M,L))
(spawn)

(c, v, s) ∈ R step(v, s) = (s′, sync(t))

(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q,R \ {(c, v, s)}, B ] {(c, v, s′, t)}, D, Lr, Lw, (C ]M,L))
(sync)

(c, v, s, t) ∈ B t 6∈ Q 6 ∃v′ ∈ var(t) : ∃(c, s, t) : (c, v′, s) ∈ R ∨ (c, v′, s, t) ∈ B

(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q,R ] {(c, v, s)}, B \ {(c, v, s, t)}, D, Lr, Lw, (C ]M,L))
(continue)

(c, v, s) ∈ R step(v, s) = (s′, end) Lv = {v} ×M × D× E
(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q,R \ {(c, v, s)}, B,D,Lr \ Lv, Lw \ Lv, (C ]M,L))

(end)

Figure 2: Task related state transition rules.

(c, v, s) ∈ R step(v, s) = (s′, create(d))

(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q, (R \ {(c, v, s)}) ] {(c, v, s′)}, B,D,Lr, Lw, (C ]M,L))
(create)

m ∈M d ∈ D E ⊆ elems(d) E 6= ∅ D ∩ (M × {d} × E) = ∅
(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q,R,B,D ] ({m} × {d} × E), Lr, Lw, (C ]M,L))

(init)

d ∈ D E ⊆ elems(d) E 6= ∅ ms,md ∈M (Lr ∪ Lw) ∩ (V× {ms,md} × {d} × E) = ∅
(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q,R,B, (D \ ({ms} × {d} × E)) ∪ ({md} × {d} × E), Lr, Lw, (C ]M,L))

(migrate)

d ∈ D E ⊆ elems(d) E 6= ∅ ms,md ∈M Lw ∩ (V× {ms} × {d} × E) = ∅ (Lr ∪ Lw) ∩ (V× {md} × {d} × E) = ∅
(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q,R,B,D ∪ ({md} × {d} × E), Lr, Lw, (C ]M,L))

(replicate)

(c, v, s) ∈ R step(v, s) = (s′, destroy(d)) Ld = V×M × {d} × E
(Q,R,B,D,Lr, Lw, (C ]M,L))→ (Q, (R \ {(c, v, s)}) ] {(c, v, s′)}, B,D \ (M × {d} × E), Lr \ Ld, Lw \ Ld, (C ]M,L))

(destroy)

Figure 3: Data related state transition rules.

In our model each operation is atomic and no state
transition may overlap with others. Although modeling the
concurrent execution of tasks, this eliminates any paral-
lelism. To utilize parallel resources, implementations are
allowed to perform overlapping transitions. However, the
observable behavior of a program executed in parallel must
be equivalent to the observable result of some sequential
trace of the program.

2.5. Model Properties

Beside others, the following properties can be proven
for our model (sketches for these proofs can be found
in Appendix A):
• single-execution: in a terminating trace, for the entry

point and each spawned task exactly one variant will
be selected and processed exactly once

• termination: if a deadlock-free program has a termi-
nating trace, all of its traces not including infinite
initialization, migration, and replication sequences will
eventually terminate

• satisfied requirements: variants are only processed on
compute units where all required data is available for
the duration of their processing

• exclusive writes: a data element being write locked in
some memory address space is not replicated anywhere
else in the system at the same time, nor can such
replicates be created

• data preservation: the runtime system cannot delete
data that is not explicitly destroyed; the runtime can,
however, remove replicated data

In particular the termination property ensures that sensible
scheduling of runtime operations does not influence the
termination of a program. The exclusive writes property, on
the other hand, ensures that the runtime system can not
introduce race conditions through scheduling and/or data
management decisions.

3. Implementation
The AllScale environment provides an implementation

of our application model based on C++. It comprises three
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Figure 4: Example data item organizations.

major components: implementations of templated data struc-
tures facilitating instances to be managed as data items, a
runtime system utilizing those to coordinate the processing
of programs on distributed memory systems, and a source-
to-source compiler component converting a high-level task
API into the format required by our model.

3.1. Data Items

Our C++ implementations of data items are required
to provide three components as illustrated by Fig. 4: a
façade type, a fragment type, and a region type. The façade
type defines the logical view on the data structure to the
end user, i.e. the application developer. It provides data-
structure-specific operations, like field accesses or iterators.
The fragment type, on the other hand, is the runtime’s view
on the data structure. Fragments are capable of maintaining
subsets of elements of a data structure within some address
space. Finally, regions provide the necessary means to ad-
dress the subset of elements maintained within fragments,
as introduced by Definition 2.2.

A large variety of data structures, ranging from sim-
ple scalars, ordinary arrays, over multi-dimensional grids,
various types of trees, graphs, sets, and maps can be imple-
mented using this interface. The key element for the efficient
distribution of those, however, is the region type – thus the
means to address subsets of elements.

Region types have to satisfy several criteria: first, they
have to be closed under union, intersection, and set-
difference. Thus, for instance, using simple axis aligned
bounding boxes for describing regions in e.g. a 2D grid
would not be sufficient, since boxes are neither closed under
union nor set-difference. Second, representations ought to
be efficient, both in space and runtime complexity. Thus,
explicit element enumerations, while technically sound, are
less practical. Finally, region types must be able to accu-
rately express regions of interest for the algorithm applied
on the associated data structure.

The last criteria implies that there is not a single ideal
region type for every kind of data structure. There might
be several different alternatives application developers may
chose from, to adapt the data item implementation to their
needs – similar to choosing between e.g. linked lists and
array lists for a respective use case when performing algo-
rithmic optimizations.

Fig. 4 outlines three example data item implementations
provided by our prototype implementation. Fig. 4a illustrates
a 2D version of our N-dimensional grid implementation,
utilizing sets of axis-aligned bounding boxes to describe
regions. Unlike individual boxes, sets are closed under in-
tersection and set-difference and are thus valid region types.

Fig. 4b and Fig. 4c outline the structure of two binary
tree data items, equipped with different region schemes.
In Fig. 4b regions are defined through two sets of sub-
trees, each identified by its respective root node. The first
set enumerates included sub-trees, while the second set
enumerates excluded sub-trees nested within the included
trees. Thus, the data partitioning illustrated in Fig. 4b can
be represented by listing at most three nodes to characterize
the regions covered by the individual regions. This scheme
provides the flexibility to express arbitrary node distributions
among tree fragments.

However, in some cases the flexibility provided by the
scheme of Fig. 4b is not required. More coarse grained
blocking like outlined in Fig. 4c might be sufficient. In
this scheme, the overall tree is divided into one root tree
of height h and 2h sub-trees. Thus, a simple bit-mask of
length 2h + 1 is sufficient to model regions, providing a
much more efficient scheme, yet less flexible distribution
options. Depending on the algorithm though, those might
not be required.

Data item implementations, as well as a set of parallel
algorithms applicable on them are provided by the AllScale
API [2]. The AllScale API is a small header-only library
associated to the AllScale compiler and our runtime system
providing a user interface to develop applications utilizing
the provided infrastructure.

3.2. Runtime System

The AllScale Runtime System implementation [3] is
based on the HPX distributed memory runtime system [4].
HPX offers a task based parallel programming library,
handling the scheduling of tasks in a distributed memory
environment as well as means for services globally address-
able through remote procedure calls. By default, the HPX
runtime system maintains a single process per node within a
distributed memory cluster. Each of these processes manages
a pool of worker threads, to harness intra-node parallelism.
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Figure 5: Hierarchical, distributed data storage index.

Communication between processes is realized through a
compact, exchangeable communication layer. MPI, plain
TCP, or libfabric based implementations are available.

Our runtime system prototype extends upon HPX by
adding a data item manager, an adapted task scheduler,
an extended monitoring infrastructure [5], and a resilience
manager [6] – the latter two are possible due to the AllScale
runtime model, but their details are beyond the scope of this
paper.

The objective of the data item manager and the scheduler
is to maintain a consistent view on the system state, react
to task-triggered actions and steer the program execution by
scheduling tasks and managing the distribution of data.

As covered in the previous section, the overall state
information to be maintained by the runtime system is given
by the tuple

(Q,R,B,D,Lr, Lw, (C ]M,L))

The overall state is maintained in a distributed fashion
throughout the system, exploiting locality. Enqueued tasks
(Q) are stored within node-local queues at the locality
where they have been created, yet may be stolen by other
nodes. Running and blocked tasks (R and B) are equally
maintained within node-local structures, but may not be
moved to other nodes since their task-private state can not
be migrated.

The data distribution D is managed by keeping track
of locally present regions of data items. Thus, a data item
manager instance in each AllScale process maintains frag-
ments of data items and actively manages contained data by
performing resizing, import, and export operations. Further-
more, the data item manager keeps track of the lock states
Lr and Lw of locally maintained data item regions. Finally,
information regarding the hardware model (C ] M,L) is
maintained by the underlying HPX system.

When scheduling application tasks, in particular in the
context of a start transition, the runtime is frequently
tasked with locating regions of data items being distributed
throughout the system. For instance, before being allowed
to start a variant v of a task all data required by v must
be located and moved to a common compute locality or —
preferably — the variant v must be moved to a locality
where the required data is already present. To speed up
the process of locating required data, a distributed index
structure as outlined by Fig. 5 is maintained.

Algorithm 1 Region location resolution.
Input: d ∈ D . . . a data item
Input: r ∈ R . . . a region of d to be located
Output: m ⊆ R × N . . . a relation mapping region segments to hosting

process IDs, such that
⋃

(x,j)∈m x ⊆ r

1: function LOOKUP(d,r)
2: return local_process.RESOLVE(d,r,1)
3: end function
4:
5: function RESOLVE(d,r,l)
6: i := <local process ID>
7: m := ∅
8: if l == 1 then
9: // leaf level - add local share to result

10: ri = <region of d covered by local process i>
11: if r ∩ ri 6= ∅ then
12: m := m ] {(r ∩ ri, i)}
13: r := r \ ri
14: end if
15: else
16: // inner level - check children
17: rl = <region of d covered by left subtree of process i on level l>
18: if r ∩ rl 6= ∅ then
19: m := m ] process[i].RESOLVE(d,r,l − 1)
20: r := r \ rl
21: end if
22: rr = <region of d covered by right subtree of process i on level l>
23: if r ∩ rr 6= ∅ then
24: m := m ] process[i+ 2l−1].RESOLVE(d,r,l − 1)
25: r := r \ rr
26: end if
27: end if
28:
29: // if fully resolved => done
30: if r = ∅ then return m end if
31:
32: // escalate to parent
33: if l is not the root level then
34: m := m ] process[2lbi/2lc].RESOLVE(d,r,l + 1)
35: end if
36:
37: // done
38: return m
39: end function

All AllScale runtime processes are organized in a binary
hierarchy such that process i is the child of process 2lbi/2lc
on level l, where level 1 is the leaf level. Note that due
to this arrangement, the role of inner nodes is assumed
by the left child of those nodes in the hierarchy. Each
leaf node stores the region covered by its locally present
data item fragments, while inner nodes maintain the regions
covered by their left and right sub-trees. Thus, each process
has to maintain up to O(log2(P )) regions, where P is the
number of involved processes. For each managed data item,
a separate hierarchical index is maintained.

Algorithm 1 outlines the distributed procedure initiated
whenever the locality of a region r of a data item d has to
be obtained by a process. The lookup request is forwarded
to a recursive tree-traversal algorithm starting on the leaf
level (line 2). In each step of the traversal, it is first tested
whether the currently visited node in the process hierarchy
is a leaf node or inner node (line 8). In case of a leaf node,
the locally maintained region of a data item is compared to



Algorithm 2 Inter-process task scheduling.
Input: t ∈ T . . . task to be scheduled

1: procedure ASSIGN_TO_NODE(t)
2: // select the variant to be processed
3: v = scheduler_policy.PICK_VARIANT(t)
4: if ∃ process i : all requirements of v are covered by i then
5: // schedule task on node fulfilling all requirements
6: process[i].enqueue(v)
7: else if ∃ process i : all write-reqs. of v are covered by i then
8: // schedule task on node fulfilling all write requirements
9: process[i].enqueue(v)

10: else
11: // let scheduling policy decide where to place task
12: i := scheduler_policy.PICK_TARGET(v)
13: process[i].enqueue(v)
14: end if
15: end procedure

the requested region (line 11). If so, corresponding locality
information is added to the result (line 12) and the set of
remaining elements to be located is reduced accordingly
(line 13). In case of visiting an inner node, the left and right
sub-trees are consulted for their contributions (lines 16-26).
If after processing the current node all requested elements
could be resolved, the traversal is terminated (line 30).
Otherwise the parent node is consulted (line 34).

Algorithm 1 constitutes a greedy heuristic for obtaining
a list of sources to retrieve data from when being tasked with
coalescing a given region in a single address space. It is thus
utilized for creating replicas of read-only data required by
a task variant whenever its target location has been fixed.
The variant of a task to be processed as well as the locality
it ought to be processed on is determined by a customized,
data requirement aware scheduler algorithm.

Algorithm 2 provides a high-level overview of the cur-
rently implemented task distribution heuristic utilized by our
prototype implementation. Whenever a task is scheduled, in
a first step a customizable scheduling policy is consulted
to select the variant to be executed (line 3). This policy
considers the set of available variants, properties of those
like being sequential or spawning additional sub-tasks, as
well as runtime system data like task queue lengths and
worker idle rates. Once a variant is selected, it is dispatched
to a process fulfilling all data requirements (line 6) or, if not
available, to a node covering all write requirements (line 9).
If neither of those is available, the scheduling policy will be
once more consulted to select a desirable locality (line 12)
to which the task is finally forwarded (line 13).

The scheduling policy is responsible for obtaining ade-
quate task granularity and load distribution throughout the
system. In particular during the initialization phase of ap-
plications, it is responsible for spreading out tasks such that
data items get evenly distributed throughout the system. In
later phases, by monitoring the workload distribution among
various processes, the scheduling policy may decide to
migrate data between nodes, which will implicitly lead to the
redirection of future tasks to the newly designated localities.
Thus, inter-node load balancing is achieved through actively
managing the distribution of data.

3.3. Compiler

The last component of our prototype implementation is
the AllScale compiler [7], a source-to-source compiler based
on the Insieme compiler framework [8], [9]. Its basic role
is to convert an input program using AllScale’s high-level
parallel C/C++ API based on the prec operator [10] into
application code fitting the model expected by the runtime
system. Its major tasks are:
• the identification of parallel tasks in the input code and

the generation of code variants for each of those; for
each task a serial and parallel implementation variant
is made available to the runtime system where possible

• the integration of data requirements by associating a
function computing requirements with each code vari-
ant; data requirements are obtained through high-level
static program analysis based on Insieme’s analysis
framework [11]

• the restructuring of user code addressing data item
façades to interface with the runtime’s data item man-
ager; thus replace user managed data items by runtime
managed instances

• the addition of serialization code for user defined types
to facilitate the migration of data

As a source-to-source compiler, the AllScale compiler con-
verts a user provided C++ input program into C++ target
code to be compiled against the AllScale runtime system.
The resulting binary can be executed on a given target
architecture like any other HPX application.

3.4. Example Application

Fig. 6a outlines a simple, sequential version of a two-
dimensional stencil kernel [12] implemented in C++, as it
might be present in many physics applications that solve e.g.
heat diffusion equations. Lines 1 and 2 allocate two buffers,
to which line 3 obtains pointers. The first loop nest (lines
5–8) initializes the first buffer, before the time loop starting
on line 10 performs the actual simulation of the diffusion
process. In each time step the loops in lines 11–17 update
each element in the buffer based on the state of the same
element and its neighbors in the previous time step. Finally,
line 18 ensures that after each time step the role of buffers
A and B is swapped.

The AllScale version of Fig. 6b has been derived from
the sequential version by applying two modifications: First,
the initializer loop nest (lines 5–7) and update loop nest
(lines 12–17) have been parallelized using the 2D version
of the pfor function provided by the AllScale API. Second,
the underlying array data structures have been exchanged by
API-provided two-dimensional Grid instances implement-
ing the data item interface. Within these grids, regions are
addressed through sets of axis-aligned bounding boxes (see
Fig. 4a).

This example demonstrates that user applications can be
ported to our model without increasing code complexity.



1 double f i e l d A [N] [N ] ;
2 double f i e l d B [N] [N ] ;
3 auto A = f i e l d A , B = f i e l d B ;
4 / / i n i t i a l i z e t h e f i e l d
5 f o r ( i n t x = 0 ; x < N ; ++x ) {
6 f o r ( i n t y = 0 ; y < N ; ++y ) {
7 A[ x ] [ y ] = . . . ; / / some v a l u e
8 } }
9 / / g r a d u a l l y compute t h e s o l u t i o n

10 f o r ( i n t t = 0 ; t < T ; ++ t ) {
11 f o r ( i n t x = 1 ; x < N−1 ; ++x ) {
12 f o r ( i n t y = 1 ; y < N−1 ; ++y ) {
13 B[ x ] [ y ] = A[ x ] [ y ] + c ∗ (
14 A[ x ] [ y−1] + A[ x ] [ y +1] +
15 A[ x−1][y ] + A[ x + 1 ] [ y ] − 4∗A[ x ] [ y ]
16 ) ;
17 } }
18 swap (A, B ) ;
19 }
20 / / t h e s o l u t i o n i s now s t o r e d i n A

(a) sequential version

1 Grid <double ,2 > A( {N,N} ) ; / / 2D g r i d
2 Grid <double ,2 > B( {N,N} ) ; / / 2D g r i d
3
4 / / i n i t i a l i z e t h e f i e l d
5 p f o r ( { 0 , 0 } , {N,N} , [ & ] ( auto p ) {
6 A[ p ] = . . . ; / / some v a l u e
7 } ) ;
8
9 / / g r a d u a l l y compute t h e s o l u t i o n

10 f o r ( i n t t = 0 ; t < T ; ++ t ) {
11
12 p f o r ( { 1 , 1 } , {N−1,N−1}, [&] ( auto p ) {
13 B[ p ] = A[ p ] + c ∗ (
14 A[ { p . x , p . y−1}] + A[ { p . x , p . y +1}] +
15 A[ { p . x−1,p . y } ] + A[ { p . x +1 , p . y } ] − 4∗A[ p ]
16 ) ;
17 } ) ;
18 swap (A, B ) ;
19 }
20 / / t h e s o l u t i o n i s now s t o r e d i n A

(b) parallel, distributed memory version

Figure 6: Comparison of 2D stencil implementations.

4. Evaluation

To evaluate the capabilities of our model, we examine
the performance of three applications: stencil, an estab-
lished micro-benchmark; iPiC3D, a real-world particle-in-
cell simulator; and two-point correlation (TPC), a data-
mining primitive based on tree traversals.

4.1. Setup

The stencil application has been derived from the Par-
allel Research Kernels [12] and was already introduced
in Section 3.4. The second, iPiC3D [13], simulates the
behavior of charged particles interacting with each other in
the presence of electromagnetic fields. The data structures
used for this simulation are three regular 3D grids — two
holding electromagnetic field data, while an additional grid
holds lists of particles. The third application, TPC [14], is a
two-point correlation benchmark that computes the number
of points within a certain distance of a given query point in
7D space. For each query, TPC performs a pruned, parallel
kd-tree traversal. It is widely used in statistics and data
mining. We ported each of our three applications to the
AllScale model and MPI to provide a reference.

Table 1 summarizes our three applications by outlining
their central data structures, the problem sizes used in our
evaluation, and the collected performance metric.

For our evaluation we used up to 64 nodes inside the
RRZE Meggie Cluster2. Each node is equipped with two
Intel Xeon E5-2630 v4 processors, 10 cores each, and 64
GB of main memory. The nodes are connected via Intel
OmniPath in a fat tree topology. All codes are compiled
with GCC 7.3.0 using Intel MPI 2018.2.

4.2. Results and Discussion

Fig. 7 summarizes our evaluation. For stencil and
iPiC3D, the results of the AllScale and MPI versions show

2. https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/

comparable performance and scalability. For TPC, however,
MPI obtains higher performance, while AllScale can only
gain performance improvements up to 8 nodes.

For all three benchmarks, our prototype implementa-
tion manages to effectively distribute the user-defined data
structures among multiple nodes. Furthermore, the results
of the first two applications demonstrate that the implicit
data management scheme employed by our model can pro-
vide performance comparable to state-of-the-art MPI based
implementations depending on explicit user-managed data
distributions. Thus, our system’s increased control on an
application does not incur an inherent performance penalty.

In principle, the same holds true for the TPC benchmark.
However, unlike the first two, TPC spawns a large number
of inherently small tasks to be forwarded to localities own-
ing traversed kd-tree nodes. The resulting high inter-node
communication overhead for transferring tasks diminishes
overall performance and grows dominant for larger node
counts. To mitigate, the MPI version aggregates multiple
queries to reduce latency sensitivity and improve bandwidth
utilization. However, such an optimization, while technically
possible, has not yet been integrated into our prototype.

5. Related Work

Conventional, low-level HPC infrastructures comprising
combinations of MPI, OpenMP, OpenCL, CUDA, and Cilk
are the de facto standard for building HPC applications,
despite their lack of higher level data management services.
When utilizing those, the decomposition and distribution
management of data structures has to be incorporated into
the application code. Thus, the developers’ view on data
structures as a self-contained entity is abandoned and re-
placed by the explicit handling of subsections of those data
structures distributed among various address spaces.

Programming models based on Partitioned Global Ad-
dress Space (PGAS) attempt to mitigate on the latter by
providing a global, shared address space within which data



TABLE 1: List of target application codes.

Name Description Data Structure Problem Size Performance Metric
stencil 2D stencil kernel [12] regular 2D grid 20, 0002 elements per node FLOPS
iPiC3D particle-in-cell simulator [13] multiple regular 3D grids 48 · 106 particles per node particle updates per second

TPC two-point-correlation search [14] kd-tree 229 points in [0, 100)7 with radius 20 queries per second
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Figure 7: Throughput scaling of the three target applications.

structures can be placed without the need for explicit de-
construction. Languages like Unified Parallel C [15] or
Coarray Fortran [16] implement this model by extending
their host languages with partitioned arrays whose elements
are statically distributed throughout multiple physical ad-
dress spaces. Higher level user-defined data structures or the
dynamic redistribution of data structures are not supported.
More sophisticated PGAS incarnations such as Chapel [17]
and X10 [18] introduce the support for user-defined data
structures in PGAS environments, yet managing the distri-
bution of those remains the developers’ obligation.

On the hardware level, virtual shared memory sys-
tems [19] provide solutions where the data distribution
among physical address spaces is managed on a memory
page level granularity. Multiple physical address spaces are
connected to one large virtual address space that applications
may transparently access. While capable of processing arbi-
trary applications without the need of any modifications, the
lack of insights into managed data structures and synchro-
nization granularity requirements of processed algorithms
causes scalability issues beyond a few thousand cores.

On the application level, programming models taking
complete control over the data management have been intro-
duced. Systems like Spark [20] or Hadoop [21] are centered
around the management of data on which operations may be
applied on. However, the structure of data and algorithms
to be applied is limited.

DSL development frameworks such as Lift [22],
Delite [23], and AnyDSL [24] provide environments for
the implementation of high performance DSLs. In each of
those, data management is handled effectively by the system.
Yet, the range of supported data structures and operations
is limited by the design of the corresponding DSL.

More general purpose parallel C++ based frameworks
like the RAJA portability layer [25] or PHAST [26] utilize
C++’ modern features to provide a higher level abstraction
for achieving portability among underlying parallel APIs
such as OpenMP, Cilk, OpenCL and CUDA. Also new stan-
dards like SYCL [27] utilize the same C++ features to im-

prove maintainability of heterogeneous, high-performance
code bases. However, while abstracting away compiler, API,
or platform specific directives to enable portability, none of
these offer data structure distribution capabilities.

Data focused parallel C++ library based frameworks like
STAPL [28] and Kokkos [29] are exercising control over
parallel algorithms and data structures similar to our archi-
tecture. Both provide fixed sets of library-defined, (multidi-
mensional) array focused generic containers whose distribu-
tion is managed by the underlying runtime system. Neither
utilizes abstractions opening up the option of integrating a
more general class of structures as supported by our model.

In our own evolutionary lineage, the AllScale project
improves upon the concepts developed by the Insieme com-
piler and runtime system project [8], by generalizing towards
user-definable data structures. While core compiler features
are reused, the runtime system is replaced with the HPX
runtime system [4]. HPX on its own, however, does not
include automated data management.

6. Conclusion and Future Work

The AllScale Application Model provides novel control
over the distribution of user-defined data structures to under-
lying runtime systems. This control opens up the possibility
of integrating higher-level services, including the transpar-
ent exchange and migration of data and tasks as well as
inter-node load balancing support, into generic, application-
independent runtime systems. Our prototype implementa-
tion establishes the practical realizability of our approach,
showcasing, in particular, the usability advantages of our
system from an HPC application developer’s point of view.
Furthermore, our iPiC3D port demonstrates its applicability
to real-world use cases.

Current development efforts aim at closing the per-
formance gap to handcrafted MPI-based implementations.
Furthermore, techniques for inter-node load balancing and
runtime system based task checkpointing are the subject of
ongoing investigations.
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Appendix A.
Proof Sketches

In this appendix section we provide proof sketches for
the model properties stated in Section 2.5. It is intended for
the reviewers to get insights on the utility of our formal
model. Unlike other sections, as an extra, this appendix did
not go through the strict quality checks we apply on other
sections. We apologize for any mistakes.

A.1. Auxiliary Definitions

For outlining our proof sketches additional definitions
are required to facilitate a concise notation. In a first step
we define the following short-cut functions to address com-
ponents of system state tuples.

Definition A.1 (State Component Accessors). Let

s = (Q,R,B,D,Lr, Lw, (C ]M,L)) ∈ S

be an abbreviation for an arbitrary system state. Then, the
function q : S → 2T is defined by

q(s) = Q

the function r : S → 2C×V×S is defined by

r(s) = R

the function b : S → 2C×V×S×T is defined by

b(s) = B

the function v : S → 2V is defined by

v(s) = {v ∈ V|∃c, s, t : (c, v, s) ∈ r(s) ∨ (c, v, s, t) ∈ b(s)}

the function d : S → 2M×D×E is defined by

d(s) = D

the function lr : S → 2V×M×D×E is defined by

lr(s) = Lr

the function lw : S → 2V×M×D×E is defined by

lw(s) = Lw

and the function l : S → 2V×M×D×E is defined by

l(s) = lw(s) ∪ lr(s)

We also require additional notation for state transitions.

Definition A.2 (State Transition Utilities). The relation→∗:
S×S is the reflexive transitive closure of the state transition
relation →. Furthermore, let →p: S × S be defined by the
inference rules (start), (spawn), (sync), (continue), (end),
(create), and (destroy) of Fig. 2 and Fig. 3, and the relation
→∗p=→∗ × →p.

Thus, the relation →∗ models an arbitrary number of
transition steps (including none), the relation →p covers
state transitions involving progressing tasks, and →∗p an

arbitrary sequence of transitions ended by a progress tran-
sition.

Furthermore, we define the following auxiliary functions
for traces.

Definition A.3 (Trace Utilities). The function start : P→ S
is defined by

start(t) = ({t0} , ∅, ∅, ∅, ∅, ∅, (C ]M,L))

and the set F of terminal states is defined as

F = {s ∈ S | q(s) = r(s) = b(s) = l(s) = ∅} ⊂ S

Let T define the set of all traces. Furthermore, the function
traces : P→ 2T is defined by

traces(p) = {[s0, s1, . . .] ∈ T | s0 = start(p)}

the function full_traces : P→ 2T is defined by

full_traces(p) =
{
t ∈ traces(p) | |t| =∞∨ t|t|−1 ∈ F

}
and the function p_steps : T → N ∪ {∞} is defined by

p_steps([s0, s1, . . .]) = |{i ∈ N | si →p si+1}|

Thus, the function traces obtains the set of all traces
of a program, while the function full_traces obtains all
terminated or infinite traces. The function p_steps counts
the number of progress steps in a given trace.

A.2. Model Property Proof Sketches

A.2.1. Single-Execution. The single execution property
claims that in a terminating trace for the entry point and each
spawned task exactly one variant is selected and this variant
is processed exactly once. The following two theorems
formalizes this property:

Theorem A.1 (Single-Execution Tasks). For any terminat-
ing trace t = [s0, s1, . . . , sn] ∈ T there are no two distinct
states si, sj ∈ S such that

∃t ∈ T : t ∈ q(si) ∧ t 6∈ q(si+1) ∧ t ∈ q(sj) ∧ t 6∈ q(sj+1)

Thus, there are no two states followed by the start of the
same task.

Since there is only one transition starting the execution
of a task t, namely (start), and its effect is the disappearance
of t from Q in the corresponding state, we can focus on this
effect in the theorem. If there are indeed no traces where the
same task can be started twice, the first part of the property
is covered.

Single-Execution Tasks. Proof by contradiction: let t =
[s0, s1, . . .] ∈ T be a trace with two distinct states si, sj ∈ S
and t ∈ T a task such that

t ∈ q(si) ∧ t 6∈ q(si+1) ∧ t ∈ q(sj) ∧ t 6∈ q(sj+1)

W.l.o.g. we can assume i < j. Thus, there must be a i < k ≤
j such that t 6∈ q(sk) and t ∈ q(sk+1). Since only spawn
transitions add elements to Q, we conclude that t 6∈ P and



the transition sk → sk+1 must be a spawn. However, since
the execution of variants does not loop (the trace terminates)
and each task including t has a unique spawn point which
must have occurred for a state before state si, the task t can
not be re-added to Q, position k can not exist, contradicting
our initial assumption.

Theorem A.2 (Single-Execution Variants). For any termi-
nating trace t = [s0, s1, . . . , sn] ∈ T there are no two
distinct states si, sj ∈ S such that

∃v ∈ V : v 6∈ v(si)∧ v ∈ v(si+1)∧ v 6∈ v(sj)∧ v ∈ v(sj+1)

Thus, there are no two states followed by the start of the
processing of the same variant.

Single-Execution Variants. It follows from Theorem A.1,
the fact that the (start) transition only picks a single vari-
ant, and the assumption that no two tasks have common
variants.

A.2.2. Termination. The termination property claims that
if a deadlock free program has a terminating trace all of
its traces not including infinite initialization, migration, and
replication sequences will eventually terminate.

Before formalizing this property we have to provide a
definition of a deadlock free program.

Definition A.4 (Deadlock Free). A program t ∈ P is
deadlock free iff

∀s ∈ S \ F : start(t)→∗ s⇒ ∃s′ : s→∗p s′

Thus, a program is deadlock free if and only if for each
reachable non-terminal state s there is a sequence of state
transitions leading to the progress of some task.

Furthermore, we have to impose one additional con-
straint on program variants not covered in the main body
of the paper for brevity: w.l.o.g no variant may be a no-
op. Thus, the processing of every variant contributes to the
overall progress of the application. Since all variants of a
task are computationally equivalent, the contribution of each
variant is identical. Thus, progress contributed by a task is
equal to the contribution of any of its variants.

In a next step we define the set of reachable tasks.

Definition A.5 (Reachable Tasks). Let p ∈ P be a program.
The set Tp ⊂ T defined by

Tp = {t ∈ T | ∃s ∈ S : start(p)→∗ s ∧ t ∈ q(s)}

covers the set of all reachable tasks of p.

Lemma A.1 (Finite Reachable Tasks). For a program p with
a terminating trace t the set Tp is finite.

Proof. (– Sketch – )
• a terminating program p covers a finite amount of work
• reachable tasks form a hierarchy through their spawn

points, rooted by the entry point
• for each task the covered work has to be greater

than the sum of its child tasks due to the no no-op

assumption; thus, since work is finite, the tree can not
be infinitely deep

• furthermore, since all variants of each individual task
are computationally equivalent and at least one of those
has terminated, all tasks terminate; thus no task can
spawn an infinite number of sub-tasks, and each node
in the hierarchy can only have a finite number of child
nodes

• it follows that the task hierarchy is finite, and thus the
number of reachable tasks is finite too

Definition A.6 (Reachable Variants). Let p ∈ P be a
program. The set Vp ⊂ V defined by

Vp = {v ∈ V | ∃s ∈ S : start(p)→∗ s ∧ v ∈ v(s)}

covers the set of all reachable variants of p.

Lemma A.2 (Finite Reachable Variants). For a program p
with a terminating trace t the set Vp is finite.

Proof. It follows from Lemma A.1 and the definition that
each task has a finite number of variants.

Finally, this termination property can be formalized as
follows:

Theorem A.3 (Termination). Let p ∈ P be a deadlock free
program. If there is a terminating trace t ∈ traces(p) then

∀t ∈ full_traces(p) : p_steps(t) ∈ N

Proof. Let p ∈ P be a deadlock free program with a termi-
nating trace t. Since p terminates, Vp is finite. Furthermore,
since all variants must terminate due to the computational
equality assumption, every variant can be completed with a
finite number of→p transitions involving the progressing of
the respective variant. Let u ∈ N be the upper boundary for
the number of progress transitions required by any variant
in Vp to terminate. Then ub = u|Vp| provides an upper
boundary for the number of progress steps p_steps(t′) to be
performed by any full trace t′ of p.

A.2.3. Satisfied Requirements. The satisfied requirements
property claims that variants are only processed on compute
units where all required data is available for the duration of
their processing.

Informally, this can be proven through the following
steps:
• let [s0, s1, . . .] ∈ T be a trace and v ∈ V be a processed

variant
• when starting v a set of fresh read and write locks lr

and lw are set
• write locks can only be removed by (end) transitions

terminating v, or (destroy) transitions; in either cases v
will no longer require access to effected data

• the (start) transition initiating v also ensures the locked
data to be present on the node processing v; thus,
initially all data is present

• only (migrate) and (destroy) transitions can remove
data from a memory space; (destroy) transitions have



already been covered, and (migrate) transitions can not
be applied as long as the variant v holds its locks;

• thus, all data required by v is retained at its position
for the duration of the execution of v

A.2.4. Exclusive Writes. The exclusive writes property
claims a data element being write locked in some memory
address space is not replicated anywhere else in the system
at the same time, nor can such replicates be created

Informally, this can be proven through the following
steps:
• write locks are introduced through (start) transitions,

which ensure that before and after the transition only
a single copy of write-protected data is maintained
throughout the system

• only (migrate) and (replicate) transactions may move
data to different address spaces or create a copy; neither
of those is enabled as long as write locks are held;

• based on those two observations, the property can be
proven by induction on the length of traces after the
creation of a write lock

A.2.5. Data Preservation. The data preservation property
claims that the runtime system cannot delete data that is
not explicitly destroyed. The runtime can, however, remove
replicated data.

Informally, this can be proven through the following
steps:
• data may only be lost through (destroy) or (migrate)

transitions
• (destroy) transitions are explicitly triggered by the ap-

plication; the related loss of information is thus ac-
cepted;

• (migrate) transitions move existing data between ad-
dress spaces; every element removed from the source
address space is added to the target address space; thus
no information is lost

While no information can be lost, the runtime system
is indeed able to remove replicated data. For instance, let s
be a state such that {(m1, d, e), (m2, d, e)} ∈ d(s) for two
distinct address spaces m1,m2 ∈ M and some data item
d ∈ D and element e ∈ E. Thus, the element e of d is
replicated among two distinct address spaces. Furthermore,
let

6 ∃v ∈ V : (v,m1, d, e) ∈ l(s) ∨ (v,m2, d, e) ∈ l(s)

Thus neither copy is lock protected. To eliminate, for in-
stance, the copy in m1, the runtime system is free to perform
a (migrate) transition using m1 as the source address space
ms, m2 as the destination address space md, d as the data
item and the range E = {e}. The effect will be a transition
to a state s′ without the copy of the element e of data item
d in address space m1. The copy in m2 persists.
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